Search results for: learning objects
836 Optimum Design of Steel Space Frames by Hybrid Teaching-Learning Based Optimization and Harmony Search Algorithms
Authors: Alper Akın, İbrahim Aydoğdu
Abstract:
This study presents a hybrid metaheuristic algorithm to obtain optimum designs for steel space buildings. The optimum design problem of three-dimensional steel frames is mathematically formulated according to provisions of LRFD-AISC (Load and Resistance factor design of American Institute of Steel Construction). Design constraints such as the strength requirements of structural members, the displacement limitations, the inter-story drift and the other structural constraints are derived from LRFD-AISC specification. In this study, a hybrid algorithm by using teachinglearning based optimization (TLBO) and harmony search (HS) algorithms is employed to solve the stated optimum design problem. These algorithms are two of the recent additions to metaheuristic techniques of numerical optimization and have been an efficient tool for solving discrete programming problems. Using these two algorithms in collaboration creates a more powerful tool and mitigates each other’s weaknesses. To demonstrate the powerful performance of presented hybrid algorithm, the optimum design of a large scale steel building is presented and the results are compared to the previously obtained results available in the literature.Keywords: Optimum structural design, hybrid techniques, teaching-learning based optimization, harmony search algorithm, minimum weight, steel space frame.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2450835 Measuring the Structural Similarity of Web-based Documents: A Novel Approach
Authors: Matthias Dehmer, Frank Emmert Streib, Alexander Mehler, Jürgen Kilian
Abstract:
Most known methods for measuring the structural similarity of document structures are based on, e.g., tag measures, path metrics and tree measures in terms of their DOM-Trees. Other methods measures the similarity in the framework of the well known vector space model. In contrast to these we present a new approach to measuring the structural similarity of web-based documents represented by so called generalized trees which are more general than DOM-Trees which represent only directed rooted trees.We will design a new similarity measure for graphs representing web-based hypertext structures. Our similarity measure is mainly based on a novel representation of a graph as strings of linear integers, whose components represent structural properties of the graph. The similarity of two graphs is then defined as the optimal alignment of the underlying property strings. In this paper we apply the well known technique of sequence alignments to solve a novel and challenging problem: Measuring the structural similarity of generalized trees. More precisely, we first transform our graphs considered as high dimensional objects in linear structures. Then we derive similarity values from the alignments of the property strings in order to measure the structural similarity of generalized trees. Hence, we transform a graph similarity problem to a string similarity problem. We demonstrate that our similarity measure captures important structural information by applying it to two different test sets consisting of graphs representing web-based documents.
Keywords: Graph similarity, hierarchical and directed graphs, hypertext, generalized trees, web structure mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2558834 Implementing a Visual Servoing System for Robot Controlling
Authors: Maryam Vafadar, Alireza Behrad, Saeed Akbari
Abstract:
Nowadays, with the emerging of the new applications like robot control in image processing, artificial vision for visual servoing is a rapidly growing discipline and Human-machine interaction plays a significant role for controlling the robot. This paper presents a new algorithm based on spatio-temporal volumes for visual servoing aims to control robots. In this algorithm, after applying necessary pre-processing on video frames, a spatio-temporal volume is constructed for each gesture and feature vector is extracted. These volumes are then analyzed for matching in two consecutive stages. For hand gesture recognition and classification we tested different classifiers including k-Nearest neighbor, learning vector quantization and back propagation neural networks. We tested the proposed algorithm with the collected data set and results showed the correct gesture recognition rate of 99.58 percent. We also tested the algorithm with noisy images and algorithm showed the correct recognition rate of 97.92 percent in noisy images.Keywords: Back propagation neural network, Feature vector, Hand gesture recognition, k-Nearest Neighbor, Learning vector quantization neural network, Robot control, Spatio-temporal volume, Visual servoing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1670833 Classification of Potential Biomarkers in Breast Cancer Using Artificial Intelligence Algorithms and Anthropometric Datasets
Authors: Aref Aasi, Sahar Ebrahimi Bajgani, Erfan Aasi
Abstract:
Breast cancer (BC) continues to be the most frequent cancer in females and causes the highest number of cancer-related deaths in women worldwide. Inspired by recent advances in studying the relationship between different patient attributes and features and the disease, in this paper, we have tried to investigate the different classification methods for better diagnosis of BC in the early stages. In this regard, datasets from the University Hospital Centre of Coimbra were chosen, and different machine learning (ML)-based and neural network (NN) classifiers have been studied. For this purpose, we have selected favorable features among the nine provided attributes from the clinical dataset by using a random forest algorithm. This dataset consists of both healthy controls and BC patients, and it was noted that glucose, BMI, resistin, and age have the most importance, respectively. Moreover, we have analyzed these features with various ML-based classifier methods, including Decision Tree (DT), K-Nearest Neighbors (KNN), eXtreme Gradient Boosting (XGBoost), Logistic Regression (LR), Naive Bayes (NB), and Support Vector Machine (SVM) along with NN-based Multi-Layer Perceptron (MLP) classifier. The results revealed that among different techniques, the SVM and MLP classifiers have the most accuracy, with amounts of 96% and 92%, respectively. These results divulged that the adopted procedure could be used effectively for the classification of cancer cells, and also it encourages further experimental investigations with more collected data for other types of cancers.
