Search results for: Matrix equations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2203

Search results for: Matrix equations

493 Group Contribution Parameters for Nonrandom Lattice Fluid Equation of State involving COSMO-RS

Authors: Alexander Breitholz, Wolfgang Arlt, Ki-Pung Yoo

Abstract:

Group contribution based models are widely used in industrial applications for its convenience and flexibility. Although a number of group contribution models have been proposed, there were certain limitations inherent to those models. Models based on group contribution excess Gibbs free energy are limited to low pressures and models based on equation of state (EOS) cannot properly describe highly nonideal mixtures including acids without introducing additional modification such as chemical theory. In the present study new a new approach derived from quantum chemistry have been used to calculate necessary EOS group interaction parameters. The COSMO-RS method, based on quantum mechanics, provides a reliable tool for fluid phase thermodynamics. Benefits of the group contribution EOS are the consistent extension to hydrogen-bonded mixtures and the capability to predict polymer-solvent equilibria up to high pressures. The authors are confident that with a sufficient parameter matrix the performance of the lattice EOS can be improved significantly.

Keywords: COSMO-RS, Equation of State, Group contribution, Lattice Fluid, Phase equilibria.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1883
492 Power Transformer Risk-Based Maintenance by Optimization of Transformer Condition and Transformer Importance

Authors: Kitti Leangkrua

Abstract:

This paper presents a risk-based maintenance strategy of a power transformer in order to optimize operating and maintenance costs. The methodology involves the study and preparation of a database for the collection the technical data and test data of a power transformer. An evaluation of the overall condition of each transformer is performed by a program developed as a result of the measured results; in addition, the calculation of the main equipment separation to the overall condition of the transformer (% HI) and the criteria for evaluating the importance (% ImI) of each location where the transformer is installed. The condition assessment is performed by analysis test data such as electrical test, insulating oil test and visual inspection. The condition of the power transformer will be classified from very poor to very good condition. The importance is evaluated from load criticality, importance of load and failure consequence. The risk matrix is developed for evaluating the risk of each power transformer. The high risk power transformer will be focused firstly. The computerized program is developed for practical use, and the maintenance strategy of a power transformer can be effectively managed.

Keywords: Asset management, risk-based maintenance, power transformer, health index.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1331
491 Generalized Method for Estimating Best-Fit Vertical Alignments for Profile Data

Authors: Said M. Easa, Shinya Kikuchi

Abstract:

When the profile information of an existing road is missing or not up-to-date and the parameters of the vertical alignment are needed for engineering analysis, the engineer has to recreate the geometric design features of the road alignment using collected profile data. The profile data may be collected using traditional surveying methods, global positioning systems, or digital imagery. This paper develops a method that estimates the parameters of the geometric features that best characterize the existing vertical alignments in terms of tangents and the expressions of the curve, that may be symmetrical, asymmetrical, reverse, and complex vertical curves. The method is implemented using an Excel-based optimization method that minimizes the differences between the observed profile and the profiles estimated from the equations of the vertical curve. The method uses a 'wireframe' representation of the profile that makes the proposed method applicable to all types of vertical curves. A secondary contribution of this paper is to introduce the properties of the equal-arc asymmetrical curve that has been recently developed in the highway geometric design field.

Keywords: Optimization, parameters, data, reverse, spreadsheet, vertical curves

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2418
490 Complexity Analysis of Some Known Graph Coloring Instances

Authors: Jeffrey L. Duffany

Abstract:

Graph coloring is an important problem in computer science and many algorithms are known for obtaining reasonably good solutions in polynomial time. One method of comparing different algorithms is to test them on a set of standard graphs where the optimal solution is already known. This investigation analyzes a set of 50 well known graph coloring instances according to a set of complexity measures. These instances come from a variety of sources some representing actual applications of graph coloring (register allocation) and others (mycieleski and leighton graphs) that are theoretically designed to be difficult to solve. The size of the graphs ranged from ranged from a low of 11 variables to a high of 864 variables. The method used to solve the coloring problem was the square of the adjacency (i.e., correlation) matrix. The results show that the most difficult graphs to solve were the leighton and the queen graphs. Complexity measures such as density, mobility, deviation from uniform color class size and number of block diagonal zeros are calculated for each graph. The results showed that the most difficult problems have low mobility (in the range of .2-.5) and relatively little deviation from uniform color class size.

