Search results for: 3D wave model
7675 A Novel Instantaneous Frequency Computation Approach for Empirical Mode Decomposition
Authors: Liming Zhang
Abstract:
This paper introduces a new instantaneous frequency computation approach -Counting Instantaneous Frequency for a general class of signals called simple waves. The classsimple wave contains a wide range of continuous signals for which the concept instantaneous frequency has a perfect physical sense. The concept of -Counting Instantaneous Frequency also applies to all the discrete data. For all the simple wave signals and the discrete data, -Counting instantaneous frequency can be computed directly without signal decomposition process. The intrinsic mode functions obtained through empirical mode decomposition belongs to simple wave. So -Counting instantaneous frequency can be used together with empirical mode decomposition.Keywords: Instantaneous frequency, empirical mode decomposition, intrinsic mode function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15757674 Large-Eddy Simulation of Hypersonic Configuration Aerodynamics
Authors: Huang Shengqin, Xiao Hong
Abstract:
LES with mixed subgrid-scale model has been used to simulate aerodynamic performance of hypersonic configuration. The simulation was conducted to replicate conditions and geometry of a model which has been previously tested. LES Model has been successful in predict pressure coefficient with the max error 1.5% besides afterbody. But in the high Mach number condition, it is poor in predict ability and product 12.5% error. The calculation error are mainly conducted by the distribution swirling. The fact of poor ability in the high Mach number and afterbody region indicated that the mixed subgrid-scale model should be improved in large eddied especially in hypersonic separate region. In the condition of attach and sideslip flight, the calculation results have waves. LES are successful in the prediction the pressure wave in hypersonic flow.Keywords: Hypersonic, LES, mixed Subgrid-scale model, experiment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15727673 Achieving Shear Wave Elastography by a Three-element Probe for Wearable Human-machine Interface
Authors: Jipeng Yan, Xingchen Yang, Xiaowei Zhou, Mengxing Tang, Honghai Liu
Abstract:
Shear elastic modulus of skeletal muscles can be obtained by shear wave elastography (SWE) and has been linearly related to muscle force. However, SWE is currently implemented using array probes. Price and volumes of these probes and their driving equipment prevent SWE from being used in wearable human-machine interfaces (HMI). Moreover, beamforming processing for array probes reduces the real-time performance. To achieve SWE by wearable HMIs, a customized three-element probe is adopted in this work, with one element for acoustic radiation force generation and the others for shear wave tracking. In-phase quadrature demodulation and 2D autocorrelation are adopted to estimate velocities of tissues on the sound beams of the latter two elements. Shear wave speeds are calculated by phase shift between the tissue velocities. Three agar phantoms with different elasticities were made by changing the weights of agar. Values of the shear elastic modulus of the phantoms were measured as 8.98, 23.06 and 36.74 kPa at a depth of 7.5 mm respectively. This work verifies the feasibility of measuring shear elastic modulus by wearable devices.Keywords: Shear elastic modulus, skeletal muscle, ultrasound, wearable human-machine interface.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7917672 Structural Health Monitoring of Offshore Structures Using Wireless Sensor Networking under Operational and Environmental Variability
Authors: Srinivasan Chandrasekaran, Thailammai Chithambaram, Shihas A. Khader
Abstract:
The early-stage damage detection in offshore structures requires continuous structural health monitoring and for the large area the position of sensors will also plays an important role in the efficient damage detection. Determining the dynamic behavior of offshore structures requires dense deployment of sensors. The wired Structural Health Monitoring (SHM) systems are highly expensive and always needs larger installation space to deploy. Wireless sensor networks can enhance the SHM system by deployment of scalable sensor network, which consumes lesser space. This paper presents the results of wireless sensor network based Structural Health Monitoring method applied to a scaled experimental model of offshore structure that underwent wave loading. This method determines the serviceability of the offshore structure which is subjected to various environment loads. Wired and wireless sensors were installed in the model and the response of the scaled BLSRP model under wave loading was recorded. The wireless system discussed in this study is the Raspberry pi board with Arm V6 processor which is programmed to transmit the data acquired by the sensor to the server using Wi-Fi adapter, the data is then hosted in the webpage. The data acquired from the wireless and wired SHM systems were compared and the design of the wireless system is verified.Keywords: Condition assessment, damage detection, structural health monitoring, structural response, wireless sensor network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29697671 Position Control of an AC Servo Motor Using VHDL and FPGA
Authors: Kariyappa B. S., Hariprasad S. A., R. Nagaraj
Abstract:
In this paper, a new method of controlling position of AC Servomotor using Field Programmable Gate Array (FPGA). FPGA controller is used to generate direction and the number of pulses required to rotate for a given angle. Pulses are sent as a square wave, the number of pulses determines the angle of rotation and frequency of square wave determines the speed of rotation. The proposed control scheme has been realized using XILINX FPGA SPARTAN XC3S400 and tested using MUMA012PIS model Alternating Current (AC) servomotor. Experimental results show that the position of the AC Servo motor can be controlled effectively. KeywordsAlternating Current (AC), Field Programmable Gate Array (FPGA), Liquid Crystal Display (LCD).
