Search results for: Temperature dependent electrical efficiency.
4194 Thermodynamic Optimization of Turboshaft Engine using Multi-Objective Genetic Algorithm
Authors: S. Farahat, E. Khorasani Nejad, S. M. Hoseini Sarvari
Abstract:
In this paper multi-objective genetic algorithms are employed for Pareto approach optimization of ideal Turboshaft engines. In the multi-objective optimization a number of conflicting objective functions are to be optimized simultaneously. The important objective functions that have been considered for optimization are specific thrust (F/m& 0), specific fuel consumption ( P S ), output shaft power 0 (& /&) shaft W m and overall efficiency( ) O η . These objectives are usually conflicting with each other. The design variables consist of thermodynamic parameters (compressor pressure ratio, turbine temperature ratio and Mach number). At the first stage single objective optimization has been investigated and the method of NSGA-II has been used for multiobjective optimization. Optimization procedures are performed for two and four objective functions and the results are compared for ideal Turboshaft engine. In order to investigate the optimal thermodynamic behavior of two objectives, different set, each including two objectives of output parameters, are considered individually. For each set Pareto front are depicted. The sets of selected decision variables based on this Pareto front, will cause the best possible combination of corresponding objective functions. There is no superiority for the points on the Pareto front figure, but they are superior to any other point. In the case of four objective optimization the results are given in tables.Keywords: Multi-objective, Genetic algorithm, Turboshaft Engine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19124193 Choice of Efficient Information System with Service-Oriented Architecture using Multiple Criteria Threshold Algorithms (With Practical Example)
Authors: Irina Pyrlina
Abstract:
Author presents the results of a study conducted to identify criteria of efficient information system (IS) with serviceoriented architecture (SOA) realization and proposes a ranking method to evaluate SOA information systems using a set of architecture quality criteria before the systems are implemented. The method is used to compare 7 SOA projects and ranking result for SOA efficiency of the projects is provided. The choice of SOA realization project depends on following criteria categories: IS internal work and organization, SOA policies, guidelines and change management, processes and business services readiness, risk management and mitigation. The last criteria category was analyzed on the basis of projects statistics.
Keywords: multiple criteria threshold algorithm, serviceoriented architecture, SOA operational risks, efficiency criteria for IS architecture, projects ranking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13994192 Heat Transfer Analysis of Rectangular Channel Plate Heat Sink
Authors: Zhang Lei, Liu Min, Liu Botao
Abstract:
In order to improve the simulation effects of space cold black environment, this paper described a rectangular channel plate heat sink. By using fluid mechanics theory and finite element method, the internal fluid flow and heat transfer in heat sink was numerically simulated to analyze the impact of channel structural on fluid flow and heat transfer. The result showed that heat sink temperature uniformity is well, and the impact of channel structural on the heat sink temperature uniformity is not significant. The channel depth and spacing are important factors which affect the fluid flow and heat transfer in the heat sink. The two factors of heat transfer and resistance need to be considered comprehensively to determine the optimal flow structure parameters.Keywords: heat transfer, heat sink, numerical simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18464191 A Maximum Power Point Tracker for PV Panels Using SEPIC Converter
Authors: S. Ganesh, J. Janani, G. Besliya Angel
Abstract:
Photovoltaic (PV) energy is one of the most important renewable energy sources. Maximum Power Point Tracking (MPPT) techniques should be used in photovoltaic systems to maximize the PV panel output power by tracking continuously the maximum power point which depends on panel’s temperature and on irradiance conditions. Incremental conductance control method has been used as MPPT algorithm. The methodology is based on connecting a pulse width modulated dc/dc SEPIC converter, which is controlled by a microprocessor based unit. The SEPIC converter is one of the buck-boost converters which maintain the output voltage as constant irrespective of the solar isolation level. By adjusting the switching frequency of the converter the maximum power point has been achieved. The main difference between the method used in the proposed MPPT systems and other technique used in the past is that PV array output power is used to directly control the dc/dc converter thus reducing the complexity of the system. The resulting system has high efficiency, low cost and can be easily modified. The tracking capability has been verified experimentally with a 10 W solar panel under a controlled experimental setup. The SEPIC converter and their control strategies has been analyzed and simulated using Simulink/Matlab software.