Keywords: graph coloring, complexity, algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1382
489 Influence of Different Thicknesses on Mechanical and Corrosion Properties of α-C:H Films

Authors: S. Tunmee, P. Wongpanya, I. Toda, X. L. Zhou, Y. Nakaya, N. Konkhunthot, S. Arakawa, H. Saitoh

Abstract:

The hydrogenated amorphous carbon films (α-C:H) were deposited on p-type Si (100) substrates at different thicknesses by radio frequency plasma enhanced chemical vapor deposition technique (rf-PECVD). Raman spectra display asymmetric diamond-like carbon (DLC) peaks, representative of the α-C:H films. The decrease of intensity ID/IG ratios revealed the sp3 content arise at different thicknesses of the α-C:H films. In terms of mechanical properties, the high hardness and elastic modulus values showed the elastic and plastic deformation behaviors related to sp3 content in amorphous carbon films. Electrochemical properties showed that the α-C:H films exhibited excellent corrosion resistance in air-saturated 3.5 wt.% NaCl solution for pH 2 at room temperature. Thickness increasing affected the small sp2 clusters in matrix, restricting the velocity transfer and exchange of electrons. The deposited α-C:H films exhibited excellent mechanical properties and corrosion resistance.

Keywords: Thickness, Mechanical properties, Electrochemical corrosion properties, α-C:H film.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5244
488 Modeling and Design of an Active Leg Orthosis for Tumble Protection

Authors: Eileen Chih-Ying Yang, Liang-Han Wu, Chieh-Min Chang

Abstract:

The design of an active leg orthosis for tumble protection is proposed in this paper. The orthosis would be applied to assist elders or invalids in rebalancing while they fall unexpectedly. We observe the regain balance motion of healthy and youthful people, and find the difference to elders or invalids. First, the physical model of leg would be established, and we consider the leg motions are achieve through four joints (phalanx stem, ankle, knee, and hip joint) and five links (phalanges, talus, tibia, femur, and hip bone). To formulate the dynamic equations, the coordinates which can clearly describe the position in 3D space are first defined accordance with the human movement of leg, and the kinematics and dynamics of the leg movement can be formulated based on the robotics. For the purpose, assisting elders and invalids in avoiding tumble, the posture variation of unbalance and regaining balance motion are recorded by the motion-capture image system, and the trajectory is taken as the desire one. Then we calculate the force and moment of each joint based on the leg motion model through programming MATLAB code. The results would be primary information of the active leg orthosis design for tumble protection.

Keywords: Active leg orthosis, Tumble protection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1617
487 Lagrange and Multilevel Wavelet-Galerkin with Polynomial Time Basis for Heat Equation

Authors: Watcharakorn Thongchuay, Puntip Toghaw, Montri Maleewong

Abstract:

The Wavelet-Galerkin finite element method for solving the one-dimensional heat equation is presented in this work. Two types of basis functions which are the Lagrange and multi-level wavelet bases are employed to derive the full form of matrix system. We consider both linear and quadratic bases in the Galerkin method. Time derivative is approximated by polynomial time basis that provides easily extend the order of approximation in time space. Our numerical results show that the rate of convergences for the linear Lagrange and the linear wavelet bases are the same and in order 2 while the rate of convergences for the quadratic Lagrange and the quadratic wavelet bases are approximately in order 4. It also reveals that the wavelet basis provides an easy treatment to improve numerical resolutions that can be done by increasing just its desired levels in the multilevel construction process.

Keywords: Galerkin finite element method, Heat equation , Lagrange basis function, Wavelet basis function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1705
486 Hydrodynamic Modeling of Infinite Reservoir using Finite Element Method

Authors: M. A. Ghorbani, M. Pasbani Khiavi

Abstract:

In this paper, the dam-reservoir interaction is analyzed using a finite element approach. The fluid is assumed to be incompressible, irrotational and inviscid. The assumed boundary conditions are that the interface of the dam and reservoir is vertical and the bottom of reservoir is rigid and horizontal. The governing equation for these boundary conditions is implemented in the developed finite element code considering the horizontal and vertical earthquake components. The weighted residual standard Galerkin finite element technique with 8-node elements is used to discretize the equation that produces a symmetric matrix equation for the damreservoir system. A new boundary condition is proposed for truncating surface of unbounded fluid domain to show the energy dissipation in the reservoir, through radiation in the infinite upstream direction. The Sommerfeld-s and perfect damping boundary conditions are also implemented for a truncated boundary to compare with the proposed far end boundary. The results are compared with an analytical solution to demonstrate the accuracy of the proposed formulation and other truncated boundary conditions in modeling the hydrodynamic response of an infinite reservoir.