Keywords: Alternating Current (AC), Field Programmable Gate Array (FPGA), Liquid Crystal Display (LCD).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 51607670 Numerical Investigation of Wave Interaction with Double Vertical Slotted Walls
Authors: H. Ahmed, A. Schlenkhoff
Abstract:
Recently, permeable breakwaters have been suggested to overcome the disadvantages of fully protection breakwaters. These protection structures have minor impacts on the coastal environment and neighboring beaches where they provide a more economical protection from waves and currents. For regular waves, a numerical model is used (FLOW-3D, VOF) to investigate the hydraulic performance of a permeable breakwater. The model of permeable breakwater consists of a pair of identical vertical slotted walls with an impermeable upper and lower part, where the draft is a decimal multiple of the total depth. The middle part is permeable with a porosity of 50%. The second barrier is located at distant of 0.5 and 1.5 of the water depth from the first one. The numerical model is validated by comparisons with previous laboratory data and semi-analytical results of the same model. A good agreement between the numerical results and both laboratory data and semi-analytical results has been shown and the results indicate the applicability of the numerical model to reproduce most of the important features of the interaction. Through the numerical investigation, the friction factor of the model is carefully discussed.
Keywords: Coastal structures, permeable breakwater, slotted wall, numerical model, energy dissipation coefficient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22497669 Understanding the Behavior of Superconductors by Analyzing Permittivity
Authors: Fred Lacy
Abstract:
A superconductor has the ability to conduct electricity perfectly and exclude magnetic fields from its interior. In order to understand electromagnetic characteristics of superconductors, their material properties need to be examined. To facilitate this understanding, a theoretical model based on concepts of electromagnetics is presented to explain the electrical and magnetic properties of superconductors. The permittivity response is the key aspect of the model and it describes the electrical resistance response and why it vanishes at the material’s critical temperature. The model also explains the behavior of magnetic fields and why they cannot exist inside superconducting materials. The theoretical concepts and equations associated with this model are used to demonstrate that they are sufficient in describing the behavior of both type I and type II (or high temperature) superconductors. This model is also able to explain why superconductors behave differently than perfect conductors. As a result, examining the permittivity response and understanding electromagnetic field theory provides insight into the major aspects associated with superconducting materials.