Keywords: Maximum Power Point Tracking, Microprocessor, PV Module, SEPIC Converter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 59774190 Comparative Study of IC and Perturb and Observe Method of MPPT Algorithm for Grid Connected PV Module
Authors: Arvind Kumar, Manoj Kumar, Dattatraya H. Nagaraj, Amanpreet Singh, Jayanthi Prattapati
Abstract:
The purpose of this paper is to study and compare two maximum power point tracking (MPPT) algorithms in a photovoltaic simulation system and also show a simulation study of maximum power point tracking (MPPT) for photovoltaic systems using perturb and observe algorithm and Incremental conductance algorithm. Maximum power point tracking (MPPT) plays an important role in photovoltaic systems because it maximize the power output from a PV system for a given set of conditions, and therefore maximize the array efficiency and minimize the overall system cost. Since the maximum power point (MPP) varies, based on the irradiation and cell temperature, appropriate algorithms must be utilized to track the (MPP) and maintain the operation of the system in it. MATLAB/Simulink is used to establish a model of photovoltaic system with (MPPT) function. This system is developed by combining the models established of solar PV module and DC-DC Boost converter. The system is simulated under different climate conditions. Simulation results show that the photovoltaic simulation system can track the maximum power point accurately.Keywords: Incremental conductance Algorithm, Perturb and Observe Algorithm, Photovoltaic System and Simulation Results.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12664189 Application of SDS/LABS in Recovery Improvement from Fractured Models
Authors: Rasool Razmi, Mohammad Hossein Sedaghat, Reza Janamiri, Amir Hatampou
Abstract:
This work concerns on experimentally investigation of surfactant flooding in fractured porous media. In this study a series of water and surfactant injection processes were performed on micromodels initially saturated with a heavy crude oil. Eight fractured glass micromodels were used to illustrate effects of surfactant types and concentrations on oil recovery efficiency in presence of fractures with different properties i.e. fracture orientation, length and number of fractures. Two different surfactants with different concentrations were tested. The results showed that surfactant flooding would be more efficient by using SDS surfactant aqueous solution and also by locating injection well in a proper position respect to fracture properties. This study demonstrates different physical and chemical conditions that affect the efficiency of this method of enhanced oil recovery.Keywords: Displacement, Fractured five-spot systems, Heavy oil, Surfactant flooding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19004188 Steam Gasification of Palm Kernel Shell (PKS): Effect of Fe/BEA and Ni/BEA Catalysts and Steam to Biomass Ratio on Composition of Gaseous Products
Authors: M.F. Mohamad, Anita Ramli, S.E.E Misi, S. Yusup
Abstract:
This work presents the hydrogen production from steam gasification of palm kernel shell (PKS) at 700 oC in the presence of 5% Ni/BEA and 5% Fe/BEA as catalysts. The steam gasification was performed in two-staged reactors to evaluate the effect of calcinations temperature and the steam to biomass ratio on the product gas composition. The catalytic activity of Ni/BEA catalyst decreases with increasing calcinations temperatures from 500 to 700 oC. The highest H2 concentration is produced by Fe/BEA (600) with more than 71 vol%. The catalytic activity of the catalysts tested is found to correspond to its physicochemical properties. The optimum range for steam to biomass ratio if found to be between 2 to 4. Excess steam content results in temperature drop in the gasifier which is undesirable for the gasification reactions.Keywords: Hydrogen, Palm Kernel Shell, Steam gasification, Ni/BEA, Fe/BEA
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22374187 Comparative Efficacy of Pomegranate Juice, Peel and Seed Extract in the Stabilization of Corn Oil under Accelerated Conditions
Authors: Zoi Konsoula
Abstract:
Antioxidant-rich extracts were prepared from pomegranate peels, seeds and juice using methanol and ethanol and their antioxidant activity was evaluated by the 1,1-diphenyl-2-picrylhydrazine (DPPH) radical scavenging and Ferric Reducing Antioxidant Power (FRAP) method. Both analytical methods indicated a higher antioxidant activity in extracts prepared from peels, which was comparable to that of butylated hydroxytoluene (BHT). Furthermore, the antioxidant activity was correlated to the phenolic and flavonoid content of the various extracts. The antioxidant effectiveness of the extracts was also assessed using corn oil as the oxidation substrate. More specifically, preheated corn oil samples stabilized with extracts at a concentration of 250 ppm, 500 ppm or 1,000 ppm were subjected to accelerated aging (100 oC, 10 days) and the extent of oxidative alteration was followed by the measurement of the peroxide, conjugated dienes and trienes, as well as p-aniside value. BHT at its legal limit (200 ppm) served as standard besides the control sample. Results from the different parameters were in agreement with each other suggesting that pomegranate extracts can stabilize corn oil effectively under accelerated conditions, at all concentrations tested. However, the magnitude of oil stabilization depended strongly on the amount of extract added and this was positively correlated with their phenolic content. Pomegranate peel extracts, which exhibited the highest not only phenolic and flavonoid content but also antioxidant activity, were more potent in inhibiting oxidative deterioration. Both methanolic and ethanolic peel extracts at a concentration of 500 ppm exerted a stabilizing effect comparable to that of BHT, while at a concentration of 1000 ppm they exhibited higher stabilization efficiency in comparison to BHT. Finally, heating oil samples resulted in a time dependent decrease in their antioxidant capacity. Samples containing peel extracts appeared to retain their antioxidant capacity for a longer period, indicating that these extracts contained active compounds that offered superior antioxidant protection to corn oil.Keywords: Antioxidant activity, corn oil, oxidative deterioration, pomegranate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19644186 Optimization of Energy Conservation Potential for VAV Air Conditioning System using Fuzzy based Genetic Algorithm
Authors: R. Parameshwaran, R. Karunakaran, S. Iniyan, Anand A. Samuel
Abstract:
The objective of this study is to present the test results of variable air volume (VAV) air conditioning system optimized by two objective genetic algorithm (GA). The objective functions are energy savings and thermal comfort. The optimal set points for fuzzy logic controller (FLC) are the supply air temperature (Ts), the supply duct static pressure (Ps), the chilled water temperature (Tw), and zone temperature (Tz) that is taken as the problem variables. Supply airflow rate and chilled water flow rate are considered to be the constraints. The optimal set point values are obtained from GA process and assigned into fuzzy logic controller (FLC) in order to conserve energy and maintain thermal comfort in real time VAV air conditioning system. A VAV air conditioning system with FLC installed in a software laboratory has been taken for the purpose of energy analysis. The total energy saving obtained in VAV GA optimization system with FLC compared with constant air volume (CAV) system is expected to achieve 31.5%. The optimal duct static pressure obtained through Genetic fuzzy methodology attributes to better air distribution by delivering the optimal quantity of supply air to the conditioned space. This combination enhanced the advantages of uniform air distribution, thermal comfort and improved energy savings potential.Keywords: Energy savings, fuzzy logic, Genetic algorithm, Thermal Comfort
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32134185 Design, Fabrication and Performance Evaluation of Mobile Engine-Driven Pneumatic Paddy Collector
Authors: Sony P. Aquino, Helen F. Gavino, Victorino T. Taylan, Teresito G. Aguinaldo
Abstract:
A simple mobile engine-driven pneumatic paddy collector made of locally available materials using local manufacturing technology was designed, fabricated, and tested for collecting and bagging of paddy dried on concrete pavement. The pneumatic paddy collector had the following major components: radial flat bladed type centrifugal fan, power transmission system, bagging area, frame and the conveyance system. Results showed significant differences on the collecting capacity, noise level, and fuel consumption when rotational speed of the air mover shaft was varied. Other parameters such as collecting efficiency, air velocity, augmented cracked grain percentage, and germination rate were not significantly affected by varying rotational speed of the air mover shaft. The pneumatic paddy collector had a collecting efficiency of 99.33 % with a collecting capacity of 2685.00 kg/h at maximum rotational speed of centrifugal fan shaft of about 4200 rpm. The machine entailed an investment cost of P 62,829.25. The break-even weight of paddy was 510,606.75 kg/yr at a collecting cost of 0.11 P/kg of paddy. Utilizing the machine for 400 hours per year generated an income of P 23,887.73. The projected time needed to recover cost of the machine based on 2685 kg/h collecting capacity was 2.63 year.