Keywords: Reservoir, finite element, truncated boundary, hydrodynamic pressure

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2285
485 MHD Natural Convection Flow of Tangent Hyperbolic Nanofluid Past a Vertical Permeable Cone

Authors: A. Mahdy

Abstract:

In this paper, a non-similraity analysis has been presented to exhibit the two-dimensional boundary layer flow of magnetohydrodynamic (MHD) natural convection of tangent hyperbolic nanofluid nearby a vertical permeable cone in the presence of variable wall temperature impact. The mutated boundary layer nonlinear governing equations are solved numerically by the an efficient implicit finite difference procedure. For both nanofluid effective viscosity and nanofluid thermal conductivity, a number of experimental relations have been recognized. For characterizing the nanofluid, the compatible nanoparticle volume fraction model has been used. Nusselt number and skin friction coefficient are calculated for some values of Weissenberg number W, surface temperature exponent n, magnetic field parameter Mg, power law index m and Prandtl number Pr as functions of suction parameter. The rate of heat transfer from a vertical permeable cone in a regular fluid is less than that in nanofluids. A best convection has been presented by Copper nanoparticle among all the used nanoparticles.

Keywords: Tangent hyperbolic nanofluid, finite difference, non-similarity, isothermal cone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 751
484 Numerical Simulation of the Liquid-Vapor Interface Evolution with Material Properties

Authors: Kimou Kouadio Prosper, Souleymane Oumtanaga, Tety Pierre, Adou Kablan Jérôme

Abstract:

A satured liquid is warmed until boiling in a parallelepipedic boiler. The heat is supplied in a liquid through the horizontal bottom of the boiler, the other walls being adiabatic. During the process of boiling, the liquid evaporates through its free surface by deforming it. This surface which subdivides the boiler into two regions occupied on both sides by the boiled liquid (broth) and its vapor which surmounts it. The broth occupying the region and its vapor the superior region. A two- fluids model is used to describe the dynamics of the broth, its vapor and their interface. In this model, the broth is treated as a monophasic fluid (homogeneous model) and form with its vapor adiphasic pseudo fluid (two-fluid model). Furthermore, the interface is treated as a zone of mixture characterized by superficial void fraction noted α* . The aim of this article is to describe the dynamics of the interface between the boiled fluid and its vapor within a boiler. The resolution of the problem allowed us to show the evolution of the broth and the level of the liquid.

Keywords: Two-fluid models, homogeneous model, interface, averaged equations, Jumps conditions, void fraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1495
483 Coaxial Helix Antenna for Microwave Coagulation Therapy in Liver Tissue Simulations

Authors: M. Chaichanyut, S. Tungjitkusolmun

Abstract:

This paper is concerned with microwave (MW) ablation for a liver cancer tissue by using helix antenna. The antenna structure supports the propagation of microwave energy at 2.45 GHz. A 1½ turn spiral catheter-based microwave antenna applicator has been developed. We utilize the three-dimensional finite element method (3D FEM) simulation to analyze where the tissue heat flux, lesion pattern and volume destruction during MW ablation. The configurations of helix antenna where Helix air-core antenna and Helix Dielectric-core antenna. The 3D FEMs solutions were based on Maxwell and bio-heat equations. The simulation protocol was power control (10 W, 300s). Our simulation result, both helix antennas have heat flux occurred around the helix antenna and that can be induced the temperature distribution similar (teardrop). The region where the temperature exceeds 50°C the microwave ablation was successful (i.e. complete destruction). The Helix air-core antenna and Helix Dielectric-core antenna, ablation zone or axial ratios (Widest/length) were respectively 0.82 and 0.85; the complete destructions were respectively 4.18 cm3 and 5.64 cm3

Keywords: Liver cancer, Helix antenna, Finite element, Microwave ablation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1930
482 Thermodynamic Equilibrium of Nitrogen Species Discharge: Comparison with Global Model

