A Simplified Distribution for Nonlinear Seas
Authors: M. A. Tayfun, M. A. Alkhalidi
Abstract:
The exact theoretical expression describing the probability distribution of nonlinear sea-surface elevations derived from the second-order narrowband model has a cumbersome form that requires numerical computations, not well-disposed to theoretical or practical applications. Here, the same narrowband model is reexamined to develop a simpler closed-form approximation suitable for theoretical and practical applications. The salient features of the approximate form are explored, and its relative validity is verified with comparisons to other readily available approximations, and oceanic data.
Keywords: Ocean waves, probability distributions, second-order nonlinearities, skewness coefficient, wave steepness.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1337994
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2100References:
[1] M. A. Tayfun, “Narrow-band nonlinear sea waves,” J. Geophys. Res., vol. 85, pp. 1548–1552, 1980.
[2] H. Socquet-Juglard, K. Dysthe, K. Trulsen, H. Krogstad, and J. Liu, “Probability distributions of surface gravity waves during spectral changes,” J. Fluid Mech., vol. 542, 195–216, 2005.
[3] M. S. Longuet-Higgins, “The effects of nonlinearities on statistical distributions in the theory of sea waves,” J. Fluid Mech. vol. 17, pp. 459–480, 1963.
[4] M. A. Tayfun, and J-M. Lo, “Envelope, phase, and narrowband models of sea waves,” J. Waterw. Port, Coast. Ocean Eng., vol. 115, pp. 594- 613, 1990.
[5] M. A. Tayfun, “Statistics of nonlinear wave crests and groups,” Ocean Eng., vol. 33, 1589–1622, 2006.
[6] M. A. Tayfun, and F. Fedele, “Wave-height distributions and nonlinear effects,” Ocean Eng., vol. 34, 1631 – 1649, 2007.
[7] M. A. Tayfun, and F. Fedele, “Expected shape of extreme waves in storm seas,” in Proc. 26th Inter. Conf. on Offshore Mech.& Arctic Eng., San Diego, paper no. OMAE2007-29073, pp. 1-8, 2007.
[8] M. A. Tayfun, “Distributions of envelope and phase in wind waves,” J. Phys. Oceanogr., vol. 38, pp. 2784–2800, 2008.
[9] A. Toffoli, E. Bitner-Gregersen, M. Onorato, A. R. Osborne, and A. V. Babanin, “Surface gravity waves from direct numerical simulations of the Euler equations: A comparison with second-order theory,” Ocean Eng., vol. 35, 367– 379, 2008.
[10] Z. Cherneva, M. A. Tayfun, and C. Guedes-Soares, “Statistics of nonlinear waves generated in an offshore wave basin”, J. Geophys. Res., vol. 114, C08005, 2009.
[11] F. Fedele, and M. A. Tayfun, “On nonlinear wave groups and crest statistics,” J. Fluid Mech., vol. 620, 221–239, 2009.
[12] F. Fedele, Z. Cherneva, M. A. Tayfun, and C. Guedes-Soares, “Nonlinear Schrödinger invariants and wave statistics,” Phys. Fluids, vol. 22, 2010.
[13] F. Arena, and F. Fedele, “A family of narrow-band nonlinear stochastic processes for the mechanics of sea waves,” Eur. J. Mech. B/Fluids, vol. 21, pp. 125–137, 2005.
[14] A. K. Jha, and S. R. Winterstein,”Non-linear random ocean waves: prediction and comparison with data,” in Proc. ETCE/OMAE2000 Joint Conference Energy for the New Millenium, vol. 1, paper OMAE2000- 6125, 2000, ISBN: 0791819949, 9780791819944.
[15] M. Prevosto, H. E. Krogstad, and A. Robin, “Probability distributions for maximum wave and crest heights,” Coastal Eng., vol. 40, 329–360, 2000.
[16] M. Abramowitz, and I. A. Stegun, Handbook of Mathematical Functions, Dover Publications, New York, 1968, p. 932.