Search results for: transform matrix
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1755

Search results for: transform matrix

75 Mechanical Properties of 3D Noninterlaced Cf/SiC Composites Prepared through Hybrid Process (CVI+PIP)

Authors: A. Udayakumar, M. Rizvan Basha, M. Stalin, V.V Bhanu Prasad

Abstract:

Three dimensional non-Interlaced carbon fibre reinforced silicon carbide (3-D-Cf/SiC) composites with pyrocarbon interphase were fabricated using isothermal chemical vapor infiltration (ICVI) combined with polymer impregnation pyrolysis (PIP) process. Polysilazane (PSZ) is used as a preceramic polymer to obtain silicon carbide matrix. Thermo gravimetric analysis (TGA), Infrared spectroscopic analysis (IR) and X-ray diffraction (XRD) analysis were carried out on PSZ pyrolysed at different temperatures to understand the pyrolysis and obtaining the optimum pyrolysing condition to yield β-SiC phase. The density of the composites was 1.94 g cm-3 after the 3-D carbon preform was SiC infiltrated for 280 h with one intermediate polysilazane pre-ceramic PIP process. Mechanical properties of the composite materials were investigated under tensile, flexural, shear and impact loading. The values of tensile strength were 200 MPa at room temperature (RT) and 195 MPa at 500°C in air. The average RT flexural strength was 243 MPa. The lower flexural strength of these composites is because of the porosity. The fracture toughness obtained from single edge notched beam (SENB) technique was 39 MPa.m1/2. The work of fracture obtained from the load-displacement curve of SENB test was 22.8 kJ.m-2. The composites exhibited excellent impact resistance and the dynamic fracture toughness of 44.8 kJ.m-2 is achieved as determined from instrumented Charpy impact test. The shear strength of the composite was 93 MPa, which is significantly higher compared 2-D Cf/SiC composites. Microstructure evaluation of fracture surfaces revealed the signatures of fracture processes and showed good support for the higher toughness obtained.

Keywords: 3-D-Cf/SiC, charpy impact test, composites, dynamic fracture toughness, polysilazane, pyrocarbon, Interphase.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2700
74 Relocation of Livestocks in Rural of Canakkale Province Using Remote Sensing and GIS

Authors: Melis Inalpulat, Levent Genc, Unal Kizil, Tugce Civelek

Abstract:

Livestock production is one of the most important components of rural economy. Due to the urban expansion, rural areas close to expanding cities transform into urban districts during the time. However, the legislations have some restrictions related to livestock farming in such administrative units since they tend to create environmental concerns like odor problems resulted from excessive manure production. Therefore, the existing animal operations should be moved from the settlement areas. This paper was focused on determination of suitable lands for livestock production in Canakkale province of Turkey using remote sensing (RS) data and GIS techniques. To achieve the goal, Formosat 2 and Landsat 8 imageries, Aster DEM, and 1:25000 scaled soil maps, village boundaries, and village livestock inventory records were used. The study was conducted using suitability analysis which evaluates the land in terms of limitations and potentials, and suitability range was categorized as Suitable (S) and Non-Suitable (NS). Limitations included the distances from main and crossroads, water resources and settlements, while potentials were appropriate values for slope, land use capability and land use land cover status. Village-based S land distribution results were presented, and compared with livestock inventories. Results showed that approximately 44230 ha area is inappropriate because of the distance limitations for roads and etc. (NS). Moreover, according to LULC map, 71052 ha area consists of forests, olive and other orchards, and thus, may not be suitable for building such structures (NS). In comparison, it was found that there are a total of 1228 ha S lands within study area. The village-based findings indicated that, in some villages livestock production continues on NS areas. Finally, it was suggested that organized livestock zones may be constructed to serve in more than one village after the detailed analysis complemented considering also political decisions, opinion of the local people, etc.

Keywords: GIS, livestock, LULC, remote sensing, suitable lands.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1286
73 Prioritizing the Most Important Information from Contractors’ BIM Handover for Firefighters’ Responsibilities

Authors: Akram Mahdaviparsa, Tamera McCuen, Vahideh Karimimansoob

Abstract:

Fire service is responsible for protecting life, assets, and natural resources from fire and other hazardous incidents. Search and rescue in unfamiliar buildings is a vital part of firefighters’ responsibilities. Providing firefighters with precise building information in an easy-to-understand format is a potential solution for mitigating the negative consequences of fire hazards. The negative effect of insufficient knowledge about a building’s indoor environment impedes firefighters’ capabilities and leads to lost property. A data rich building information modeling (BIM) is a potentially useful source in three-dimensional (3D) visualization and data/information storage for fire emergency response. Therefore, this research’s purpose is prioritizing the required information for firefighters from the most important information to the least important. A survey was carried out with firefighters working in the Norman Fire Department to obtain the importance of each building information item. The results show that “the location of exit doors, windows, corridors, elevators, and stairs”, “material of building elements”, and “building data” are the three most important information specified by firefighters. The results also implied that the 2D model of architectural, structural and way finding is more understandable in comparison with the 3D model, while the 3D model of MEP system could convey more information than the 2D model. Furthermore, color in visualization can help firefighters to understand the building information easier and quicker. Sufficient internal consistency of all responses was proven through developing the Pearson Correlation Matrix and obtaining Cronbach’s alpha of 0.916. Therefore, the results of this study are reliable and could be applied to the population.

Keywords: BIM, building fire response, ranking, visualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 493
72 Potential of Native Microorganisms in Tagus Estuary

Authors: Ana C. Sousa, Beatriz C. Santos, Fátima N. Serralha

Abstract:

The Tagus estuary is heavily affected by industrial and urban activities, making bioremediation studies crucial for environmental preservation. Fuel contamination in the area can arise from various anthropogenic sources, such as oil spills from shipping, fuel storage and transfer operations, and industrial discharges. These pollutants can cause severe harm to the ecosystem and the organisms, including humans, that inhabit it. Nonetheless, there are always natural organisms with the ability to resist these pollutants and transform them into non-toxic or harmless substances, which defines the process of bioremediation. Exploring the microbial communities existing in soil and their capacity to break down hydrocarbons has the potential to enhance the development of more efficient bioremediation approaches. The aim of this investigation was to explore the existence of hydrocarbonoclastic microorganisms in six locations within the Tagus estuary, three on the north bank: Trancão River, Praia Fluvial do Cais das Colinas and Praia de Algés, and three on the south bank: Praia Fluvial de Alcochete, Praia Fluvial de Alburrica, and Praia da Trafaria. In all studied locations, native microorganisms of the genus Pseudomonas were identified. The bioremediation rate of common hydrocarbons like gasoline, hexane, and toluene was assessed using the redox indicator 2,6-dichlorophenolindophenol (DCPIP). Effective hydrocarbon-degrading bacterial strains were identified in all analyzed areas, despite adverse environmental conditions. The highest bioremediation rates were achieved for gasoline (68%) in Alburrica, hexane (65%) in Algés, and toluene (79%) in Algés. Generally, the bacteria demonstrated efficient degradation of hydrocarbons added to the culture medium, with higher rates of aerobic biodegradation of hydrocarbons observed. These findings underscore the necessity for further in situ studies to better comprehend the relationship between native microbial communities and the potential for pollutant degradation in soil.