Keywords: Ampere’s law, permittivity, permeability, resistivity, Schrödinger wave equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6857668 Dynamic Analysis of Porous Media Using Finite Element Method
Authors: M. Pasbani Khiavi, A. R. M. Gharabaghi, K. Abedi
Abstract:
The mechanical behavior of porous media is governed by the interaction between its solid skeleton and the fluid existing inside its pores. The interaction occurs through the interface of gains and fluid. The traditional analysis methods of porous media, based on the effective stress and Darcy's law, are unable to account for these interactions. For an accurate analysis, the porous media is represented in a fluid-filled porous solid on the basis of the Biot theory of wave propagation in poroelastic media. In Biot formulation, the equations of motion of the soil mixture are coupled with the global mass balance equations to describe the realistic behavior of porous media. Because of irregular geometry, the domain is generally treated as an assemblage of fmite elements. In this investigation, the numerical formulation for the field equations governing the dynamic response of fluid-saturated porous media is analyzed and employed for the study of transient wave motion. A finite element model is developed and implemented into a computer code called DYNAPM for dynamic analysis of porous media. The weighted residual method with 8-node elements is used for developing of a finite element model and the analysis is carried out in the time domain considering the dynamic excitation and gravity loading. Newmark time integration scheme is developed to solve the time-discretized equations which are an unconditionally stable implicit method Finally, some numerical examples are presented to show the accuracy and capability of developed model for a wide variety of behaviors of porous media.
Keywords: Dynamic analysis, Interaction, Porous media, time domain
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18767667 Analytical Solution for Free Vibration of Rectangular Kirchhoff Plate from Wave Approach
Authors: Mansour Nikkhah-Bahrami, Masih Loghmani, Mostafa Pooyanfar
Abstract:
In this paper, an analytical approach for free vibration analysis of four edges simply supported rectangular Kirchhoff plates is presented. The method is based on wave approach. From wave standpoint vibration propagate, reflect and transmit in a structure. Firstly, the propagation and reflection matrices for plate with simply supported boundary condition are derived. Then, these matrices are combined to provide a concise and systematic approach to free vibration analysis of a simply supported rectangular Kirchhoff plate. Subsequently, the eigenvalue problem for free vibration of plates is formulated and the equation of plate natural frequencies is constructed. Finally, the effectiveness of the approach is shown by comparison of the results with existing classical solution.Keywords: Kirchhoff plate, propagation matrix, reflection matrix, vibration analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24207666 Polarization Modulation by free-Standing Asymmetric Hole Arrays
Authors: Hong-Wen Hsieh, Shun-Tung Yen
Abstract:
We theoretically demonstrate modulation of light polarization by a crossed rectangular hole array with asymmetric arm lengths. There are two waveguide modes that can modulate the x- and y- polarized incident waves independently. A specific structure is proposed to convert a left-hand incident wave to a right-hand outgoing wave by transmission.Keywords: Crossed rectangular hole array, extraordinary optical transmission, polarization modulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12847665 Development of Wave-Dissipating Block Installation Simulation for Inexperienced Worker Training
Authors: Hao Min Chuah, Tatsuya Yamazaki, Ryosui Iwasawa, Tatsumi Suto
Abstract:
In recent years, with the advancement of digital technology, the movement to introduce so-called ICT (Information and Communication Technology), such as computer technology and network technology, to civil engineering construction sites and construction sites is accelerating. As part of this movement, attempts are being made in various situations to reproduce actual sites inside computers and use them for designing and construction planning, as well as for training inexperienced engineers. The installation of wave-dissipating blocks on coasts, etc., is a type of work that has been carried out by skilled workers based on their years of experience and is one of the tasks that is difficult for inexperienced workers to carry out on site. Wave-dissipating blocks are structures that are designed to protect coasts, beaches, and so on from erosion by reducing the energy of ocean waves. Wave-dissipating blocks usually weigh more than 1 t and are installed by being suspended by a crane, so it would be time-consuming and costly for inexperienced workers to train on-site. In this paper, therefore, a block installation simulator is developed based on Unity 3D, a game development engine. The simulator computes porosity. Porosity is defined as the ratio of the total volume of the wave breaker blocks inside the structure to the final shape of the ideal structure. Using the evaluation of porosity, the simulator can determine how well the user is able to install the blocks. The voxelization technique is used to calculate the porosity of the structure, simplifying the calculations. Other techniques, such as raycasting and box overlapping, are employed for accurate simulation. In the near future, the simulator will install an automatic block installation algorithm based on combinatorial optimization solutions and compare the user-demonstrated block installation and the appropriate installation solved by the algorithm.