Keywords: Mobile engine-driven pneumatic paddy collector, collecting capacity and efficiency, simple cost analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 55434184 Using Manipulating Urban Layouts to Enhance Ventilation and Thermal Comfort in Street Canyons
Authors: Su Ying-Ming
Abstract:
High density of high rise buildings in urban areas lead to a deteriorative Urban Heat Island Effect, gradually. This study focuses on discussing the relationship between urban layout and ventilation comfort in street canyons. This study takes Songjiang Nanjing Rd. area of Taipei, Taiwan as an example to evaluate the wind environment comfort index by field measurement and Computational Fluid Dynamics (CFD) to improve both the quality and quantity of the environment. In this study, different factors including street blocks size, the width of buildings, street width ratio and the direction of the wind were used to discuss the potential of ventilation. The environmental wind field was measured by the environmental testing equipment, Testo 480. Evaluation of blocks sizes, the width of buildings, street width ratio and the direction of the wind was made under the condition of constant floor area with the help of Stimulation CFD to adjust research methods for optimizing regional wind environment. The results of this study showed the width of buildings influences the efficiency of outdoor ventilation; improvement of the efficiency of ventilation with large street width was also shown. The study found that Block width and H/D value and PR value has a close relationship. Furthermore, this study showed a significant relationship between the alteration of street block geometry and outdoor comfortableness.
Keywords: Urban ventilation path, ventilation efficiency indices, CFD, building layout.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10504183 Specification Requirements for a Combined Dehumidifier/Cooling Panel: A Global Scale Analysis
Authors: Damien Gondre, Hatem Ben Maad, Abdelkrim Trabelsi, Frédéric Kuznik, Joseph Virgone
Abstract:
The use of a radiant cooling solution would enable to lower cooling needs which is of great interest when the demand is initially high (hot climate). But, radiant systems are not naturally compatibles with humid climates since a low-temperature surface leads to condensation risks as soon as the surface temperature is close to or lower than the dew point temperature. A radiant cooling system combined to a dehumidification system would enable to remove humidity for the space, thereby lowering the dew point temperature. The humidity removal needs to be especially effective near the cooled surface. This requirement could be fulfilled by a system using a single desiccant fluid for the removal of both excessive heat and moisture. This task aims at providing an estimation of the specification requirements of such system in terms of cooling power and dehumidification rate required to fulfill comfort issues and to prevent any condensation risk on the cool panel surface. The present paper develops a preliminary study on the specification requirements, performances and behavior of a combined dehumidifier/cooling ceiling panel for different operating conditions. This study has been carried using the TRNSYS software which allows nodal calculations of thermal systems. It consists of the dynamic modeling of heat and vapor balances of a 5m x 3m x 2.7m office space. In a first design estimation, this room is equipped with an ideal heating, cooling, humidification and dehumidification system so that the room temperature is always maintained in between 21◦C and 25◦C with a relative humidity in between 40% and 60%. The room is also equipped with a ventilation system that includes a heat recovery heat exchanger and another heat exchanger connected to a heat sink. Main results show that the system should be designed to meet a cooling power of 42W.m−2 and a desiccant rate of 45 gH2O.h−1. In a second time, a parametric study of comfort issues and system performances has been achieved on a more realistic system (that includes a chilled ceiling) under different operating conditions. It enables an estimation of an acceptable range of operating conditions. This preliminary study is intended to provide useful information for the system design.Keywords: Dehumidification, nodal calculation, radiant cooling panel, system sizing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7384182 Design and Implementation a New Energy Efficient Clustering Algorithm using Genetic Algorithm for Wireless Sensor Networks
Authors: Moslem Afrashteh Mehr
Abstract:
Wireless Sensor Networks consist of small battery powered devices with limited energy resources. once deployed, the small sensor nodes are usually inaccessible to the user, and thus replacement of the energy source is not feasible. Hence, One of the most important issues that needs to be enhanced in order to improve the life span of the network is energy efficiency. to overcome this demerit many research have been done. The clustering is the one of the representative approaches. in the clustering, the cluster heads gather data from nodes and sending them to the base station. In this paper, we introduce a dynamic clustering algorithm using genetic algorithm. This algorithm takes different parameters into consideration to increase the network lifetime. To prove efficiency of proposed algorithm, we simulated the proposed algorithm compared with LEACH algorithm using the matlabKeywords: Wireless Sensor Networks, Clustering, Geneticalgorithm, Energy Consumption
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28884181 Variable Responses of Leaf C, N and P to Climatic Factors in Different Regions and Growth Forms
Authors: Li Wu
Abstract:
Plant ecological stoichiometry, which is one of the most important tools to connect the components among different levels of ecosystem, has obtained increasingly extensive concern, especially on its responses to the environmental gradients. Based on the published literatures and datasets, this article focused on reviewing the variable responses of plant foliar ecological stoichiometry to the climatic factors, such as temperature, water, elevated CO2, and found that foliar ecological stoichiometry responded dynamically to climatic variations among different regions and different growth forms. Then, research status and deficiency were summarized and the expectation on studying the relationships between plant C, N and P ecological stoichiometry and environmental variations which can provide a reference to understand how plants will respond to global change in the future was pointed out.