Keywords: Biodegradability rate, hydrocarbonoclastic microorganisms, soil bioremediation, Tagus estuary.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 88
71 Biosynthesis and In vitro Studies of Silver Bionanoparticles Synthesized from Aspergillusspecies and its Antimicrobial Activity against Multi Drug Resistant Clinical Isolates

Authors: M. Saravanan

Abstract:

Antimicrobial resistant is becoming a major factor in virtually all hospital acquired infection may soon untreatable is a serious public health problem. These concerns have led to major research effort to discover alternative strategies for the treatment of bacterial infection. Nanobiotehnology is an upcoming and fast developing field with potential application for human welfare. An important area of nanotechnology for development of reliable and environmental friendly process for synthesis of nanoscale particles through biological systems In the present studies are reported on the use of fungal strain Aspergillus species for the extracellular synthesis of bionanoparticles from 1 mM silver nitrate (AgNO3) solution. The report would be focused on the synthesis of metallic bionanoparticles of silver using a reduction of aqueous Ag+ ion with the culture supernatants of Microorganisms. The bio-reduction of the Ag+ ions in the solution would be monitored in the aqueous component and the spectrum of the solution would measure through UV-visible spectrophotometer The bionanoscale particles were further characterized by Atomic Force Microscopy (AFM), Fourier Transform Infrared Spectroscopy (FTIR) and Thin layer chromatography. The synthesized bionanoscale particle showed a maximum absorption at 385 nm in the visible region. Atomic Force Microscopy investigation of silver bionanoparticles identified that they ranged in the size of 250 nm - 680 nm; the work analyzed the antimicrobial efficacy of the silver bionanoparticles against various multi drug resistant clinical isolates. The present Study would be emphasizing on the applicability to synthesize the metallic nanostructures and to understand the biochemical and molecular mechanism of nanoparticles formation by the cell filtrate in order to achieve better control over size and polydispersity of the nanoparticles. This would help to develop nanomedicine against various multi drug resistant human pathogens.

Keywords: Bionanoparticles, UV-visible spectroscopy, AtomicForce Microscopy, Extracellular synthesis, Multi drug resistant, antimicrobial activity, Nanomedicine

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2204
70 Sound Instance: Art, Perception and Composition through Soundscapes

Authors: Ricardo Mestre

Abstract:

The soundscape stands out as an agglomeration of sounds available in the world, associated with different contexts and origins, being a theme studied by various areas of knowledge, seeking to guide their benefits and their consequences, contributing to the welfare of society and other ecosystems. With the objective for a greater recognition of sound reality, through the selection and differentiation of sounds, the soundscape studies focus on the contribution for a better tuning of the world and to the balance and well-being of humanity. Sound environment, produced and created in various ways, can provide various sources of information, contributing to the orientation of the human being, alerting and manipulating him during his daily journey, like small notifications received on a cell phone or other device with these features. In this way, it becomes possible to give sound its due importance in relation to the processes of individual representation, in manners of social, professional and emotional life. Ensuring an individual representation means providing the human being with new tools for the long process of reflection by recognizing his environment, the sounds that represent him, and his perspective on his respective function in it. In order to provide more information about the importance of the sound environment inherent to the individual reality, one introduces the term sound instance, in order to refer to the whole sound field existing in the individual's life, which is divided into four distinct subfields, but essential to the process of individual representation, called sound matrix, sound cycles, sound traces and sound interference. Alongside volunteers we were able to create six representations of sound instances, based on the individual perception of his/her life, focusing on the present, past and future. With this investigation it was possible to determine that sound instance has a tool for self-recognition, considering the statements of opinion about the experience from the volunteers, reflecting about the three time lines, based on memories, thoughts and wishes.

Keywords: Sound instance, soundscape, sound art, self-recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 504
69 A Three-Dimensional TLM Simulation Method for Thermal Effect in PV-Solar Cells

Authors: R. Hocine, A. Boudjemai, A. Amrani, K. Belkacemi

Abstract:

Temperature rising is a negative factor in almost all systems. It could cause by self heating or ambient temperature. In solar photovoltaic cells this temperature rising affects on the behavior of cells. The ability of a PV module to withstand the effects of periodic hot-spot heating that occurs when cells are operated under reverse biased conditions is closely related to the properties of the cell semi-conductor material.

In addition, the thermal effect also influences the estimation of the maximum power point (MPP) and electrical parameters for the PV modules, such as maximum output power, maximum conversion efficiency, internal efficiency, reliability, and lifetime. The cells junction temperature is a critical parameter that significantly affects the electrical characteristics of PV modules. For practical applications of PV modules, it is very important to accurately estimate the junction temperature of PV modules and analyze the thermal characteristics of the PV modules. Once the temperature variation is taken into account, we can then acquire a more accurate MPP for the PV modules, and the maximum utilization efficiency of the PV modules can also be further achieved.

In this paper, the three-Dimensional Transmission Line Matrix (3D-TLM) method was used to map the surface temperature distribution of solar cells while in the reverse bias mode. It was observed that some cells exhibited an inhomogeneity of the surface temperature resulting in localized heating (hot-spot). This hot-spot heating causes irreversible destruction of the solar cell structure. Hot spots can have a deleterious impact on the total solar modules if individual solar cells are heated. So, the results show clearly that the solar cells are capable of self-generating considerable amounts of heat that should be dissipated very quickly to increase PV module's lifetime.