Keywords: 3D simulator, porosity, user interface, voxelization, wave-dissipating blocks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 697664 A Simplified Distribution for Nonlinear Seas
Authors: M. A. Tayfun, M. A. Alkhalidi
Abstract:
The exact theoretical expression describing the probability distribution of nonlinear sea-surface elevations derived from the second-order narrowband model has a cumbersome form that requires numerical computations, not well-disposed to theoretical or practical applications. Here, the same narrowband model is reexamined to develop a simpler closed-form approximation suitable for theoretical and practical applications. The salient features of the approximate form are explored, and its relative validity is verified with comparisons to other readily available approximations, and oceanic data.
Keywords: Ocean waves, probability distributions, second-order nonlinearities, skewness coefficient, wave steepness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20967663 Analysis of Lightning Surge Condition Effect on Surge Arrester in Electrical Power System by using ATP/EMTP Program
Authors: N. Mungkung, S. Wongcharoen., Tanes Tanitteerapan, C. Saejao, D. Arunyasot
Abstract:
The condition of lightning surge causes the traveling waves and the temporary increase in voltage in the transmission line system. Lightning is the most harmful for destroying the transmission line and setting devices so it is necessary to study and analyze the temporary increase in voltage for designing and setting the surge arrester. This analysis describes the figure of the lightning wave in transmission line with 115 kV voltage level in Thailand by using ATP/EMTP program to create the model of the transmission line and lightning surge. Because of the limit of this program, it must be calculated for the geometry of the transmission line and surge parameter and calculation in the manual book for the closest value of the parameter. On the other hand, for the effects on surge protector when the lightning comes, the surge arrester model must be right and standardized as metropolitan electrical authority's standard. The candidate compared the real information to the result from calculation, also. The results of the analysis show that the temporary increase in voltage value will be rise to 326.59 kV at the line which is done by lightning when the surge arrester is not set in the system. On the other hand, the temporary increase in voltage value will be 182.83 kV at the line which is done by lightning when the surge arrester is set in the system and the period of the traveling wave is reduced, also. The distance for setting the surge arrester must be as near to the transformer as possible. Moreover, it is necessary to know the right distance for setting the surge arrester and the size of the surge arrester for preventing the temporary increase in voltage, effectively.
Keywords: Lightning surge, surge arrester, electrical power system, ATP/EMTP program.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27657662 Designing of the Heating Process for Fiber- Reinforced Thermoplastics with Middle-Wave Infrared Radiators
Abstract:
Manufacturing components of fiber-reinforced thermoplastics requires three steps: heating the matrix, forming and consolidation of the composite and terminal cooling the matrix. For the heating process a pre-determined temperature distribution through the layers and the thickness of the pre-consolidated sheets is recommended to enable forming mechanism. Thus, a design for the heating process for forming composites with thermoplastic matrices is necessary. To obtain a constant temperature through thickness and width of the sheet, the heating process was analyzed by the help of the finite element method. The simulation models were validated by experiments with resistance thermometers as well as with an infrared camera. Based on the finite element simulation, heating methods for infrared radiators have been developed. Using the numeric simulation many iteration loops are required to determine the process parameters. Hence, the initiation of a model for calculating relevant process parameters started applying regression functions.Keywords: Fiber-reinforced thermoplastics, heating strategies, middle-wave infrared radiator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17427661 Two-Dimensional Solitary Wave Solution to the Quadratic Nonlinear Schrdinger Equation
Authors: Sarun Phibanchon
Abstract:
The solitary wave solution of the quadratic nonlinear Schrdinger equation is determined by the iterative method called Petviashvili method. This solution is also used for the initial condition for the time evolution to study the stability analysis. The spectral method is applied for the time evolution.