Keywords: Breast cancer, health diagnosis, Machine Learning, biomarker classification, Neural Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 323832 Identifying Autism Spectrum Disorder Using Optimization-Based Clustering
Authors: Sharifah Mousli, Sona Taheri, Jiayuan He
Abstract:
Autism spectrum disorder (ASD) is a complex developmental condition involving persistent difficulties with social communication, restricted interests, and repetitive behavior. The challenges associated with ASD can interfere with an affected individual’s ability to function in social, academic, and employment settings. Although there is no effective medication known to treat ASD, to our best knowledge, early intervention can significantly improve an affected individual’s overall development. Hence, an accurate diagnosis of ASD at an early phase is essential. The use of machine learning approaches improves and speeds up the diagnosis of ASD. In this paper, we focus on the application of unsupervised clustering methods in ASD, as a large volume of ASD data generated through hospitals, therapy centers, and mobile applications has no pre-existing labels. We conduct a comparative analysis using seven clustering approaches, such as K-means, agglomerative hierarchical, model-based, fuzzy-C-means, affinity propagation, self organizing maps, linear vector quantisation – as well as the recently developed optimization-based clustering (COMSEP-Clust) approach. We evaluate the performances of the clustering methods extensively on real-world ASD datasets encompassing different age groups: toddlers, children, adolescents, and adults. Our experimental results suggest that the COMSEP-Clust approach outperforms the other seven methods in recognizing ASD with well-separated clusters.
Keywords: Autism spectrum disorder, clustering, optimization, unsupervised machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 424831 Climate Safe House: A Community Housing Project Tackling Catastrophic Sea Level Rise in Coastal Communities
Authors: Chris Fersterer, Col Fay, Tobias Danielmeier, Kat Achterberg, Scott Willis
Abstract:
New Zealand, an island nation, has an extensive coastline peppered with small communities of iconic buildings known as Bachs. Post WWII, these modest buildings were constructed by their owners as retreats and generally were small, low cost, often using recycled material and often they fell below current acceptable building standards. In the latter part of the 20th century, real estate prices in many of these communities remained low and these areas became permanent residences for people attracted to this affordable lifestyle choice. The Blueskin Resilient Communities Trust (BRCT) is an organisation that recognises the vulnerability of communities in low lying settlements as now being prone to increased flood threat brought about by climate change and sea level rise. Some of the inhabitants of Blueskin Bay, Otago, NZ have already found their properties to be un-insurable because of increased frequency of flood events and property values have slumped accordingly. Territorial authorities also acknowledge this increased risk and have created additional compliance measures for new buildings that are less than 2 m above tidal peaks. Community resilience becomes an additional concern where inhabitants are attracted to a lifestyle associated with a specific location and its people when this lifestyle is unable to be met in a suburban or city context. Traditional models of social housing fail to provide the sense of community connectedness and identity enjoyed by the current residents of Blueskin Bay. BRCT have partnered with the Otago Polytechnic Design School to design a new form of community housing that can react to this environmental change. It is a longitudinal project incorporating participatory approaches as a means of getting people ‘on board’, to understand complex systems and co-develop solutions. In the first period, they are seeking industry support and funding to develop a transportable and fully self-contained housing model that exploits current technologies. BRCT also hope that the building will become an educational tool to highlight climate change issues facing us today. This paper uses the Climate Safe House (CSH) as a case study for education in architectural sustainability through experiential learning offered as part of the Otago Polytechnics Bachelor of Design. Students engage with the project with research methodologies, including site surveys, resident interviews, data sourced from government agencies and physical modelling. The process involves collaboration across design disciplines including product and interior design but also includes connections with industry, both within the education institution and stakeholder industries introduced through BRCT. This project offers a rich learning environment where students become engaged through project based learning within a community of practice, including architecture, construction, energy and other related fields. The design outcomes are expressed in a series of public exhibitions and forums where community input is sought in a truly participatory process.Keywords: Community resilience, problem based learning, project based learning, case study.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 968830 Memory Effects in Randomly Perturbed Nematic Liquid Crystals
Authors: Amid Ranjkesh, Milan Ambrožič, Samo Kralj
Abstract:
We study the typical domain size and configuration character of a randomly perturbed system exhibiting continuous symmetry breaking. As a model system we use rod-like objects within a cubic lattice interacting via a Lebwohl–Lasher-type interaction. We describe their local direction with a headless unit director field. An example of such systems represents nematic LC or nanotubes. We further introduce impurities of concentration p, which impose the random anisotropy field-type disorder to directors. We study the domain-type pattern of molecules as a function of p, anchoring strength w between a neighboring director and impurity, temperature, history of samples. In simulations we quenched the directors either from the random or homogeneous initial configuration. Our results show that a history of system strongly influences: i) the average domain coherence length; and ii) the range of ordering in the system. In the random case the obtained order is always short ranged (SR). On the contrary, in the homogeneous case, SR is obtained only for strong enough anchoring and large enough concentration p. In other cases, the ordering is either of quasi long range (QLR) or of long range (LR). We further studied memory effects for the random initial configuration. With increasing external ordering field B either QLR or LR is realized.Keywords: Lebwohl-Lasher model, liquid crystals, disorder, memory effect, orientational order.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1509829 ECG Based Reliable User Identification Using Deep Learning
Authors: R. N. Begum, Ambalika Sharma, G. K. Singh
Abstract:
Identity theft has serious ramifications beyond data and personal information loss. This necessitates the implementation of robust and efficient user identification systems. Therefore, automatic biometric recognition systems are the need of the hour, and electrocardiogram (ECG)-based systems are unquestionably the best choice due to their appealing inherent characteristics. The Convolutional Neural Networks (CNNs) are the recent state-of-the-art techniques for ECG-based user identification systems. However, the results obtained are significantly below standards, and the situation worsens as the number of users and types of heartbeats in the dataset grows. As a result, this study proposes a highly accurate and resilient ECG-based person identification system using CNN's dense learning framework. The proposed research explores explicitly the caliber of dense CNNs in the field of ECG-based human recognition. The study tests four different configurations of dense CNN which are trained on a dataset of recordings collected from eight popular ECG databases. With the highest False Acceptance Rate (FAR) of 0.04% and the highest False Rejection Rate (FRR) of 5%, the best performing network achieved an identification accuracy of 99.94%. The best network is also tested with various train/test split ratios. The findings show that DenseNets are not only extremely reliable, but also highly efficient. Thus, they might also be implemented in real-time ECG-based human recognition systems.
Keywords: Biometrics, dense networks, identification rate, train/test split ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 544828 Effect of Wavy Leading-Edges on Wings in Different Planetary Atmospheres
Authors: Vatasta Koul, Ayush Gupta, Vaibhav Sharma, Rajesh Yadav
Abstract:
Today we are unmarking the secrets of the universe by exploring different stars and planets and most of the space exploration is done by unmanned space robots. In addition to our planet Earth, there are pieces of evidence that show other astronomical objects in our solar system such as Venus, Mars, Saturn’s moon Titan and Uranus support the flight of fixed wing air vehicles. In this paper, we take forward the concept of presence of large rounded tubercles along the leading edge of a wing and use it as a passive flow control device that will help in improving its aerodynamic performance and maneuverability. Furthermore, in this research, aerodynamic measurements and performance analysis of wavy leading tubercles on the fixed wings at 5-degree angle of attack are carried out after determination of the flow conditions on the selected planetary bodies. Wavelength and amplitude for the sinusoidal modifications on the leading edge are analyzed and simulations are carried out for three-dimensional NACA 0012 airfoil maintaining unity AR (Aspect Ratio). Tubercles have consistently demonstrated the ability to delay and decrease the severity of stall as per the studies were done in the Earth’s atmosphere. Implementing the same design on the leading edges of Micro-Air Vehicles (MAVs) and UAVs could make these aircrafts more stable over a greater range of angles of attack in different planetary environments of our solar system.
Keywords: Amplitude, NACA0012, tubercles, unmanned space robots.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 660827 Complex-Valued Neural Network in Image Recognition: A Study on the Effectiveness of Radial Basis Function
Authors: Anupama Pande, Vishik Goel
Abstract:
A complex valued neural network is a neural network, which consists of complex valued input and/or weights and/or thresholds and/or activation functions. Complex-valued neural networks have been widening the scope of applications not only in electronics and informatics, but also in social systems. One of the most important applications of the complex valued neural network is in image and vision processing. In Neural networks, radial basis functions are often used for interpolation in multidimensional space. A Radial Basis function is a function, which has built into it a distance criterion with respect to a centre. Radial basis functions have often been applied in the area of neural networks where they may be used as a replacement for the sigmoid hidden layer transfer characteristic in multi-layer perceptron. This paper aims to present exhaustive results of using RBF units in a complex-valued neural network model that uses the back-propagation algorithm (called 'Complex-BP') for learning. Our experiments results demonstrate the effectiveness of a Radial basis function in a complex valued neural network in image recognition over a real valued neural network. We have studied and stated various observations like effect of learning rates, ranges of the initial weights randomly selected, error functions used and number of iterations for the convergence of error on a neural network model with RBF units. Some inherent properties of this complex back propagation algorithm are also studied and discussed.