Keywords: Thermal effect, Conduction, Heat dissipation, Thermal conductivity, Solar cell, PV module, Nodes, 3D-TLM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2313
68 Delamination Fracture Toughness Benefits of Inter-Woven Plies in Composite Laminates Produced through Automated Fibre Placement

Authors: Jayden Levy, Garth M. K. Pearce

Abstract:

An automated fibre placement method has been developed to build through-thickness reinforcement into carbon fibre reinforced plastic laminates during their production, with the goal of increasing delamination fracture toughness while circumventing the additional costs and defects imposed by post-layup stitching and z-pinning. Termed ‘inter-weaving’, the method uses custom placement sequences of thermoset prepreg tows to distribute regular fibre link regions in traditionally clean ply interfaces. Inter-weaving’s impact on mode I delamination fracture toughness was evaluated experimentally through double cantilever beam tests (ASTM standard D5528-13) on [±15°]9 laminates made from Park Electrochemical Corp. E-752-LT 1/4” carbon fibre prepreg tape. Unwoven and inter-woven automated fibre placement samples were compared to those of traditional laminates produced from standard uni-directional plies of the same material system. Unwoven automated fibre placement laminates were found to suffer a mostly constant 3.5% decrease in mode I delamination fracture toughness compared to flat uni-directional plies. Inter-weaving caused significant local fracture toughness increases (up to 50%), though these were offset by a matching overall reduction. These positive and negative behaviours of inter-woven laminates were respectively found to be caused by fibre breakage and matrix deformation at inter-weave sites, and the 3D layering of inter-woven ply interfaces providing numerous paths of least resistance for crack propagation.

Keywords: AFP, automated fibre placement, delamination, fracture toughness, inter-weaving.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 636
67 Pro-inflammatory Phenotype of COPD Fibroblasts not Compatible with Repair in COPD Lung

Authors: Jing Zhang, Lian Wu, Jie-ming Qu, Chun-xue Bai, Mervyn J Merrilees, Peter N Black

Abstract:

COPD is characterized by loss of elastic fibers from small airways and alveolar walls, with the decrease in elastin increasing with disease severity. It is unclear why there is a lack of repair of elastic fibers. We have examined fibroblasts cultured from lung tissue from normal and COPD subjects to determine if the secretory profile explains lack of tissue repair. In this study, fibroblasts were cultured from lung parenchyma of bronchial carcinoma patients with varying degrees of COPD; controls (non-COPD, n=5), mild COPD (GOLD 1, n=5) and moderate-severe COPD (GOLD 2-3, n=12). Measurements were made of proliferation, senescence-associated beta-galactosidase-1, mRNA expression of IL-6, IL-8, MMP-1, tropoelastin and versican, and protein levels for IL-6, IL-8, PGE2, tropoelastin, insoluble elastin, and versican. It was found that GOLD 2-3 fibroblasts proliferated more slowly (p<0.01) and had higher levels of senescence-associated beta-galactosidase-1 (p<0.001) than controls (non-COPD). GOLD 2-3 fibroblasts showed significant increases in mRNA and/or protein for IL-6, IL-8, MMP-1, PGE2, versican (p<0.01) and tropoelastin (p<0.05). mRNA expression and/or protein levels of tropoelastin (p<0.01), versican (p<0.02), IL-6 (p<0.05) and IL-8 (p<0.05) were negatively correlated with FEV1%. Insoluble elastin was not increased. In summary, fibroblasts from moderate to severe COPD subjects display a secretory phenotype with up-regulation of inflammatory molecules including the matrix proteoglycan versican, and increased soluble, but not insoluble, elastin. Versican inhibits assembly of tropoelastin into insoluble elastin and we conclude that the pro-inflammatory phenotype of COPD fibroblasts it is not compatible with repair elastic fibers.

Keywords: COPD, pulmonary fibroblasts, pro-inflammatory phenotype, versican, elastin

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1521
66 A Study on Use of User Demand Evaluation in Interactive Interface – Using Virtual Fitting-Room as an Example

Authors: Chang, Wei-Chen

Abstract:

The purpose of this study is to research on thoughts transmitted from virtual fitting-room and to deduce discussion in an auxiliary narrative way. The research structure is based on 3D virtual fitting-room as the research subject. Initially, we will discuss the principles of narrate study, User Demand and so on by using a narrative design pattern to transmit their objective indications of “people-situation-reason-object", etc, and then to analyze the virtual fitting-room examples that are able to provide a new thinking for designers who engaged in clothing related industry – which comes in “story telling" and “user-centered design" forms. Clothing designs are not just to cover up the body to keep warm but to draw closer to people-s demand physiologically and psychologically through interactive designs so as to achieve cognition between people and environment. In the “outside" goal of clothing-s functional designs, we use tribal group-s behavior characteristics to “transform" the existing personal cultural stories, and “reform" them to design appropriate interactive products. Synthesizing the above matters, apart from being able to regard “narrate" as a kind of functional thinking process, we are also able to regard it as a kind of choice, arrangement and an activity of story expression, allowing interactive design-s spirit, product characteristics and experience ideas be transmitted to target tribal group in a visual image performance method. It is a far more confident and innovative attempt, and meanwhile, able to achieve entertainment, joyful and so forth fundamental interactive transmissions. Therefore, this study takes “user-centered design" thinking as a basis to establish a set of clothing designs with interactive experience patterns and to assist designers to examine the five sensual feeling of interactive demands in order to initiate a new value in textile industry.

Keywords: Virtual Fitting-room, Interactive Design, User Demand Evaluation, Intelligent Systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1741
65 Forgeability Study of Medium Carbon Micro-Alloyed Forging Steel

Authors: M. I. Equbal, R.K. Ohdar, B. Singh, P. Talukdar

Abstract:

Micro-alloyed steel components are used in automotive industry for the necessity to make the manufacturing process cycles shorter when compared to conventional steel by eliminating heat treatment cycles, so an important saving of costs and energy can be reached by reducing the number of operations. Microalloying elements like vanadium, niobium or titanium have been added to medium carbon steels to achieve grain refinement with or without precipitation strengthening along with uniform microstructure throughout the matrix. Present study reports the applicability of medium carbon vanadium micro-alloyed steel in hot forging. Forgeability has been determined with respect to different cooling rates, after forging in a hydraulic press at 50% diameter reduction in temperature range of 900-11000C. Final microstructures, hardness, tensile strength, and impact strength have been evaluated. The friction coefficients of different lubricating conditions, viz., graphite in hydraulic oil, graphite in furnace oil, DF 150 (Graphite, Water-Based) die lubricant and dry or without any lubrication were obtained from the ring compression test for the above micro-alloyed steel. Results of ring compression tests indicate that graphite in hydraulic oil lubricant is preferred for free forging and dry lubricant is preferred for die forging operation. Exceptionally good forgeability and high resistance to fracture, especially for faster cooling rate has been observed for fine equiaxed ferrite-pearlite grains, some amount of bainite and fine precipitates of vanadium carbides and carbonitrides. The results indicated that the cooling rate has a remarkable effect on the microstructure and mechanical properties at room temperature.