Keywords: soliton, iterative method, spectral method, plasma
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18627660 Rainfall–Runoff Simulation Using WetSpa Model in Golestan Dam Basin, Iran
Authors: M. R. Dahmardeh Ghaleno, M. Nohtani, S. Khaledi
Abstract:
Flood simulation and prediction is one of the most active research areas in surface water management. WetSpa is a distributed, continuous, and physical model with daily or hourly time step that explains precipitation, runoff, and evapotranspiration processes for both simple and complex contexts. This model uses a modified rational method for runoff calculation. In this model, runoff is routed along the flow path using Diffusion-Wave equation which depends on the slope, velocity, and flow route characteristics. Golestan Dam Basin is located in Golestan province in Iran and it is passing over coordinates 55° 16´ 50" to 56° 4´ 25" E and 37° 19´ 39" to 37° 49´ 28"N. The area of the catchment is about 224 km2, and elevations in the catchment range from 414 to 2856 m at the outlet, with average slope of 29.78%. Results of the simulations show a good agreement between calculated and measured hydrographs at the outlet of the basin. Drawing upon Nash-Sutcliffe model efficiency coefficient for calibration periodic model estimated daily hydrographs and maximum flow rate with an accuracy up to 59% and 80.18%, respectively.
Keywords: Watershed simulation, WetSpa, stream flow, flood prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10327659 Surge Protection of Power Supply used for Automation Devices in Power Distribution System
Authors: Liheng Ying, Guangjiong Sun
Abstract:
The intent of this essay is to evaluate the effectiveness of surge suppressor aimed at power supply used for automation devices in power distribution system which is consist of MOV and T type low-pass filter. Books, journal articles and e-sources related to surge protection of power supply used for automation devices in power distribution system were consulted, and the useful information was organized, analyzed and developed into five parts: characteristics of surge wave, protection against surge wave, impedance characteristics of target, using Matlab to simulate circuit response after 5kV,1.2/50s surge wave and suggestions for surge protection. The results indicate that various types of load situation have great impact on the effectiveness of surge protective device. Therefore, type and parameters of surge protective device need to be carefully selected, and load matching is also vital to be concerned.Keywords: automation devices in power distribution system, MOV, surge, T type low-pass filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17907658 Instability of Electron Plasma Waves in an Electron-Hole Bounded Quantum Dusty Plasma
Authors: Basudev Ghosh, Sailendranath Paul, Sreyasi Banerjee
Abstract:
Using quantum hydrodynamical (QHD) model the linear dispersion relation for the electron plasma waves propagating in a cylindrical waveguide filled with a dense plasma containing streaming electron, hole and stationary charged dust particles has been derived. It is shown that the effect of finite boundary and stream velocity of electrons and holes make some of the possible modes of propagation linearly unstable. The growth rate of this instability is shown to depend significantly on different plasma parameters.
Keywords: Electron Plasma wave, Quantum plasma, Quantum Hydrodynamical model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17027657 Numerical Investigation of Nozzle Shape Effect on Shock Wave in Natural Gas Processing
Authors: Esam I. Jassim, Mohamed M. Awad
Abstract:
Natural gas flow contains undesirable solid particles, liquid condensation, and/or oil droplets and requires reliable removing equipment to perform filtration. Recent natural gas processing applications are demanded compactness and reliability of process equipment. Since conventional means are sophisticated in design, poor in efficiency, and continue lacking robust, a supersonic nozzle has been introduced as an alternative means to meet such demands. A 3-D Convergent-Divergent Nozzle is simulated using commercial Code for pressure ratio (NPR) varies from 1.2 to 2. Six different shapes of nozzle are numerically examined to illustrate the position of shock-wave as such spot could be considered as a benchmark of particle separation. Rectangle, triangle, circular, elliptical, pentagon, and hexagon nozzles are simulated using Fluent Code with all have same cross-sectional area. The simple one-dimensional inviscid theory does not describe the actual features of fluid flow precisely as it ignores the impact of nozzle configuration on the flow properties. CFD Simulation results, however, show that nozzle geometry influences the flow structures including location of shock wave. The CFD analysis predicts shock appearance when p01/pa>1.2 for almost all geometry and locates at the lower area ratio (Ae/At). Simulation results showed that shock wave in Elliptical nozzle has the farthest distance from the throat among the others at relatively small NPR. As NPR increases, hexagon would be the farthest. The numerical result is compared with available experimental data and has shown good agreement in terms of shock location and flow structure.Keywords: CFD, Particle Separation, Shock wave, Supersonic Nozzle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32507656 Image Analysis of Fine Structures of Supercavitation in the Symmetric Wake of a Cylinder