Authors: Saktioto, F.D Ismail, P.P. Yupapin, J. Ali

Abstract:

The equilibrium process of plasma nitrogen species by chemical kinetic reactions along various pressures is successfully investigated. The equilibrium process is required in industrial application to obtain the stable condition when heating up the material for having homogenous reaction. Nitrogen species densities is modeled by a continuity equation and extended Arrhenius form. These equations are used to integrate the change of density over the time. The integration is to acquire density and the reaction rate of each reaction where temperature and time dependence are imposed. A comparison is made with global model within pressure range of 1- 100mTorr and the temperature of electron is set to be higher than other nitrogen species. The results shows that the chemical kinetic model only agrees for high pressure because of no power imposed; while the global model considers the external power along the pressure range then the electron and nitrogen species give highly quantity densities by factor of 3 to 5.

Keywords: chemical kinetic model, Arrhenius equation, nitrogen plasma, low pressure discharge

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1708
481 Finite Element Analysis of Oil-Lubricated Elliptical Journal Bearings

Authors: Marco T. C. Faria

Abstract:

Fixed-geometry hydrodynamic journal bearings are one of the best supporting systems for several applications of rotating machinery. Cylindrical journal bearings present excellent loadcarrying capacity and low manufacturing costs, but they are subjected to the oil-film instability at high speeds. An attempt of overcoming this instability problem has been the development of non-circular journal bearings. This work deals with an analysis of oil-lubricated elliptical journal bearings using the finite element method. Steadystate and dynamic performance characteristics of elliptical bearings are rendered by zeroth- and first-order lubrication equations obtained through a linearized perturbation method applied on the classical Reynolds equation. Four-node isoparametric rectangular finite elements are employed to model the bearing thin film flow. Curves of elliptical bearing load capacity and dynamic force coefficients are rendered at several operating conditions. The results presented in this work demonstrate the influence of the bearing ellipticity on its performance at different loading conditions.

Keywords: Elliptical journal bearings, non-circular journal bearings, hydrodynamic bearings, finite element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3198
480 Contributions to Design of Systems Actuated by Shape Memory Active Elements

Authors: Daniel Amariei, Calin O. Miclosina, Ion Vela, Marius Tufoi, Cornel Mituletu

Abstract:

Even it has been recognized that Shape Memory Alloys (SMA) have a significant potential for deployment actuators, the number of applications of SMA-based actuators to the present day is still quite small, due to the need of deep understanding of the thermo-mechanical behavior of SMA, causing an important need for a mathematical model able to describe all thermo-mechanical properties of SMA by relatively simple final set of constitutive equations. SMAs offer attractive potentials such as: reversible strains of several percent, generation of high recovery stresses and high power / weight ratios. The paper tries to provide an overview of the shape memory functions and a presentation of the designed and developed temperature control system used for a gripper actuated by two pairs of differential SMA active springs. An experimental setup was established, using electrical energy for actuator-s springs heating process. As for holding the temperature of the SMA springs at certain level for a long time was developed a control system in order to avoid the active elements overheating.

Keywords: active element, actuator, model, Nitinol, prehension

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1508
479 Modeling of Blood Flow Velocity into the Main Artery via Left Ventricle of Heart during Steady Condition

Authors: Mohd Azrul Hisham Mohd Adib, Nur Hazreen Mohd Hasni

Abstract:

A three-dimensional and pulsatile blood flow in the left ventricle of heart model has been studied numerically. The geometry was derived from a simple approximation of the left ventricle model and the numerical simulations were obtained using a formulation of the Navier-Stokes equations. In this study, simulation was used to investigate the pattern of flow velocity in 3D model of heart with consider the left ventricle based on critical parameter of blood under steady condition. Our results demonstrate that flow velocity focused from mitral valve channel and continuous linearly to left ventricle wall but this skewness progresses into outside wall in atrium through aortic valve with random distribution that is irregular due to force subtract from ventricle wall during cardiac cycle. The findings are the prediction of the behavior of the blood flow velocity pattern in steady flow condition which can assist the medical practitioners in their decision on the patients- treatments.