Keywords: Cooling rate, Hot forging, Micro-alloyed, Ring compression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3635
64 Study on Landscape Pattern Evolution of Ecological-Living-Industrial Land in Plateau Mountainous Area: A Case Study of Yuxi City, Yunnan Province

Authors: Ying Pan, Li Wu, Jing Zhou, Lan Li

Abstract:

The coordination and development of ecological-living-industrial land uses are the premise foundations for the formulation and implementation of the current land space planning, and more attention should be paid to plateau mountainous areas. This research is based on spatial analysis technology and landscape pattern index method taking Yuxi city, a typical mountainous plateau as the research area. By using relevant software such as ArcGIS10.5, Fragstats 4.2 and the four remote sensing images of Yuxi city in 1980, 1995, 2005 and 2015, the temporal-spatial evolution and differentiation pattern of ecological-living-industrial land applications have been discussed. The research results show that: (1) From the perspective of land use type change, ecological land of Yuxi city has been the main source of land from 1980 to 2015, which totally occupies more than 78%. During this period, the spatial structure of the ecological-living-industrial land changed significantly, namely, the living land. Its land area increased significantly from 0.83% of the total area in 1980 to 1.25% in 2015, the change range of ecological land and industrial land is relatively small. (2) In terms of land use landscape pattern transfer matrix, from 1980 to 2015, the industrial land and ecological land in Yuxi city have been gradually transferred to living land. (3) In the aspect of landscape pattern changes, various landscape pattern indexes of Yuxi city indicate that the fragmentation degree of landscape pattern of the ecological-living-industrial land in this region is increasing. The degree of agglomeration goes down, and the landscape types have changed from being relatively simple to relatively rich. The landscape is more diverse, but the patch size is uneven, meanwhile, the integrity of the ecological space is destroyed.

Keywords: Ecological-living-industrial land, spatio-temporal evolution, landscape pattern, plateau mountainous area.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 632
63 Guidelines for Sustainable Urban Mobility in Historic Districts from International Experiences

Authors: Tamer ElSerafi

Abstract:

In recent approaches to heritage conservation, the whole context of historic areas becomes as important as the single historic building. This makes the provision of infrastructure and network of mobility an effective element in the urban conservation. Sustainable urban conservation projects consider the high density of activities, the need for a good quality access system to the transit system, and the importance of the configuration of the mobility network by identifying the best way to connect the different districts of the urban area through a complex unique system that helps the synergic development to achieve a sustainable mobility system. A sustainable urban mobility is a key factor in maintaining the integrity between socio-cultural aspects and functional aspects. This paper illustrates the mobility aspects, mobility problems in historic districts, and the needs of the mobility systems in the first part. The second part is a practical analysis for different mobility plans. It is challenging to find innovative and creative conservation solutions fitting modern uses and needs without risking the loss of inherited built resources. Urban mobility management is becoming an essential and challenging issue in the urban conservation projects. Depending on literature review and practical analysis, this paper tries to define and clarify the guidelines for mobility management in historic districts as a key element in sustainability of urban conservation and development projects. Such rules and principles could control the conflict between the socio–cultural and economic activities, and the different needs for mobility in these districts in a sustainable way. The practical analysis includes a comparison between mobility plans which have been implemented in four different cities; Freiburg in Germany, Zurich in Switzerland and Bray Town in Ireland. This paper concludes with a matrix of guidelines that considers both principles of sustainability and livability factors in urban historic districts.

Keywords: Sustainable mobility, urban mobility, mobility management, historic districts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 908
62 Three Dimensional Finite Element Analysis of Functionally Graded Radiation Shielding Nanoengineered Sandwich Composites

Authors: Nasim Abuali Galehdari, Thomas J. Ryan, Ajit D. Kelkar

Abstract:

In recent years, nanotechnology has played an important role in the design of an efficient radiation shielding polymeric composites. It is well known that, high loading of nanomaterials with radiation absorption properties can enhance the radiation attenuation efficiency of shielding structures. However, due to difficulties in dispersion of nanomaterials into polymer matrices, there has been a limitation in higher loading percentages of nanoparticles in the polymer matrix. Therefore, the objective of the present work is to provide a methodology to fabricate and then to characterize the functionally graded radiation shielding structures, which can provide an efficient radiation absorption property along with good structural integrity. Sandwich structures composed of Ultra High Molecular Weight Polyethylene (UHMWPE) fabric as face sheets and functionally graded epoxy nanocomposite as core material were fabricated. A method to fabricate a functionally graded core panel with controllable gradient dispersion of nanoparticles is discussed. In order to optimize the design of functionally graded sandwich composites and to analyze the stress distribution throughout the sandwich composite thickness, a finite element method was used. The sandwich panels were discretized using 3-Dimensional 8 nodded brick elements. Classical laminate analysis in conjunction with simplified micromechanics equations were used to obtain the properties of the face sheets. The presented finite element model would provide insight into deformation and damage mechanics of the functionally graded sandwich composites from the structural point of view.

Keywords: Nanotechnology, functionally graded material, radiation shielding, sandwich composites, finite element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1233
61 Comparative Correlation Investigation of Polynuclear Aromatic Hydrocarbons (PAHs) in Soils of Different Land Use: Sources Evaluation Perspective

Authors: O. Onoriode Emoyan, E. Eyitemi Akporhonor, Charles Otobrise

Abstract:

Polycyclic Aromatic Hydrocarbons (PAHs) are formed mainly because of incomplete combustion of organic materials during industrial, domestic activities or natural occurrence. Their toxicity and contamination of terrestrial and aquatic ecosystem have been established. However, with limited validity index, previous research has focused on PAHs isomer pair ratios of variable physicochemical properties in source identification. The objective of this investigation was to determine the empirical validity of Pearson Correlation Coefficient (PCC) and Cluster Analysis (CA) in PAHs source identification along soil samples of different land uses. Therefore, 16 PAHs grouped, as Endocrine Disruption Substances (EDSs) were determined in 10 sample stations in top and sub soils seasonally. PAHs was determined the use of Varian 300 gas chromatograph interfaced with flame ionization detector. Instruments and reagents used are of standard and chromatographic grades respectively. PCC and CA results showed that the classification of PAHs along pyrolitic and petrogenic organics used in source signature is about the predominance PAHs in environmental matrix. Therefore, the distribution of PAHs in the studied stations revealed the presence of trace quantities of the vast majority of the sixteen PAHs, which may ultimately inhabit the actual source signature authentication. Therefore, factors to be considered when evaluating possible sources of PAHs could be; type and extent of bacterial metabolism, transformation products/substrates, and environmental factors such as salinity, pH, oxygen concentration, nutrients, light intensity, temperature, co-substrates, and environmental medium are hereby recommended as factors to be considered when evaluating possible sources of PAHs.