Authors: Y. Obikane , M.Kaneko, K.Kakioka, K.Ogura
Abstract:
The fine structure of supercavitation in the wake of a symmetrical cylinder is studied with high-speed video cameras. The flow is observed in a cavitation tunnel at the speed of 8m/sec when the sidewall and the wake are partially filled with the massive cavitation bubbles. The present experiment observed that a two-dimensional ripple wave with a wave length of 0.3mm is propagated in a downstream direction, and then abruptly increases to a thicker three-dimensional layer. IR-photography recorded that the wakes originated from the horseshoe vortexes alongside the cylinder. The wake was developed to inside the dead water zone, which absorbed the bubbly wake propelled from the separated vortices at the center of the cylinder. A remote sensing classification technique (maximum most likelihood) determined that the surface porosity was 0.2, and the mean speed in the mixed wake was 7m/sec. To confirm the existence of two-dimensional wave motions in the interface, the experiments were conducted at a very low frequency, and showed similar gravity waves in both the upper and lower interfaces.Keywords: Supercavitation, density gradient correlation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15247655 Simulation and Measurement the Radiation of an Antenna inside a Metallic Case using FDTD
Authors: Shabnam Ladan, M. S. Abrishamian
Abstract:
In this paper we have developed a FDTD simulation code which can treat wave propagation of a monopole antenna in a metallic case which covers with PML, and performed a series of three dimensional FDTD simulations of electromagnetic wave propagation in this space .We also provide a measurement set up in antenna lab and fortunately the simulations and measurements show good agreement. According to simulation and measurement results, we confirmed that the computer program which had been written in FORTRAN, works correctly.Keywords: FDTD, EMC, monopole antenna.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15357654 Ray Tracing Technique based 60 GHz Band Propagation Modelling and Influence of People Shadowing
Authors: A. Khafaji, R. Saadane, J. El Abbadi, M. Belkasmi
Abstract:
The main objectif of this paper is to present a tool that we have developed subject to characterize and modelling indoor radio channel propagation at millimetric wave. The tool is based on the ray tracing technique (RTT). As, in realistic environment we cannot neglect the significant impact of Human Body Shadowing and other objects in motion on indoor 60 GHz propagation channel. Hence, our proposed model allows a simulation of propagation in a dynamic indoor environment. First, we describe a model of human body. Second, RTT with this model is used to simulate the propagation of millimeter waves in the presence of persons in motion. Results of the simulation show that this tool gives results in agreement with those reported in the literature. Specially, the effects of people motion on temporal channel properties.Keywords: Simulation. 60 GHz band, Ray Tracing Technique, Indoor channel, Propagation, Human Body Model, Level crossing rate,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25127653 High Order Accurate Runge Kutta Nodal Discontinuous Galerkin Method for Numerical Solution of Linear Convection Equation
Authors: Faheem Ahmed, Fareed Ahmed, Yongheng Guo, Yong Yang
Abstract:
This paper deals with a high-order accurate Runge Kutta Discontinuous Galerkin (RKDG) method for the numerical solution of the wave equation, which is one of the simple case of a linear hyperbolic partial differential equation. Nodal DG method is used for a finite element space discretization in 'x' by discontinuous approximations. This method combines mainly two key ideas which are based on the finite volume and finite element methods. The physics of wave propagation being accounted for by means of Riemann problems and accuracy is obtained by means of high-order polynomial approximations within the elements. High order accurate Low Storage Explicit Runge Kutta (LSERK) method is used for temporal discretization in 't' that allows the method to be nonlinearly stable regardless of its accuracy. The resulting RKDG methods are stable and high-order accurate. The L1 ,L2 and L∞ error norm analysis shows that the scheme is highly accurate and effective. Hence, the method is well suited to achieve high order accurate solution for the scalar wave equation and other hyperbolic equations.Keywords: Nodal Discontinuous Galerkin Method, RKDG, Scalar Wave Equation, LSERK