Keywords: Climatic variations, terrestrial plant, foliar ecological stoichiometry, temperature, precipitation, drought, elevated CO2.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7574180 The Effectiveness of Bismuth Addition to Retard the Intermetallic Compound Formation
Authors: I. Siti Rabiatull Aisha, A. Ourdjini, O. Saliza Azlina
Abstract:
The aim of this paper is to study the effectiveness of bismuth addition in the solder alloy to retard the intermetallic compound formation and growth. In this study, three categories of solders such as Sn-4Ag-xCu (x = 0.5, 0.7, 1.0) and Sn-4Ag-0.5Cu-xBi (x = 0.1, 0.2, 0.4) were used. Ni/Au surface finish substrates were dipped into the molten solder at a temperature of 180-190 oC and allowed to cool at room temperature. The intermetallic compound (IMCs) were subjected to the characterization in terms of composition and morphology. The IMC phases were identified by energy dispersive x-ray (EDX), whereas the optical microscope and scanning electron microscopy (SEM) were used to observe microstructure evolution of the solder joint. The results clearly showed that copper concentration dependency was high during the reflow stage. Besides, only Ni3Sn4 and Ni3Sn2 were detected for all copper concentrations. The addition of Bi was found to have no significant effect on the type of IMCs formed, but yet the grain became further refined.
Keywords: Bismuth addition, intermetallic compound, composition, morphology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13174179 The Temperature Range in the Simulation of Residual Stress and Hot Tearing During Investment Casting
Authors: Saeid Norouzi, Ali Shams, Hassan Farhangi, Alireza Darvish
Abstract:
Hot tear cracking and residual stress are two different consequences of thermal stress both of which can be considered as casting problem. The purpose of the present study is simulation of the effect of casting shape characteristic on hot tearing and residual stress. This study shows that the temperature range for simulation of hot tearing and residual stress are different. In this study, in order to study the development of thermal stress and to predict the hot tearing and residual stress of shaped casting, MAGMASOFT simulation program was used. The strategy of this research was the prediction of hot tear location using pinpointing hot spot and thermal stress concentration zones. The results shows that existing of stress concentration zone increases the hot tearing probability and consequently reduces the amount of remaining residual stress in casting parts.
Keywords: Hot tearing, residual stress, simulation, investment casting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27294178 Detecting the Capacity Reserve in an Overhead Line
Authors: S. Berjozkina, A. Sauhats, V. Bargels, E. Vanzovichs
Abstract:
There are various solutions for improving existing overhead line systems with the general purpose of increasing their limited capacity. The capacity reserve of the existing overhead lines is an important problem that must be considered from different aspects. The paper contains a comparative analysis of the mechanical and thermal limitations of an existing overhead line based on certain calculation conditions characterizing the examined variants. The methodology of the proposed estimation of the permissible conductor temperature and maximum load current is described in detail. The transmission line model consists of specific information of an existing overhead line of the Latvian power network. The main purpose of the simulation tasks is to find an additional capacity reserve by using accurate mathematical models. The results of the obtained data are presented.
Keywords: capacity of an overhead line, mechanical conditions, permissible conductor temperature, thermal conditions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20074177 The Influence of Meteorological Properties on the Power of Night Radiation Cooling
Authors: Othmane Fahim, Naoual Belouaggadia. Charifa David, Mohamed Ezzine
Abstract:
To make better use of cooling resources, systems have been derived on the basis of the use of night radiator systems for heat pumping. Using the TRNSYS tool we determined the influence of the climatic characteristics of the two zones in Morocco on the temperature of the outer surface of a Photovoltaic Thermal Panel “PVT” made of aluminum. The proposal to improve the performance of the panel allowed us to have little heat absorption during the day and give the same performance of a panel made of aluminum at night. The variation in the granite-based panel temperature recorded a deviation from the other materials of 0.5 °C, 2.5 °C on the first day respectively in Marrakech and Casablanca, and 0.2 °C and 3.2 °C on the second night. Power varied between 110.16 and 32.01 W/m² marked in Marrakech, to be the most suitable area to practice night cooling by night radiation.