Keywords: Comparative correlation, kinetically, polynuclear aromatic hydrocarbons, thermodynamically- favored PAHs, sources evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1954
60 Physical and Microbiological Evaluation of Chitosan Films: Effect of Essential Oils and Storage

Authors: N. Valderrama, W. Albarracín, N. Algecira

Abstract:

The effect of the inclusion of thyme and rosemary essential oils into chitosan films, as well as the microbiological and physical properties when storing chitosan film with and without the mentioned inclusion was studied. The film forming solution was prepared by dissolving chitosan (2%, w/v), polysorbate 80 (4% w/w CH) and glycerol (16% w/w CH) in aqueous lactic acid solutions (control). The thyme (TEO) and rosemary (REO) essential oils (EOs) were included 1:1 w/w (EOs:CH) on their combination 50/50 (TEO:REO). The films were stored at temperatures of 5, 20, 33°C and a relative humidity of 75% during four weeks. The films with essential oil inclusion did not show an antimicrobial activity against strains. This behavior could be explained because the chitosan only inhibits the growth of microorganisms in direct contact with the active sites. However, the inhibition capacity of TEO was higher than the REO and a synergic effect between TEO:REO was found for S. enteritidis strains in the chitosan solution. Some physical properties were modified by the inclusion of essential oils. The addition of essential oils does not affect the mechanical properties (tensile strength, elongation at break, puncture deformation), the water solubility, the swelling index nor the DSC behavior. However, the essential oil inclusion can significantly decrease the thickness, the moisture content, and the L* value of films whereas the b* value increased due to molecular interactions between the polymeric matrix, the loosing of the structure, and the chemical modifications. On the other hand, the temperature and time of storage changed some physical properties on the chitosan films. This could have occurred because of chemical changes, such as swelling in the presence of high humidity air and the reacetylation of amino groups. In the majority of cases, properties such as moisture content, tensile strength, elongation at break, puncture deformation, a*, b*, chrome, 7E increased whereas water resistance, swelling index, L*, and hue angle decreased.

Keywords: Chitosan, food additives, modified films, polymers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2950
59 Synthesis of Highly Sensitive Molecular Imprinted Sensor for Selective Determination of Doxycycline in Honey Samples

Authors: Nadia El Alami El Hassani, Soukaina Motia, Benachir Bouchikhi, Nezha El Bari

Abstract:

Doxycycline (DXy) is a cycline antibiotic, most frequently prescribed to treat bacterial infections in veterinary medicine. However, its broad antimicrobial activity and low cost, lead to an intensive use, which can seriously affect human health. Therefore, its spread in the food products has to be monitored. The scope of this work was to synthetize a sensitive and very selective molecularly imprinted polymer (MIP) for DXy detection in honey samples. Firstly, the synthesis of this biosensor was performed by casting a layer of carboxylate polyvinyl chloride (PVC-COOH) on the working surface of a gold screen-printed electrode (Au-SPE) in order to bind covalently the analyte under mild conditions. Secondly, DXy as a template molecule was bounded to the activated carboxylic groups, and the formation of MIP was performed by a biocompatible polymer by the mean of polyacrylamide matrix. Then, DXy was detected by measurements of differential pulse voltammetry (DPV). A non-imprinted polymer (NIP) prepared in the same conditions and without the use of template molecule was also performed. We have noticed that the elaborated biosensor exhibits a high sensitivity and a linear behavior between the regenerated current and the logarithmic concentrations of DXy from 0.1 pg.mL−1 to 1000 pg.mL−1. This technic was successfully applied to determine DXy residues in honey samples with a limit of detection (LOD) of 0.1 pg.mL−1 and an excellent selectivity when compared to the results of oxytetracycline (OXy) as analogous interfering compound. The proposed method is cheap, sensitive, selective, simple, and is applied successfully to detect DXy in honey with the recoveries of 87% and 95%. Considering these advantages, this system provides a further perspective for food quality control in industrial fields.

Keywords: Electrochemical sensor, molecular imprinted polymer, doxycycline, food control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1138
58 Preparation and Characterization of Pectin Based Proton Exchange Membranes Derived by Solution Casting Method for Direct Methanol Fuel Cells

Authors: Mohanapriya Subramanian, V. Raj

Abstract:

Direct methanol fuel cells (DMFCs) are considered to be one of the most promising candidates for portable and stationary applications in the view of their advantages such as high energy density, easy manipulation, high efficiency and they operate with liquid fuel which could be used without requiring any fuel-processing units. Electrolyte membrane of DMFC plays a key role as a proton conductor as well as a separator between electrodes. Increasing concern over environmental protection, biopolymers gain tremendous interest owing to their eco-friendly bio-degradable nature. Pectin is a natural anionic polysaccharide which plays an essential part in regulating mechanical behavior of plant cell wall and it is extracted from outer cells of most of the plants. The aim of this study is to develop and demonstrate pectin based polymer composite membranes as methanol impermeable polymer electrolyte membranes for DMFCs. Pectin based nanocomposites membranes are prepared by solution-casting technique wherein pectin is blended with chitosan followed by the addition of optimal amount of sulphonic acid modified Titanium dioxide nanoparticle (S-TiO2). Nanocomposite membranes are characterized by Fourier Transform-Infra Red spectroscopy, Scanning electron microscopy, and Energy dispersive spectroscopy analyses. Proton conductivity and methanol permeability are determined into order to evaluate their suitability for DMFC application. Pectin-chitosan blends endow with a flexible polymeric network which is appropriate to disperse rigid S-TiO2 nanoparticles. Resulting nanocomposite membranes possess adequate thermo-mechanical stabilities as well as high charge-density per unit volume. Pectin-chitosan natural polymeric nanocomposite comprising optimal S-TiO2 exhibits good electrochemical selectivity and therefore desirable for DMFC application.

Keywords: Biopolymers, fuel cells, nanocomposite, methanol crossover.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1159
57 An Investigation to Effective Parameters on the Damage of Dual Phase Steels by Acoustic Emission Using Energy Ratio

Authors: A. Fallahi, R. Khamedi

Abstract:

Dual phase steels (DPS)s have a microstructure consisting of a hard second phase called Martensite in the soft Ferrite matrix. In recent years, there has been interest in dual-phase steels, because the application of these materials has made significant usage; particularly in the automotive sector Composite microstructure of (DPS)s exhibit interesting characteristic mechanical properties such as continuous yielding, low yield stress to tensile strength ratios(YS/UTS), and relatively high formability; which offer advantages compared with conventional high strength low alloy steels(HSLAS). The research dealt with the characterization of damage in (DPS)s. In this study by review the mechanisms of failure due to volume fraction of martensite second phase; a new method is introduced to identifying the mechanisms of failure in the various phases of these types of steels. In this method the acoustic emission (AE) technique was used to detect damage progression. These failure mechanisms consist of Ferrite-Martensite interface decohesion and/or martensite phase fracture. For this aim, dual phase steels with different volume fraction of martensite second phase has provided by various heat treatment methods on a low carbon steel (0.1% C), and then AE monitoring is used during tensile test of these DPSs. From AE measurements and an energy ratio curve elaborated from the value of AE energy (it was obtained as the ratio between the strain energy to the acoustic energy), that allows detecting important events, corresponding to the sudden drops. These AE signals events associated with various failure mechanisms are classified for ferrite and (DPS)s with various amount of Vm and different martensite morphology. It is found that AE energy increase with increasing Vm. This increasing of AE energy is because of more contribution of martensite fracture in the failure of samples with higher Vm. Final results show a good relationship between the AE signals and the mechanisms of failure.

