The Influence of Meteorological Properties on the Power of Night Radiation Cooling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32799
The Influence of Meteorological Properties on the Power of Night Radiation Cooling

Authors: Othmane Fahim, Naoual Belouaggadia. Charifa David, Mohamed Ezzine

Abstract:

To make better use of cooling resources, systems have been derived on the basis of the use of night radiator systems for heat pumping. Using the TRNSYS tool we determined the influence of the climatic characteristics of the two zones in Morocco on the temperature of the outer surface of a Photovoltaic Thermal Panel “PVT” made of aluminum. The proposal to improve the performance of the panel allowed us to have little heat absorption during the day and give the same performance of a panel made of aluminum at night. The variation in the granite-based panel temperature recorded a deviation from the other materials of 0.5 °C, 2.5 °C on the first day respectively in Marrakech and Casablanca, and 0.2 °C and 3.2 °C on the second night. Power varied between 110.16 and 32.01 W/m² marked in Marrakech, to be the most suitable area to practice night cooling by night radiation.

Keywords: Morocco, TRANSYS, radiative cooling.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.3566329

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 563

References:


[1] Debbarh, A. M. (1955). L’ ÉNERGIE: développement énergétique au Maroc depuis 1955 , perspectives 2025, 63–90.
[2] Choisnel, E. (2001). L’homme et les climats, 36–47.
[3] Bowen, A.B. (1981). Cooling achievement in the gardens of Moghul India. Proceedings of International Passive and Hybrid Cooling Conference, Miami Beach, FL, pp.27-31.
[4] Campus, B. (1991). Thermal Storage Mass in Radiative Cooling Systems *, 26(4), 389–394.
[5] Bliss R. Photovoltaic thermal collectors for night radiative cooling of building.
[6] Philippe vander Eyrde. Caractérisation géographique des granulats, 116–120.
[7] Vall, S., & Castell, A. (2017). Radiative cooling as low-grade energy source: A literature review. Renewable and Sustainable Energy Reviews, 77 (January), 803–820. https://doi.org/10.1016/j.rser.2017.04.010
[8] Lu, X., Xu, P., Wang, H., Yang, T., & Hou, J. (2016). Cooling potential and applications prospects of passive radiative cooling in buildings: The current state-of-the-art. Renewable and Sustainable Energy Reviews, 65(4800), 1079–1097. https://doi.org/10.1016/j.rser.2016.07.0584
[9] Brunt, D. “Note on radiation in the atmosphere.” 58 (1932) Quarterly Journal of the Royal Meteorological Societ, pp. 389–418.
[10] Idso, S. B. & Jackson R. D. “Thermal radiation from the atmosphere.” 74 no. 5 (1969) Journal of Geophysical Research, pp. 397–403
[11] Swinbank, WC. “Long-wave radiation from clear skies.” 89 (1963) Quarterly Journal of the Royal Meteorological Society, pp. 339–48.
[12] Clark, G. & Allen, P. “The estimation of atmospheric radiation for clear and cloudy skies.” Proceedings of the Second National Passive Solar Conference Philadelphia, Vol. 2, 1978, pp. 676.
[13] Berdahl, P. & Fromberg, R. “The thermal radiance of clear skies.” 29 no. 4 (1983) Solar Energy, pp. 299-314.
[14] Berdahl, P. & Martin, M. “Emissivity of clear skies.” 32 no. 5 (1984) Solar Energy, pp. 663-664.
[15] Sloant, R., Shaw, J. H., & Williams, D. (1956). Rsx-DsxlKnx, (1), 46(7), 2–6.
[16] Skies, F. C. (1981). A Set of Equations for Full Spectrum and a oTon above studies, 17(2), 295–304.
[17] Resources, W. (1975). On a Derivable Formula for Long-Wave Radiation from Clear Skies FLD), 11(5), 742–744.
[18] Begger, X., & Buriot, D. (1984). About the Equivalent Radiative Temperature, 32(6), 725–733.
[19] Sugita, M., & Surface, L. (1993). Cloud Effect in the Estimation of Instantaneous Downward Longwave Radiation, 29(3)
[20] Lhomme, J. P., Vacher, J. J., & Rocheteau, A. (2007). Estimating downward long-wave radiation on the Andean Altiplano, 145, 139–148. https://doi.org/10.1016/j.agrformet.2007.04.007
[21] Maykut. Design parameters of a non-air-conditioned cinema hall for thermal comfort under arid-zone climate conditions. Energy Buildings. 1973, 61-349.
[22] D. Michell, K.L. Biggs, Radiation cooling of buildings at night. Appl. Energy 5(79), 263–275 (1979).
[23] Cuomo, V., & Silvestrini, V. (1975). The Radiative Cooling of Selective Surfaces, 17.
[24] Berdahl, Martin M., “Characteristics of Infrared Sky Radiation in the U.S.A.”, Solar Energy Journal, 33.4 (1984): 321
[25] Philippe vander Eyrde. Caractérisation géographique des granulats, 116–120
[26] Dimoudi A, Androutsopoulos A. The cooling performance of a radiator based roof component. Sol Energy 2006;80:1039–47.
[27] Berger, X., Buriot, D. & Garnier, F. “Au sujet de la température de rayonnement du ciel.” A paraître dans Solar Energy.
[28] Granier, P. “Capteur multipasses.” Thèse de Docteur-Ingénieur. Université de Perpignan, Juillet 1980
[29] Maykut GA, Church PF. Radiation climate of Barrow, Alaska, 1962–66. J Appl Meteorol, 1973;12:620–8. Sol Energy 1961;5:103–20
[30] Bulletin officiel n° 6174 du 23 ramadan 1434 (1. (2014), 1434, 1–38
[31] ADEERE, Règlement Thermique de Construction au Maroc, 2011
[32] Fahim O, Belouaggadia N and Charifa A , "Cooling of a dwelling by nocturnal radiation", 2018
[33] METEONORM 7.1(2014) Software application available from meteotest, Fabriksts 14.3012 Bern Switzerland (www.meteonorme.com)