Keywords: Morocco, TRANSYS, radiative cooling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6314176 Development of Sustainable Building Environmental Model (SBEM) in Hong Kong
Authors: Kwok W. Mui, Ling T. Wong, F. Xiao, Chin T. Cheung, Ho C. Yu
Abstract:
This study addresses a concept of the Sustainable Building Environmental Model (SBEM) developed to optimize energy consumption in air conditioning and ventilation (ACV) systems without any deterioration of indoor environmental quality (IEQ). The SBEM incorporates two main components: an adaptive comfort temperature control module (ACT) and a new carbon dioxide demand control module (nDCV). These two modules take an innovative approach to maintain satisfaction of the Indoor Environmental Quality (IEQ) with optimum energy consumption; they provide a rational basis of effective control. A total of 2133 sets of measurement data of indoor air temperature (Ta), relative humidity (Rh) and carbon dioxide concentration (CO2) were conducted in some Hong Kong offices to investigate the potential of integrating the SBEM. A simulation was used to evaluate the dynamic performance of the energy and air conditioning system with the integration of the SBEM in an air-conditioned building. It allows us make a clear picture of the control strategies and performed any pre-tuned of controllers before utilized in real systems. With the integration of SBEM, it was able to save up to 12.3% in simulation of overall electricity consumption, and maintain the average carbon dioxide concentration within 1000ppm and occupant dissatisfaction in 20%.
Keywords: —Sustainable building environmental model (SBEM), adaptive comfort temperature (ACT), new demand control ventilation (nDCV), energy saving.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18284175 A Numerical Simulation of the Indoor Air Flow
Authors: Karel Frana, Jianshun S. Zhang, Milos Muller
Abstract:
The indoor airflow with a mixed natural/forced convection was numerically calculated using the laminar and turbulent approach. The Boussinesq approximation was considered for a simplification of the mathematical model and calculations. The results obtained, such as mean velocity fields, were successfully compared with experimental PIV flow visualizations. The effect of the distance between the cooled wall and the heat exchanger on the temperature and velocity distributions was calculated. In a room with a simple shape, the computational code OpenFOAM demonstrated an ability to numerically predict flow patterns. Furthermore, numerical techniques, boundary type conditions and the computational grid quality were examined. Calculations using the turbulence model k-omega had a significant effect on the results influencing temperature and velocity distributions.Keywords: natural and forced convections, numerical simulations, indoor airflows.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32144174 Modeling Converters during the Warm-up Period for Hydrocarbon Oxidation
Authors: Sanchita Chauhan, V.K. Srivastava
Abstract:
Catalytic converters are used for minimizing the release of pollutants to the atmosphere. It is during the warm-up period that hydrocarbons are seen to be released in appreciable quantities from these converters. In this paper the conversion of a fast oxidizing hydrocarbon propylene is analysed using two numerical methods. The quasi steady state method assumes the accumulation terms to be negligible in the gas phase mass and energy balance equations, however this term is present in the solid phase energy balance. The unsteady state model accounts for the accumulation term to be present in the gas phase mass and energy balance and in the solid phase energy balance. The results derived from the two models for gas concentration, gas temperature and solid temperature are compared.
Keywords: Propylene, catalyst, quasi steady state, unsteady state.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15974173 Modern State of the Universal Modeling for Centrifugal Compressors
Authors: Y. Galerkin, K. Soldatova, A. Drozdov
Abstract:
The 6th version of Universal modeling method for centrifugal compressor stage calculation is described. Identification of the new mathematical model was made. As a result of identification the uniform set of empirical coefficients is received. The efficiency definition error is 0,86 % at a design point. The efficiency definition error at five flow rate points (except a point of the maximum flow rate) is 1,22 %. Several variants of the stage with 3D impellers designed by 6th version program and quasi threedimensional calculation programs were compared by their gas dynamic performances CFD (NUMECA FINE TURBO). Performance comparison demonstrated general principles of design validity and leads to some design recommendations.
