Energy-Level Structure of a Confined Electron-Positron Pair in Nanostructure
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33132
Energy-Level Structure of a Confined Electron-Positron Pair in Nanostructure

Authors: Tokuei Sako, Paul-Antoine Hervieux

Abstract:

The energy-level structure of a pair of electron and positron confined in a quasi-one-dimensional nano-scale potential well has been investigated focusing on its trend in the small limit of confinement strength ω, namely, the Wigner molecular regime. An anisotropic Gaussian-type basis functions supplemented by high angular momentum functions as large as l = 19 has been used to obtain reliable full configuration interaction (FCI) wave functions. The resultant energy spectrum shows a band structure characterized by ω for the large ω regime whereas for the small ω regime it shows an energy-level pattern dominated by excitation into the in-phase motion of the two particles. The observed trend has been rationalized on the basis of the nodal patterns of the FCI wave functions. 

Keywords: Confined systems, positron, wave function, Wigner molecule, quantum dots.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1090787

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1859

References:


[1] R. C. Ashoori, "Electrons in artificial atoms,” Nature, vol. 379, pp. 413–419, 1996.
[2] S. Tarucha, D. G. Austing, T. Honda, R. T. van der Hage and L. P. Kouwenhoven, "Shell Filling and Spin Effects in a Few Electron Quantum Dot,” Phys.Rev. Lett., vol. 77, pp. 3613–3616, 1996.
[3] C. Yannouleas and U. Landman, "Symmetry breaking and quantum correlations in finite systems: studies of quantum dots and ultracold Bose gases and related nuclear and chemical methods,” Rep. Prog. Phys., vol. 70, pp. 2067–2148, 2007.
[4] N. F. Johnson, "Quantum dots: few-body, low-dimensional systems,” J. Phys.: Condens. Matt., vol. 7, pp. 965–989, 1995.
[5] T. Sako and G. H. F. Diercksen, "Confined quantum systems: spectra of weakly bound electrons in a strongly anisotropic oblate harmonic oscillator potential,” J. Phys.: Condens. Matt., vol. 17, pp. 5159–5178, 2005.
[6] T. Sako, P. A. Hervieux, and G. H. F. Diercksen, "Distribution of oscillator strength in Gaussian quantum dots: An energy flow from center-of-mass mode to internal modes,” Phys. Rev. B, vol. 74, article no.045329, 2006.
[7] T. Sako and G. H. F. Diercksen, "Spectra and correlated wave functions of two electrons confined in a quasi-one-dimensional nanostructure,” Phys. Rev. B, vol. 75, article no. 115413, 2007.
[8] T. Sakoand G. H. F. Diercksen, "Understanding the spectra of a few electrons confined in a quasi-one-dimensional nanostructure,” J. Phys.: Condens. Matt., vol. 20, article no. 155202, 2008.
[9] T. Sako, J. Paldus, and G. H. F. Diercksen, "The Energy Level Structure of Low-dimensional Multi-electron Quantum Dots,” Adv. Quantum Chem., vol. 58, pp. 177–201, 2009.
[10] G. W. Bryant, "Electronic Structure of Ultrasmall Quantum-Well Boxes,” Phys. Rev. Lett., vol. 59, pp. 1140–1143, 1987.
[11] M. Wagner, U. Merkt and A. V. Chaplik, "Spin-singlet–spin-triplet oscillations in quantum dots,” Rev. Rev. B, vol. 45, pp. 1951–1954, 1992.
[12] J. T. Lin and T. F. Jiang, "Two interacting electrons in a vertical quantum dot with magnetic fields,” Rev. Rev. B, vol. 64, article no. 195323, 2001.
[13] T. Sako and G. H. F. Diercksen, "Confined quantum systems: spectral properties of the atoms helium and lithium in a power series potential,” J. Phys. B, vol. 36 pp. 1433–1457, 2003.
[14] T. Sako and G. H. F. Diercksen, "Confined quantum systems: a comparison of the spectral properties of the two-electron quantum dot, the negative hydrogen ion and the helium atom,” J. Phys. B, vol. 36 pp. 1681–1702, 2003.
[15] T. Sako and G. H. F. Diercksen, "Confined quantum systems: spectral properties of two-electron quantum dots,” J. Phys.: Condens. Matt., vol. 15pp.5487–5509, 2003.
[16] W. Kohn, "Cyclotron Resonance and de Haas-van Alphen Oscillations of an Interacting Electron Gas,” Phys. Rev., vol. 123pp.1242–1244, 1961.