%0 Journal Article
	%A O. Onoriode Emoyan and  E. Eyitemi Akporhonor and  Charles Otobrise
	%D 2015
	%J International Journal of Environmental and Ecological Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 105, 2015
	%T Comparative Correlation Investigation of Polynuclear Aromatic Hydrocarbons (PAHs) in Soils of Different Land Use: Sources Evaluation Perspective
	%U https://publications.waset.org/pdf/10002890
	%V 105
	%X Polycyclic Aromatic Hydrocarbons (PAHs) are
formed mainly because of incomplete combustion of organic
materials during industrial, domestic activities or natural occurrence.
Their toxicity and contamination of terrestrial and aquatic ecosystem
have been established. However, with limited validity index, previous
research has focused on PAHs isomer pair ratios of variable
physicochemical properties in source identification. The objective of
this investigation was to determine the empirical validity of Pearson
Correlation Coefficient (PCC) and Cluster Analysis (CA) in PAHs
source identification along soil samples of different land uses.
Therefore, 16 PAHs grouped, as Endocrine Disruption Substances
(EDSs) were determined in 10 sample stations in top and sub soils
seasonally. PAHs was determined the use of Varian 300 gas
chromatograph interfaced with flame ionization detector. Instruments
and reagents used are of standard and chromatographic grades
respectively. PCC and CA results showed that the classification of
PAHs along pyrolitic and petrogenic organics used in source
signature is about the predominance PAHs in environmental matrix.
Therefore, the distribution of PAHs in the studied stations revealed
the presence of trace quantities of the vast majority of the sixteen
PAHs, which may ultimately inhabit the actual source signature
authentication. Therefore, factors to be considered when evaluating
possible sources of PAHs could be; type and extent of bacterial
metabolism, transformation products/substrates, and environmental
factors such as salinity, pH, oxygen concentration, nutrients, light
intensity, temperature, co-substrates, and environmental medium are
hereby recommended as factors to be considered when evaluating
possible sources of PAHs.
	%P 1175 - 1180