Keywords: Compressor design, loss model, performance prediction, test data, model stages, flow rate coefficient, work coefficient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18854172 Synthesis and Evaluation of Photovoltaic Properties of an Organic Dye for Dye-Sensitized Solar Cells
Authors: M. Hosseinnejad, K. Gharanjig
Abstract:
In the present study, metal free organic dyes were prepared and used as photo-sensitizers in dye-sensitized solar cells. Double rhodanine was utilized as the fundamental electron acceptor group to which electron donor aldehyde with varying substituents was attached to produce new organic dye. This dye was first purified and then characterized by analytical techniques. Spectrophotometric evaluations of the prepared dye in solution and on a nano anatase TiO2 substrate were carried out in order to assess possible changes in the status of the dyes in different environments. The results show that the dye form j-type aggregates on the nano TiO2. Additionally, oxidation potential measurements were also carried out. Finally, dye sensitized solar cell based on synthesized dye was fabricated in order to determine the photovoltaic behavior and conversion efficiency of individual dye.Keywords: Conversion efficiency, dye-sensitized solar cell, photovoltaic behavior, sensitizer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12924171 Fluidity of A713 Cast Alloy with and without Scrap Addition using Double Spiral Fluidity Test: A Comparison
Authors: A.K. Birru, D Benny Karunakar, M. M. Mahapatra
Abstract:
Recycling of aluminum alloys often decrease fluidity, consequently influence the castability of the alloy. In this study, the fluidity of Al-Zn alloys, such as the standard A713 alloy with and without scrap addition has been investigated. The scrap added was comprised of contaminated alloy turning chips. Fluidity measurements were performed with double spiral fluidity test consisting of gravity casting of double spirals in green sand moulds with good reproducibility. The influence of recycled alloy on fluidity has been compared with that of the virgin alloy and the results showed that the fluidity decreased with the increase in recycled alloy at minimum pouring temperatures. Interestingly, an appreciable improvement in the fluidity was observed at maximum pouring temperature, especially for coated spirals.Keywords: A713 alloy, Fluidity, Hexachloroethane, Pouring temperature, Recycling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25004170 Voltage Sag Characteristics during Symmetrical and Asymmetrical Faults
Authors: Ioannis Binas, Marios Moschakis
Abstract:
Electrical faults in transmission and distribution networks can have great impact on the electrical equipment used. Fault effects depend on the characteristics of the fault as well as the network itself. It is important to anticipate the network’s behavior during faults when planning a new equipment installation, as well as troubleshooting. Moreover, working backwards, we could be able to estimate the characteristics of the fault when checking the perceived effects. Different transformer winding connections dominantly used in the Greek power transfer and distribution networks and the effects of 1-phase to neutral, phase-to-phase, 2-phases to neutral and 3-phase faults on different locations of the network were simulated in order to present voltage sag characteristics. The study was performed on a generic network with three steps down transformers on two voltage level buses (one 150 kV/20 kV transformer and two 20 kV/0.4 kV). We found that during faults, there are significant changes both on voltage magnitudes and on phase angles. The simulations and short-circuit analysis were performed using the PSCAD simulation package. This paper presents voltage characteristics calculated for the simulated network, with different approaches on the transformer winding connections during symmetrical and asymmetrical faults on various locations.
Keywords: Phase angle shift, power quality, transformer winding connections, voltage sag propagation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8204169 Effect of Various Nozzle Profiles on Performance of a Two Phase Flow Jet Pump
Authors: Vishnu Prasad Sharma, S. Kumaraswamy, A. Mani
Abstract:
This paper reports on the results of experimental investigations on the performance of a jet pump operated under selected primary flows to optimize the related parameters. For this purpose a two-phase flow jet pump was used employing various profiles of nozzles as the primary device which was designed, fabricated and used along with the combination of mixing tube and diffuser. The profiles employed were circular, conical, and elliptical. The diameter of the nozzle used was 4 mm. The area ratio of the jet pump was 0.16. The test facility created for this purpose was an open loop continuous circulation system. Performance of the jet pump was obtained as iso-efficiency curves on characteristic curves drawn for various water flow rates. To perform the suction capability, evacuation test was conducted at best efficiency point for all the profiles.
Keywords: Evacuation test, jet pump, nozzle profile, nozzle spacing, performance test, two phase flow
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33234168 Assessment of Solar Hydrogen Production in an Energetic Hybrid PV-PEMFC System
Authors: H. Rezzouk, M. Hatti, H. Rahmani, S. Atoui
Abstract:
This paper discusses the design and analysis of a hybrid PV-Fuel cell energy system destined to power a DC load. The system is composed of a photovoltaic array, a fuel cell, an electrolyzer and a hydrogen tank. HOMER software is used in this study to calculate the optimum capacities of the power system components that their combination allows an efficient use of solar resource to cover the hourly load needs. The optimal system sizing allows establishing the right balance between the daily electrical energy produced by the power system and the daily electrical energy consumed by the DC load using a 28 KW PV array, a 7.5 KW fuel cell, a 40KW electrolyzer and a 270 Kg hydrogen tank. The variation of powers involved into the DC bus of the hybrid PV-fuel cell system has been computed and analyzed for each hour over one year: the output powers of the PV array and the fuel cell, the input power of the elctrolyzer system and the DC primary load. Equally, the annual variation of stored hydrogen produced by the electrolyzer has been assessed. The PV array contributes in the power system with 82% whereas the fuel cell produces 18%. 38% of the total energy consumption belongs to the DC primary load while the rest goes to the electrolyzer.