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24677652 Comparison of Number of Waves Surfed and Duration Using Global Positioning System and Inertial Sensors
Authors: J. Madureira, R. Lagido, I. Sousa
Abstract:
Surf is an increasingly popular sport and its performance evaluation is often qualitative. This work aims at using a smartphone to collect and analyze the GPS and inertial sensors data in order to obtain quantitative metrics of the surfing performance. Two approaches are compared for detection of wave rides, computing the number of waves rode in a surfing session, the starting time of each wave and its duration. The first approach is based on computing the velocity from the Global Positioning System (GPS) signal and finding the velocity thresholds that allow identifying the start and end of each wave ride. The second approach adds information from the Inertial Measurement Unit (IMU) of the smartphone, to the velocity thresholds obtained from the GPS unit, to determine the start and end of each wave ride. The two methods were evaluated using GPS and IMU data from two surfing sessions and validated with similar metrics extracted from video data collected from the beach. The second method, combining GPS and IMU data, was found to be more accurate in determining the number of waves, start time and duration. This paper shows that it is feasible to use smartphones for quantification of performance metrics during surfing. In particular, detection of the waves rode and their duration can be accurately determined using the smartphone GPS and IMU.
Keywords: Inertial Measurement Unit (IMU), Global Positioning System (GPS), smartphone, surfing performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16557651 Energy-Level Structure of a Confined Electron-Positron Pair in Nanostructure
Authors: Tokuei Sako, Paul-Antoine Hervieux
Abstract:
The energy-level structure of a pair of electron and positron confined in a quasi-one-dimensional nano-scale potential well has been investigated focusing on its trend in the small limit of confinement strength ω, namely, the Wigner molecular regime. An anisotropic Gaussian-type basis functions supplemented by high angular momentum functions as large as l = 19 has been used to obtain reliable full configuration interaction (FCI) wave functions. The resultant energy spectrum shows a band structure characterized by ω for the large ω regime whereas for the small ω regime it shows an energy-level pattern dominated by excitation into the in-phase motion of the two particles. The observed trend has been rationalized on the basis of the nodal patterns of the FCI wave functions.
Keywords: Confined systems, positron, wave function, Wigner molecule, quantum dots.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18537650 A Novel System of Two Coupled Equations for the Longitudinal Components of the Electromagnetic Field in a Waveguide
Authors: Arti Vaish, Harish Parthasarathy
Abstract:
In this paper, a novel wave equation for electromagnetic waves in a medium having anisotropic permittivity has been derived with the help of Maxwell-s curl equations. The x and y components of the Maxwell-s equations are written with the permittivity () being a 3 × 3 symmetric matrix. These equations are solved for Ex , Ey, Hx, Hy in terms of Ez, Hz, and the partial derivatives. The Z components of the Maxwell-s curl are then used to arrive to the generalized Helmholtz equations for Ez and Hz.Keywords: Electromagnetism, Maxwell's Equations, Anisotropic permittivity, Wave equation, Matrix Equation, Permittivity tensor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17027649 Summarizing Data Sets for Data Mining by Using Statistical Methods in Coastal Engineering
Authors: Yunus Doğan, Ahmet Durap
Abstract:
Coastal regions are the one of the most commonly used places by the natural balance and the growing population. In coastal engineering, the most valuable data is wave behaviors. The amount of this data becomes very big because of observations that take place for periods of hours, days and months. In this study, some statistical methods such as the wave spectrum analysis methods and the standard statistical methods have been used. The goal of this study is the discovery profiles of the different coast areas by using these statistical methods, and thus, obtaining an instance based data set from the big data to analysis by using data mining algorithms. In the experimental studies, the six sample data sets about the wave behaviors obtained by 20 minutes of observations from Mersin Bay in Turkey and converted to an instance based form, while different clustering techniques in data mining algorithms were used to discover similar coastal places. Moreover, this study discusses that this summarization approach can be used in other branches collecting big data such as medicine.