Keywords: Mitral Valve, Aortic Valve, Cardiac Cycle, Leaflet, Biomechanics, Left Ventricle

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2109
478 Microstructure and Mechanical Properties of Mg-Zn Alloys

Authors: Young Sik Kim, Tae Kwon Ha

Abstract:

Effect of Zn addition on the microstructure and mechanical properties of Mg-Zn alloys with Zn contents from 6 to 10 weight percent was investigated in this study. Through calculation of phase equilibria of Mg-Zn alloys, carried out by using FactSage® and FTLite database, solution treatment temperature was decided as temperatures from 300 to 400oC, where supersaturated solid solution can be obtained. Solid solution treatment of Mg-Zn alloys was successfully conducted at 380oC and supersaturated microstructure with all beta phase resolved into matrix was obtained. After solution treatment, hot rolling was successfully conducted by reduction of 60%. Compression and tension tests were carried out at room temperature on the samples as-cast, solution treated, hot-rolled and recrystallized after rolling. After solid solution treatment, each alloy was annealed at temperatures of 180 and 200oC for time intervals from 1 min to 48 hrs and hardness of each condition was measured by micro-Vickers method. Peak aging conditions were deduced as at the temperature of 200oC for 10 hrs. By addition of Zn by 10 weight percent, hardness and strength were enhanced.

Keywords: Mg-Zn alloy, Heat treatment, Microstructure, Mechanical properties, Hardness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2338
477 Improving Order Quantity Model with Emergency Safety Stock (ESS)

Authors: Yousef Abu Nahleh, Alhasan Hakami, Arun Kumar, Fugen Daver

Abstract:

This study considers the problem of calculating safety stocks in disaster situations inventory systems that face demand uncertainties. Safety stocks are essential to make the supply chain, which is controlled by forecasts of customer needs, in response to demand uncertainties and to reach predefined goal service levels. To solve the problem of uncertainties due to the disaster situations affecting the industry sector, the concept of Emergency Safety Stock (ESS) was proposed. While there exists a huge body of literature on determining safety stock levels, this literature does not address the problem arising due to the disaster and dealing with the situations. In this paper, the problem of improving the Order Quantity Model to deal with uncertainty of demand due to disasters is managed by incorporating a new idea called ESS which is based on the probability of disaster occurrence and uses probability matrix calculated from the historical data. 

Keywords: Emergency Safety Stocks, Safety stocks, Order Quantity Model, Supply chain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2839
476 Mixed Convection Boundary Layer Flows Induced by a Permeable Continuous Surface Stretched with Prescribed Skin Friction

Authors: Mohamed Ali

Abstract:

The boundary layer flow and heat transfer on a stretched surface moving with prescribed skin friction is studied for permeable surface. The surface temperature is assumed to vary inversely with the vertical direction x for n = -1. The skin friction at the surface scales as (x-1/2) at m = 0. The constants m and n are the indices of the power law velocity and temperature exponent respectively. Similarity solutions are obtained for the boundary layer equations subject to power law temperature and velocity variation. The effect of various governing parameters, such as the buoyancy parameter λ and the suction/injection parameter fw for air (Pr = 0.72) are studied. The choice of n and m ensures that the used similarity solutions are x independent. The results show that, assisting flow (λ > 0) enhancing the heat transfer coefficient along the surface for any constant value of fw. Furthermore, injection increases the heat transfer coefficient but suction reduces it at constant λ.

Keywords: Stretching surface, Boundary layers, Prescribed skin friction, Suction or injection, similarity solutions, buoyancy effects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1830
475 Interaction between Unsteady Supersonic Jet and Vortex Rings

Authors: Kazumasa Kitazono, Hiroshi Fukuoka, Nao Kuniyoshi, Minoru Yaga, Eri Ueno, Naoaki Fukuda, Toshio Takiya

Abstract:

The unsteady supersonic jet formed by a shock tube with a small high-pressure chamber was used as a simple alternative model for pulsed laser ablation. Understanding the vortex ring formed by the shock wave is crucial in clarifying the behavior of unsteady supersonic jet discharged from an elliptical cell. Therefore, this study investigated the behavior of vortex rings and a jet. The experiment and numerical calculation were conducted using the schlieren method and by solving the axisymmetric two-dimensional compressible Navier–Stokes equations, respectively. In both, the calculation and the experiment, laser ablation is conducted for a certain duration, followed by discharge through the exit. Moreover, a parametric study was performed to demonstrate the effect of pressure ratio on the interaction among vortex rings and the supersonic jet. The interaction between the supersonic jet and the vortex rings increased the velocity of the supersonic jet up to the magnitude of the velocity at the center of the vortex rings. The interaction between the vortex rings increased the velocity at the center of the vortex ring.