Keywords: Electrolyzer, Hydrogen, Hydrogen Fueled Cell, Photovoltaic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15944167 Investigation of Possible Behavioural and Molecular Effects of Mobile Phone Exposure on Rats
Authors: Ç. Gökçek-Saraç, Ş. Özen, N. Derin
Abstract:
The N-methyl-D-aspartate (NMDA)-dependent pathway is the major intracellular signaling pathway implemented in both short- and long-term memory formation in the hippocampus which is the most studied brain structure because of its well documented role in learning and memory. However, little is known about the effects of RF-EMR exposure on NMDA receptor signaling pathway including activation of protein kinases, notably Ca2+/calmodulin-dependent protein kinase II alpha (CaMKIIα). The aim of the present study was to investigate the effects of acute and chronic 900 MHz RF-EMR exposure on both passive avoidance behaviour and hippocampal levels of CaMKIIα and its phosphorylated form (pCaMKIIα). Rats were divided into the following groups: Sham rats, and rats exposed to 900 MHz RF-EMR for 2 h/day for 1 week (acute group) or 10 weeks (chronic group), respectively. Passive avoidance task was used as a behavioural method. The hippocampal levels of selected kinases were measured using Western Blotting technique. The results of passive avoidance task showed that both acute and chronic exposure to 900 MHz RF-EMR can impair passive avoidance behaviour with minor effects on chronic group of rats. The analysis of western blot data of selected protein kinases demonstrated that hippocampal levels of CaMKIIα and pCaMKIIα were significantly higher in chronic group of rats as compared to acute groups. Taken together, these findings demonstrated that different duration times (1 week vs 10 weeks) of 900 MHz RF-EMR exposure have different effects on both passive avoidance behaviour of rats and hippocampal levels of selected protein kinases.
Keywords: Hippocampus, protein kinase, rat, RF-EMR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8734166 Photocatalytic Cleaning Performance of Air Filters for a Binary Mixture
Authors: Lexuan Zhong, Chang-Seo Lee, Fariborz Haghighat, Stuart Batterman, John C. Little
Abstract:
Ultraviolet photocatalytic oxidation (UV-PCO) technology has been recommended as a green approach to health indoor environment when it is integrated into mechanical ventilation systems for inorganic and organic compounds removal as well as energy saving due to less outdoor air intakes. Although much research has been devoted to UV-PCO, limited information is available on the UV-PCO behavior tested by the mixtures in literature. This project investigated UV-PCO performance and by-product generation using a single and a mixture of acetone and MEK at 100 ppb each in a single-pass duct system in an effort to obtain knowledge associated with competitive photochemical reactions involved in. The experiments were performed at 20 % RH, 22 °C, and a gas flow rate of 128 m3/h (75 cfm). Results show that acetone and MEK mutually reduced each other’s PCO removal efficiency, particularly negative removal efficiency for acetone. These findings were different from previous observation of facilitatory effects on the adsorption of acetone and MEK on photocatalyst surfaces.Keywords: By-products, inhibitory effect, mixture, photocatalytic oxidation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20604165 Strip Decomposition Parallelization of Fast Direct Poisson Solver on a 3D Cartesian Staggered Grid
Authors: Minh Vuong Pham, Frédéric Plourde, Son Doan Kim
Abstract:
A strip domain decomposition parallel algorithm for fast direct Poisson solver is presented on a 3D Cartesian staggered grid. The parallel algorithm follows the principles of sequential algorithm for fast direct Poisson solver. Both Dirichlet and Neumann boundary conditions are addressed. Several test cases are likewise addressed in order to shed light on accuracy and efficiency in the strip domain parallelization algorithm. Actually the current implementation shows a very high efficiency when dealing with a large grid mesh up to 3.6 * 109 under massive parallel approach, which explicitly demonstrates that the proposed algorithm is ready for massive parallel computing.
Keywords: Strip-decomposition, parallelization, fast directpoisson solver.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2052