Keywords: Clustering algorithms, coastal engineering, data mining, data summarization, statistical methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12447648 Impact of Mergers and Acquisitions on Consumers- Welfare: Experience of Indian Manufacturing Sector
Authors: Pulak Mishra, P V Kiran Kumar
Abstract:
In the context of introduction of deregulatory policy measures and subsequent wave of mergers and acquisitions (M&A) in Indian corporate sector since 1991, the present paper attempts to examine the welfare implications of this wave. It is found that M&A do not have any significant impact on consumers- welfare. Instead, consumers- welfare is significantly influenced by exports intensity, imports intensity, advertising intensity, technology related efforts, and past profitability of the firms. While the industries with higher exports orientation or greater product differentiation or better financial performance experience greater loss in consumers- welfare, it is less in the industries with greater competition from imports or better technology. Hence, the wave of M&A in Indian manufacturing sector in the post-liberalization era may not be a matter of serious concern from consumers- welfare point of view. Instead, in many cases, M&A can help the firms in consolidating their business and enhancing competitiveness, and this may benefit the consumers in the form of greater efficiency and lower prices.
Keywords: Mergers, acquisitions, concentration, welfare, IndiaJEL CodesÔÇöL1, L2, L4, L5
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35927647 A Two-Way Wilkinson Power Divider Realized Using One Eighth Wave Transmission Line for GSM Application
Authors: G. Kalpanadevi, S. Ravimaran, M. Shanmugapriya
Abstract:
In this paper, a modified Wilkinson power divider for GSM application is presented. The quarter–wavelength microstrip lines in the conventional Wilkinson power divider (WPD) are replaced by one-eighth wavelength transmission line. Wilkinson power divider is designed using λ/4 and λ/8 transmission line. It has the operating frequency of 915 MHz which is used in the GSM standard. The proposed Wilkinson Power Divider is designed using the simulation tool Advanced Design System. The results of λ/8 transmission line are very close to the results of λ/4 transmission line. The isolation loss of λ/8 transmission line is improved by introducing a capacitor between the output ports. The proposed Wilkinson power divider has the best return loss of greater than -10 dB and isolation loss of -15.25 dB. The λ/8 transmission line Wilkinson power divider has the reduced size of 53.9 percentages than λ/4 transmission line WPD. The proposed design has simple structure, better isolation loss and good insertion loss.Keywords: Wilkinson Power Divider, Quarter wave line, one eighth wave transmission line, microstrip line.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25237646 The Splitting Upwind Schemes for Spectral Action Balance Equation
Authors: Anirut Luadsong, Nitima Aschariyaphotha
Abstract:
The spectral action balance equation is an equation that used to simulate short-crested wind-generated waves in shallow water areas such as coastal regions and inland waters. This equation consists of two spatial dimensions, wave direction, and wave frequency which can be solved by finite difference method. When this equation with dominating convection term are discretized using central differences, stability problems occur when the grid spacing is chosen too coarse. In this paper, we introduce the splitting upwind schemes for avoiding stability problems and prove that it is consistent to the upwind scheme with same accuracy. The splitting upwind schemes was adopted to split the wave spectral action balance equation into four onedimensional problems, which for each small problem obtains the independently tridiagonal linear systems. For each smaller system can be solved by direct or iterative methods at the same time which is very fast when performed by a multi-processor computer.Keywords: upwind scheme, parallel algorithm, spectral action balance equation, splitting method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1687