Keywords: Computational fluid dynamics, shock wave, unsteady jet, vortex ring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1357
474 Using ANSYS to Realize a Semi-Analytical Method for Predicting Temperature Profile in Injection/Production Well

Authors: N. Tarom, M.M. Hossain

Abstract:

Determination of wellbore problems during a production/injection process might be evaluated thorough temperature log analysis. Other applications of this kind of log analysis may also include evaluation of fluid distribution analysis along the wellbore and identification of anomalies encountered during production/injection process. While the accuracy of such prediction is paramount, the common method of determination of a wellbore temperature log includes use of steady-state energy balance equations, which hardly describe the real conditions as observed in typical oil and gas flowing wells during production operation; and thus increase level of uncertainties. In this study, a practical method has been proposed through development of a simplified semianalytical model to apply for predicting temperature profile along the wellbore. The developed model includes an overall heat transfer coefficient accounting all modes of heat transferring mechanism, which has been focused on the prediction of a temperature profile as a function of depth for the injection/production wells. The model has been validated with the results obtained from numerical simulation.

Keywords: Energy balance equation, reservoir and well performance, temperature log, overall heat transfer coefficient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2710
473 Operation Parameters of Vacuum Cleaned Filters

Authors: Wilhelm Hoeflinger, Thomas Laminger, Johannes Wolfslehner

Abstract:

For vacuum cleaned dust filters there exist no calculation methods to determine design parameters (e.g. traverse velocity of the nozzle, filter area…). In this work a method to calculate the optimum traverse velocity of the nozzle of an industrial-size flat dust filter at a given mean pressure drop and filter face velocity was elaborated. Well-known equations for the design of a cleanable multi-chamber bag-house-filter were modified in order to take into account a continuously regeneration of a dust filter by a nozzle. Thereby, the specific filter medium resistance and the specific cake resistance values are needed which can be derived from filter tests under constant operation conditions.

A lab-scale filter test rig was used to derive the specific filter media resistance value and the specific cake resistance value for vacuum cleaned filter operation. Three different filter media were tested and the determined parameters were compared to each other.

Keywords: Design of dust filter, Dust removing, Filter regeneration, Operation parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1909
472 Structural and Optical Properties of Pr3+ Doped ZnO and PVA:Zn98Pr2O Nanocomposite Free Standing Film

Authors: Pandiyarajan Thangaraj, Mangalaraja Ramalinga Viswanathan, Karthikeyan Balasubramanian, Héctor D. Mansilla, José Ruiz, David Contreras

Abstract:

In this work, we report, a systematic study on the structural and optical properties of Pr-doped ZnO nanostructures and PVA:Zn98Pr2O polymer matrix nanocomposites free standing films. These particles are synthesized through simple wet chemical route and solution casting technique at room temperature, respectively. Structural studies carried out by X-ray diffraction method confirm that the prepared pure ZnO and Pr doped ZnO nanostructures are in hexagonal wurtzite structure and the microstrain is increased upon doping. TEM analysis reveals that the prepared materials are in sheet like nature. Absorption spectra show free excitonic absorption band at 370 nm and red shift for the Pr doped ZnO nanostructures. The PVA:Zn98Pr2O composite film exhibits both free excitonic and PVA absorption bands at 282 nm. Fourier transform infrared spectral studies confirm the presence of A1 (TO) and E1 (TO) modes of Zn-O bond vibration and the formation of polymer composite materials.

Keywords: Pr doped ZnO, polymer nanocomposites, optical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2204
471 Laser-Ultrasonic Method for Measuring the Local Elastic Moduli of Porous Isotropic Composite Materials

Authors: Alexander A. Karabutov, Natalia B. Podymova, Elena B. Cherepetskaya, Vladimir A. Makarov, Yulia G. Sokolovskaya

Abstract:

The laser-ultrasonic method is realized for quantifying the influence of porosity on the local Young’s modulus of isotropic composite materials. The method is based on a laser thermooptical method of ultrasound generation combined with measurement of the phase velocity of longitudinal and shear acoustic waves in samples. The main advantage of this method compared with traditional ultrasonic research methods is the efficient generation of short and powerful probing acoustic pulses required for reliable testing of ultrasound absorbing and scattering heterogeneous materials. Using as an example samples of a metal matrix composite with reinforcing microparticles of silicon carbide in various concentrations, it is shown that to provide an effective increase in Young’s modulus with increasing concentration of microparticles, the porosity of the final sample should not exceed 2%.