Keywords: Dual phase steel (DPS)s, Failure mechanisms, Acoustic Emission, Fracture strain energy to the acoustic energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1858
56 Promoting Social Advocacy through Digital Storytelling: The Case of Ocean Acidification

Authors: Chun Chen Yea, Wen Huei Chou

Abstract:

Many chemical changes in the atmosphere and the ocean are invisible to the naked eye, but they have profound impacts. These changes not only confirm the phenomenon of global carbon pollution, but also forewarn that more changes are coming. The carbon dioxide gases emitted from the burning of fossil fuels dissolve into the ocean and chemically react with seawater to form carbonic acid, which increases the acidity of the originally alkaline seawater. This gradual acidification is occurring at an unprecedented rate and will affect the effective formation of carapace of some marine organisms such as corals and crustaceans, which are almost entirely composed of calcium carbonate. The carapace of these organisms will become more dissoluble. Acidified seawater not only threatens the survival of marine life, but also negatively impacts the global ecosystem via the food chain. Faced with the threat of ocean acidification, all humans are duty-bound. The industrial sector outputs the highest level of carbon dioxide emissions in Taiwan, and the petrochemical industry is the major contributor. Ever since the construction of Formosa Plastics Group's No. 6 Naphtha Cracker Plant in Yunlin County, there have been many environmental concerns such as air pollution and carbon dioxide emission. The marine life along the coast of Yunlin is directly affected by ocean acidification arising from the carbon emissions. Societal change demands our willingness to act, which is what social advocacy promotes. This study uses digital storytelling for social advocacy and ocean acidification as the subject of a visual narrative in visualization to demonstrate the subsequent promotion of social advocacy. Storytelling can transform dull knowledge into an engaging narrative of the crisis faced by marine life. Digital dissemination is an effective social-work practice. The visualization promoting awareness on ocean acidification disseminated via social media platforms, such as Facebook and Instagram. Social media enables users to compose their own messages and share information across different platforms, which helps disseminate the core message of social advocacy.

Keywords: Digital storytelling, visualization, ocean acidification, social advocacy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 907
55 Beneficiation of Low Grade Chromite Ore and Its Characterization for the Formation of Magnesia-Chromite Refractory by Economically Viable Process

Authors: Amit Kumar Bhandary, Prithviraj Gupta, Siddhartha Mukherjee, Mahua Ghosh Chaudhuri, Rajib Dey

Abstract:

Chromite ores are primarily used for extraction of chromium, which is an expensive metal. For low grade chromite ores (containing less than 40% Cr2O3), the chromium extraction is not usually economically viable. India possesses huge quantities of low grade chromite reserves. This deposit can be utilized after proper physical beneficiation. Magnetic separation techniques may be useful after reduction for the beneficiation of low grade chromite ore. The sample collected from the sukinda mines is characterized by XRD which shows predominant phases like maghemite, chromite, silica, magnesia and alumina. The raw ore is crushed and ground to below 75 micrometer size. The microstructure of the ore shows that the chromite grains surrounded by a silicate matrix and porosity observed the exposed side of the chromite ore. However, this ore may be utilized in refractory applications. Chromite ores contain Cr2O3, FeO, Al2O3 and other oxides like Fe-Cr, Mg-Cr have a high tendency to form spinel compounds, which usually show high refractoriness. Initially, the low grade chromite ore (containing 34.8% Cr2O3) was reduced at 1200 0C for 80 minutes with 30% coke fines by weight, before being subjected to magnetic separation. The reduction by coke leads to conversion of higher state of iron oxides converted to lower state of iron oxides. The pre-reduced samples are then characterized by XRD. The magnetically inert mass was then reacted with 20% MgO by weight at 1450 0C for 2 hours. The resultant product was then tested for various refractoriness parameters like apparent porosity, slag resistance etc. The results were satisfactory, indicating that the resultant spinel compounds are suitable for refractory applications for elevated temperature processes.

Keywords: Apparent porosity, beneficiation, low grade chromite, refractory, spinel compounds, slag resistance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2309
54 Synthesis and Fluorescence Spectroscopy of Sulphonic Acid-Doped Polyaniline When Exposed to Oxygen Gas

Authors: S.F.S. Draman, R. Daik, A. Musa

Abstract:

Three sulphonic acid-doped polyanilines were synthesized through chemical oxidation at low temperature (0-5 oC) and potential of these polymers as sensing agent for O2 gas detection in terms of fluorescence quenching was studied. Sulphuric acid, dodecylbenzene sulphonic acid (DBSA) and camphor sulphonic acid (CSA) were used as doping agents. All polymers obtained were dark green powder. Polymers obtained were characterized by Fourier transform infrared spectroscopy, ultraviolet-visible absorption spectroscopy, thermogravimetry analysis, elemental analysis, differential scanning calorimeter and gel permeation chromatography. Characterizations carried out showed that polymers were successfully synthesized with mass recovery for sulphuric aciddoped polyaniline (SPAN), DBSA-doped polyaniline (DBSA-doped PANI) and CSA-doped polyaniline (CSA-doped PANI) of 71.40%, 75.00% and 39.96%, respectively. Doping level of SPAN, DBSAdoped PANI and CSA-doped PANI were 32.86%, 33.13% and 53.96%, respectively as determined based on elemental analysis. Sensing test was carried out on polymer sample in the form of solution and film by using fluorescence spectrophotometer. Samples of polymer solution and polymer film showed positive response towards O2 exposure. All polymer solutions and films were fully regenerated by using N2 gas within 1 hour period. Photostability study showed that all samples of polymer solutions and films were stable towards light when continuously exposed to xenon lamp for 9 hours. The relative standard deviation (RSD) values for SPAN solution, DBSA-doped PANI solution and CSA-doped PANI solution for repeatability were 0.23%, 0.64% and 0.76%, respectively. Meanwhile RSD values for reproducibility were 2.36%, 6.98% and 1.27%, respectively. Results for SPAN film, DBSAdoped PANI film and CSA-doped PANI film showed the same pattern with RSD values for repeatability of 0.52%, 4.05% and 0.90%, respectively. Meanwhile RSD values for reproducibility were 2.91%, 10.05% and 7.42%, respectively. The study on effect of the flow rate on response time was carried out using 3 different rates which were 0.25 mL/s, 1.00 mL/s and 2.00 mL/s. Results obtained showed that the higher the flow rate, the shorter the response time.