Keywords: Laser ultrasonic, longitudinal and shear ultrasonic waves, porosity, composite, local elastic moduli.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1532
470 Effects of Viscous Dissipation and Concentration Based Internal Heat Source on Convective Instability in a Porous Medium with Throughflow

Authors: N. Deepika, P. A. L. Narayana

Abstract:

Linear stability analysis of double diffusive convection in a horizontal porous layer saturated with fluid is examined by considering the effects of viscous dissipation, concentration based internal heat source and vertical throughflow. The basic steady state solution for Governing equations is derived. Linear stability analysis has been implemented numerically by using shooting and Runge-kutta methods. Critical thermal Rayleigh number Rac is obtained for various values of solutal Rayleigh number Sa, vertical Peclet number Pe, Gebhart number Ge, Lewis number Le and measure of concentration based internal heat source γ. It is observed that Ge has destabilizing effect for upward throughflow and stabilizing effect for downward throughflow. And γ has considerable destabilizing effect for upward throughflow and insignificant destabilizing effect for downward throughflow.

Keywords: Porous medium, concentration based internal heat source, vertical throughflow, viscous dissipation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1608
469 Data Mining Classification Methods Applied in Drug Design

Authors: Mária Stachová, Lukáš Sobíšek

Abstract:

Data mining incorporates a group of statistical methods used to analyze a set of information, or a data set. It operates with models and algorithms, which are powerful tools with the great potential. They can help people to understand the patterns in certain chunk of information so it is obvious that the data mining tools have a wide area of applications. For example in the theoretical chemistry data mining tools can be used to predict moleculeproperties or improve computer-assisted drug design. Classification analysis is one of the major data mining methodologies. The aim of thecontribution is to create a classification model, which would be able to deal with a huge data set with high accuracy. For this purpose logistic regression, Bayesian logistic regression and random forest models were built using R software. TheBayesian logistic regression in Latent GOLD software was created as well. These classification methods belong to supervised learning methods. It was necessary to reduce data matrix dimension before construct models and thus the factor analysis (FA) was used. Those models were applied to predict the biological activity of molecules, potential new drug candidates.

Keywords: data mining, classification, drug design, QSAR

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2821
468 Effect of Linear Thermal Gradient on Steady-State Creep Behavior of Isotropic Rotating Disc

Authors: Minto Rattan, Tania Bose, Neeraj Chamoli

Abstract:

The present paper investigates the effect of linear thermal gradient on the steady-state creep behavior of rotating isotropic disc using threshold stress based Sherby’s creep law. The composite discs made of aluminum matrix reinforced with silicon carbide particulate has been taken for analysis. The stress and strain rate distributions have been calculated for discs rotating at linear thermal gradation using von Mises’ yield criterion. The material parameters have been estimated by regression fit of the available experimental data. The results are displayed and compared graphically in designer friendly format for the above said temperature profile with the disc operating under uniform temperature profile. It is observed that radial and tangential stresses show minor variation and the strain rates vary significantly in the presence of thermal gradation as compared to disc having uniform temperature.

Keywords: Creep, isotropic, steady-state, thermal gradient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 821
467 Optical and Double Folding Model Analysis for Alpha Particles Elastically Scattered from 9Be and 11B Nuclei at Different Energies

Authors: Ahmed H. Amer, A. Amar, Sh. Hamada, I. I. Bondouk, F. A. El-Hussiny

Abstract:

Elastic scattering of α-particles from 9Be and 11B nuclei at different alpha energies have been analyzed. Optical model parameters (OMPs) of α-particles elastic scattering by these nuclei at different energies have been obtained. In the present calculations, the real part of the optical potential are derived by folding of nucleonnucleon (NN) interaction into nuclear matter density distribution of the projectile and target nuclei using computer code FRESCO. A density-dependent version of the M3Y interaction (CDM3Y6), which is based on the G-matrix elements of the Paris NN potential, has been used. Volumetric integrals of the real and imaginary potential depth (JR, JW) have been calculated and found to be energy dependent. Good agreement between the experimental data and the theoretical predictions in the whole angular range. In double folding (DF) calculations, the obtained normalization coefficient Nr is in the range 0.70–1.32.