Keywords: conjugated polymer, doping, fluorescence quenching, oxygen gas.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2361
53 A Closed-Loop Design Model for Sustainable Manufacturing by Integrating Forward Design and Reverse Design

Authors: Yuan-Jye Tseng, Yi-Shiuan Chen

Abstract:

In this paper, a new concept of closed-loop design for a product is presented. The closed-loop design model is developed by integrating forward design and reverse design. Based on this new concept, a closed-loop design model for sustainable manufacturing by integrated evaluation of forward design, reverse design, and green manufacturing using a fuzzy analytic network process is developed. In the design stage of a product, with a given product requirement and objective, there can be different ways to design the detailed components and specifications. Therefore, there can be different design cases to achieve the same product requirement and objective. Subsequently, in the design evaluation stage, it is required to analyze and evaluate the different design cases. The purpose of this research is to develop a model for evaluating the design cases by integrated evaluating the criteria in forward design, reverse design, and green manufacturing. A fuzzy analytic network process method is presented for integrated evaluation of the criteria in the three models. The comparison matrices for evaluating the criteria in the three groups are established. The total relational values among the three groups represent the total relational effects. In applications, a super matrix model is created and the total relational values can be used to evaluate the design cases for decision-making to select the final design case. An example product is demonstrated in this presentation. It shows that the model is useful for integrated evaluation of forward design, reverse design, and green manufacturing to achieve a closed-loop design for sustainable manufacturing objective.

Keywords: Design evaluation, forward design, reverse design, closed-loop design, supply chain management, closed-loop supply chain, fuzzy analytic network process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1782
52 MHD Stagnation Point Flow towards a Shrinking Sheet with Suction in an Upper-Convected Maxwell (UCM) Fluid

Authors: K. Jafar, R. Nazar, A. Ishak, I. Pop

Abstract:

The present analysis considers the steady stagnation point flow and heat transfer towards a permeable shrinking sheet in an upper-convected Maxwell (UCM) electrically conducting fluid, with a constant magnetic field applied in the transverse direction to flow and a local heat generation within the boundary layer, with a heat generation rate proportional to (T-T\infty)p Using a similarity transformation, the governing system of partial differential equations is first transformed into a system of ordinary differential equations, which is then solved numerically using a finite-difference scheme known as the Keller-box method. Numerical results are obtained for the flow and thermal fields for various values of the stretching/shrinking parameter λ, the magnetic parameter M, the elastic parameter K, the Prandtl number Pr, the suction parameter s, the heat generation parameter Q, and the exponent p. The results indicate the existence of dual solutions for the shrinking sheet up to a critical value λc whose value depends on the value of M, K, and s. In the presence of internal heat absorption (Q<0)  the surface heat transfer rate decreases with increasing p but increases with parameters Q and s when the sheet is either stretched or shrunk.

Keywords: Magnetohydrodynamic (MHD), boundary layer flow, UCM fluid, stagnation point, shrinking sheet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2037
51 Developing a Research Culture in the Faculty of Engineering and Information Technology at the Central University of Technology, Free State: Implications for Knowledge Management

Authors: Mpho A. Mbeo, Patient Rambe

Abstract:

The 13th year of the Central University of Technology, Free State’s (CUT) transition from a vocational and professional training orientation institution (i.e. a technikon) into a university with a strong research focus has neither been a smooth nor an easy one. At the heart of this transition was the need to transform the psychological faculties of academic and research staffs compliment who were accustomed to training graduates for industrial placement. The lack of a research culture that fully embraces the strong solid ethos of conducting cutting-edge research needs to be addressed. The induction and socialisation of academic staff into the development and execution of cutting-edge research also required the provision of research support and the creation of a conducive academic environment for research, both for emerging and non-research active academics. Drawing on ten cases, consisting of four heads of departments, three seasoned researchers, and three novice researchers, this study explores the challenges faced in establishing a strong research culture at the university. Furthermore, it gives an account of the extent to which the current research interventions have addressed the perceivably “missing research culture”, and the implications of these interventions for knowledge management. Evidence suggests that the capability of an ideal institutional research environment, consisting of mentorship of novice researchers by seasoned researchers, balanced effort into teaching and research responsibilities, should be supported by strong research-oriented leadership. Furthermore, recruitment of research passionate staff, adoption of a salary structure that encourages the retention of excellent scholars should be matched by a coherent research incentive culture to growth research publication outputs. This is critical for building new knowledge and entrenching knowledge management founded on communities of practice and scholarly networking through the documentation and communication of research findings. The study concludes that the multiple policy documents set for the different domains of research may be creating pressure on researchers to engage research activities and increase output at the expense of research quality.

Keywords: Central University of Technology, performance, publication, research culture, university.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 279
50 A Hybrid Multi-Criteria Hotel Recommender System Using Explicit and Implicit Feedbacks

Authors: Ashkan Ebadi, Adam Krzyzak

Abstract:

Recommender systems, also known as recommender engines, have become an important research area and are now being applied in various fields. In addition, the techniques behind the recommender systems have been improved over the time. In general, such systems help users to find their required products or services (e.g. books, music) through analyzing and aggregating other users’ activities and behavior, mainly in form of reviews, and making the best recommendations. The recommendations can facilitate user’s decision making process. Despite the wide literature on the topic, using multiple data sources of different types as the input has not been widely studied. Recommender systems can benefit from the high availability of digital data to collect the input data of different types which implicitly or explicitly help the system to improve its accuracy. Moreover, most of the existing research in this area is based on single rating measures in which a single rating is used to link users to items. This paper proposes a highly accurate hotel recommender system, implemented in various layers. Using multi-aspect rating system and benefitting from large-scale data of different types, the recommender system suggests hotels that are personalized and tailored for the given user. The system employs natural language processing and topic modelling techniques to assess the sentiment of the users’ reviews and extract implicit features. The entire recommender engine contains multiple sub-systems, namely users clustering, matrix factorization module, and hybrid recommender system. Each sub-system contributes to the final composite set of recommendations through covering a specific aspect of the problem. The accuracy of the proposed recommender system has been tested intensively where the results confirm the high performance of the system.

Keywords: Tourism, hotel recommender system, hybrid, implicit features.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1866
49 Validation on 3D Surface Roughness Algorithm for Measuring Roughness of Psoriasis Lesion

Authors: M.H. Ahmad Fadzil, Esa Prakasa, Hurriyatul Fitriyah, Hermawan Nugroho, Azura Mohd Affandi, S.H. Hussein

Abstract:

Psoriasis is a widespread skin disease affecting up to 2% population with plaque psoriasis accounting to about 80%. It can be identified as a red lesion and for the higher severity the lesion is usually covered with rough scale. Psoriasis Area Severity Index (PASI) scoring is the gold standard method for measuring psoriasis severity. Scaliness is one of PASI parameter that needs to be quantified in PASI scoring. Surface roughness of lesion can be used as a scaliness feature, since existing scale on lesion surface makes the lesion rougher. The dermatologist usually assesses the severity through their tactile sense, therefore direct contact between doctor and patient is required. The problem is the doctor may not assess the lesion objectively. In this paper, a digital image analysis technique is developed to objectively determine the scaliness of the psoriasis lesion and provide the PASI scaliness score. Psoriasis lesion is modelled by a rough surface. The rough surface is created by superimposing a smooth average (curve) surface with a triangular waveform. For roughness determination, a polynomial surface fitting is used to estimate average surface followed by a subtraction between rough and average surface to give elevation surface (surface deviations). Roughness index is calculated by using average roughness equation to the height map matrix. The roughness algorithm has been tested to 444 lesion models. From roughness validation result, only 6 models can not be accepted (percentage error is greater than 10%). These errors occur due the scanned image quality. Roughness algorithm is validated for roughness measurement on abrasive papers at flat surface. The Pearson-s correlation coefficient of grade value (G) of abrasive paper and Ra is -0.9488, its shows there is a strong relation between G and Ra. The algorithm needs to be improved by surface filtering, especially to overcome a problem with noisy data.

Keywords: psoriasis, roughness algorithm, polynomial surfacefitting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2459
48 Data Centers’ Temperature Profile Simulation Optimized by Finite Elements and Discretization Methods

Authors: José Alberto García Fernández, Zhimin Du, Xinqiao Jin

Abstract:

Nowadays, data center industry faces strong challenges for increasing the speed and data processing capacities while at the same time is trying to keep their devices a suitable working temperature without penalizing that capacity. Consequently, the cooling systems of this kind of facilities use a large amount of energy to dissipate the heat generated inside the servers, and developing new cooling techniques or perfecting those already existing would be a great advance in this type of industry. The installation of a temperature sensor matrix distributed in the structure of each server would provide the necessary information for collecting the required data for obtaining a temperature profile instantly inside them. However, the number of temperature probes required to obtain the temperature profiles with sufficient accuracy is very high and expensive. Therefore, other less intrusive techniques are employed where each point that characterizes the server temperature profile is obtained by solving differential equations through simulation methods, simplifying data collection techniques but increasing the time to obtain results. In order to reduce these calculation times, complicated and slow computational fluid dynamics simulations are replaced by simpler and faster finite element method simulations which solve the Burgers‘ equations by backward, forward and central discretization techniques after simplifying the energy and enthalpy conservation differential equations. The discretization methods employed for solving the first and second order derivatives of the obtained Burgers‘ equation after these simplifications are the key for obtaining results with greater or lesser accuracy regardless of the characteristic truncation error.

Keywords: Burgers’ equations, CFD simulation, data center, discretization methods, FEM simulation, temperature profile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 469
47 Reinforcing Effects of Natural Micro-Particles on the Dynamic Impact Behaviour of Hybrid Bio-Composites Made of Short Kevlar Fibers Reinforced Thermoplastic Composite Armor

Authors: Edison E. Haro, Akindele G. Odeshi, Jerzy A. Szpunar

Abstract:

Hybrid bio-composites are developed for use in protective armor through positive hybridization offered by reinforcement of high-density polyethylene (HDPE) with Kevlar short fibers and palm wood micro-fillers. The manufacturing process involved a combination of extrusion and compression molding techniques. The mechanical behavior of Kevlar fiber reinforced HDPE with and without palm wood filler additions are compared. The effect of the weight fraction of the added palm wood micro-fillers is also determined. The Young modulus was found to increase as the weight fraction of organic micro-particles increased. However, the flexural strength decreased with increasing weight fraction of added micro-fillers. The interfacial interactions between the components were investigated using scanning electron microscopy. The influence of the size, random alignment and distribution of the natural micro-particles was evaluated. Ballistic impact and dynamic shock loading tests were performed to determine the optimum proportion of Kevlar short fibers and organic micro-fillers needed to improve impact strength of the HDPE. These results indicate a positive hybridization by deposition of organic micro-fillers on the surface of short Kevlar fibers used in reinforcing the thermoplastic matrix leading to enhancement of the mechanical strength and dynamic impact behavior of these materials. Therefore, these hybrid bio-composites can be promising materials for different applications against high velocity impacts.

Keywords: Hybrid bio-composites, organic nano-fillers, dynamic shocking loading, ballistic impacts, energy absorption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 713
46 Minimizing the Drilling-Induced Damage in Fiber Reinforced Polymeric Composites

Authors: S. D. El Wakil, M. Pladsen

Abstract:

Fiber reinforced polymeric (FRP) composites are finding wide-spread industrial applications because of their exceptionally high specific strength and specific modulus of elasticity. Nevertheless, it is very seldom to get ready-for-use components or products made of FRP composites. Secondary processing by machining, particularly drilling, is almost always required to make holes for fastening components together to produce assemblies. That creates problems since the FRP composites are neither homogeneous nor isotropic. Some of the problems that are encountered include the subsequent damage in the region around the drilled hole and the drilling – induced delamination of the layer of ply, that occurs both at the entrance and the exit planes of the work piece. Evidently, the functionality of the work piece would be detrimentally affected. The current work was carried out with the aim of eliminating or at least minimizing the work piece damage associated with drilling of FPR composites. Each test specimen involves a woven reinforced graphite fiber/epoxy composite having a thickness of 12.5 mm (0.5 inch). A large number of test specimens were subjected to drilling operations with different combinations of feed rates and cutting speeds. The drilling induced damage was taken as the absolute value of the difference between the drilled hole diameter and the nominal one taken as a percentage of the nominal diameter. The later was determined for each combination of feed rate and cutting speed, and a matrix comprising those values was established, where the columns indicate varying feed rate while and rows indicate varying cutting speeds. Next, the analysis of variance (ANOVA) approach was employed using Minitab software, in order to obtain the combination that would improve the drilling induced damage. Experimental results show that low feed rates coupled with low cutting speeds yielded the best results.

Keywords: Drilling of Composites, dimensional accuracy of holes drilled in composites, delamination and charring, graphite-epoxy composites.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 779