Keywords: Elastic scattering of α-particles, optical model parameters, double folding model, nucleon-nucleon interaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2166
466 Thermohydraulic Performance of Double Flow Solar Air Heater with Corrugated Absorber

Authors: S. P. Sharma, Som Nath Saha

Abstract:

This paper deals with the analytical investigation of thermal and thermohydraulic performance of double flow solar air heaters with corrugated and flat plate absorber. A mathematical model of double flow solar air heater has been presented, and a computer program in C++ language is developed to estimate the outlet temperature of air for the evaluation of thermal and thermohydraulic efficiency by solving the governing equations numerically using relevant correlations for heat transfer coefficients. The results obtained from the mathematical model is compared with the available experimental results and it is found to be reasonably good. The results show that the double flow solar air heaters have higher efficiency than conventional solar air heater, although the double flow corrugated absorber is superior to that of flat plate double flow solar air heater. It is also observed that the thermal efficiency increases with increase in mass flow rate; however, thermohydraulic efficiency increases with increase in mass flow rate up to a certain limit, attains the maximum value, then thereafter decreases sharply.

Keywords: Corrugated absorber, double flow, solar air heater, thermohydraulic efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1473
465 Agent/Group/Role Organizational Model to Simulate an Industrial Control System

Authors: Noureddine Seddari, Mohamed Belaoued, Salah Bougueroua

Abstract:

The modeling of complex systems is generally based on the decomposition of their components into sub-systems easier to handle. This division has to be made in a methodical way. In this paper, we introduce an industrial control system modeling and simulation based on the Multi-Agent System (MAS) methodology AALAADIN and more particularly the underlying conceptual model Agent/Group/Role (AGR). Indeed, in this division using AGR model, the overall system is decomposed into sub-systems in order to improve the understanding of regulation and control systems, and to simplify the implementation of the obtained agents and their groups, which are implemented using the Multi-Agents Development KIT (MAD-KIT) platform. This approach appears to us to be the most appropriate for modeling of this type of systems because, due to the use of MAS, it is possible to model real systems in which very complex behaviors emerge from relatively simple and local interactions between many different individuals, therefore a MAS is well adapted to describe a system from the standpoint of the activity of its components, that is to say when the behavior of the individuals is complex (difficult to describe with equations). The main aim of this approach is the take advantage of the performance, the scalability and the robustness that are intuitively provided by MAS.

Keywords: Complex systems, modeling and simulation, industrial control system, MAS, AALAADIN, AGR, MAD-KIT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1160
464 Realignment of f-actin Cytoskeleton in Osteocytes after Mechanical Loading

Authors: R. S. A. Nesbitt, J. Macione, E. Babollah, B. Adu-baffour, S. P. Kotha

Abstract:

F-actin fibrils are the cytoskeleton of osteocytes. They react in a dynamic manner to mechanical loading, and strength and reposition their efforts to reinforce the cells structure. We hypothesize that f-actin is temporarly disrupted after loading and repolymerizes in a new orientation to oppose the applied load. In vitro studies are conducted to determine f-actin disruption after varying mechanical stimulus parameters that are known to affect bone formation. Results indicate that the f-actin cytoskeleton is disrupted in vitro as a function of applied mechanical stimulus parameters and that the f-actin bundles reassemble after loading induced disruption within 3 minutes after cessation of loading. The disruption of the factin cytoskeleton depends on the magnitude of stretch, the numbers of loading cycles, frequency, the insertion of rest between loading cycles and extracellular calcium. In vivo studies also demonstrate disruption of the f-actin cytoskeleton in cells embedded in the bone matrix immediately after mechanical loading. These studies suggest that adaptation of the f-actin fiber bundles of the cytoskeleton in response to applied loads occurs by disruption and subsequent repolymerization.

Keywords: Mechanical loading of osteocytes, f-actin cytoskeleton, disruption, re-polymerization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1533