Keywords: Complex valued neural network, Radial BasisFunction, Image recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2411826 Systematic Examination of Methods Supporting the Social Innovation Process
Authors: Mariann Veresne Somosi, Zoltan Nagy, Krisztina Varga
Abstract:
Innovation is the key element of economic development and a key factor in social processes. Technical innovations can be identified as prerequisites and causes of social change and cannot be created without the renewal of society. The study of social innovation can be characterised as one of the significant research areas of our day. The study’s aim is to identify the process of social innovation, which can be defined by input, transformation, and output factors. This approach divides the social innovation process into three parts: situation analysis, implementation, follow-up. The methods associated with each stage of the process are illustrated by the chronological line of social innovation. In this study, we have sought to present methodologies that support long- and short-term decision-making that is easy to apply, have different complementary content, and are well visualised for different user groups. When applying the methods, the reference objects are different: county, district, settlement, specific organisation. The solution proposed by the study supports the development of a methodological combination adapted to different situations. Having reviewed metric and conceptualisation issues, we wanted to develop a methodological combination along with a change management logic suitable for structured support to the generation of social innovation in the case of a locality or a specific organisation. In addition to a theoretical summary, in the second part of the study, we want to give a non-exhaustive picture of the two counties located in the north-eastern part of Hungary through specific analyses and case descriptions.
Keywords: Factors of social innovation, methodological combination, social innovation process, supporting decision-making.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 658825 Investigating Interference Errors Made by Azzawia University 1st year Students of English in Learning English Prepositions
Authors: Aimen Mohamed Almaloul
Abstract:
The main focus of this study is investigating the interference of Arabic in the use of English prepositions by Libyan university students. Prepositions in the tests used in the study were categorized, according to their relation to Arabic, into similar Arabic and English prepositions (SAEP), dissimilar Arabic and English prepositions (DAEP), Arabic prepositions with no English counterparts (APEC), and English prepositions with no Arabic counterparts (EPAC).
The subjects of the study were the first year university students of the English department, Sabrata Faculty of Arts, Azzawia University; both males and females, and they were 100 students. The basic tool for data collection was a test of English prepositions; students are instructed to fill in the blanks with the correct prepositions and to put a zero (0) if no preposition was needed. The test was then handed to the subjects of the study.
The test was then scored and quantitative as well as qualitative results were obtained. Quantitative results indicated the number, percentages and rank order of errors in each of the categories and qualitative results indicated the nature and significance of those errors and their possible sources. Based on the obtained results the researcher could detect that students made more errors in the EPAC category than the other three categories and these errors could be attributed to the lack of knowledge of the different meanings of English prepositions. This lack of knowledge forced the students to adopt what is called the strategy of transfer.
Keywords: Foreign language acquisition, foreign language learning, interference system, interlanguage system, mother tongue interference.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5046824 Tariff as a Determining Factor in Choosing Mobile Operators: A Case Study from Higher Learning Institution in Dodoma Municipality in Tanzania
Authors: Justinian Anatory, Ekael Stephen Manase
Abstract:
In recent years, the adoption of mobile phones has been exceptionally rapid in many parts of the world, and Tanzania is not exceptional. We are witnessing a number of new mobile network operators being licensed from time to time by Tanzania Communications Regulatory Authority (TCRA). This makes competition in the telecommunications market very stiff. All mobile phone companies are struggling to earn more new customers into their networks. This trend courses a stiff competition. The various measures are being taken by different companies including, lowering tariff, and introducing free short messages within and out of their networks, and free calls during off-peak periods. This paper is aimed at investigating the influence of tariffs on students’ mobile customers in selecting their mobile network operators. About seventy seven students from high learning institutions in Dodoma Municipality, Tanzania, participated in responding to the prepared questionnaires. The sought information was aimed at determining if tariffs influenced students into selection of their current mobile operators. The results indicate that tariffs were the major driving factor in selection of mobile operators. However, female mobile customers were found to be more easily attracted into subscribing to a mobile operator due to low tariffs, a bigger number of free short messages or discounted call charges than their fellow male customers.
Keywords: Consumer Buying, mobile operators, tariff.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2241823 A Neurofuzzy Learning and its Application to Control System
Authors: Seema Chopra, R. Mitra, Vijay Kumar
Abstract:
A neurofuzzy approach for a given set of input-output training data is proposed in two phases. Firstly, the data set is partitioned automatically into a set of clusters. Then a fuzzy if-then rule is extracted from each cluster to form a fuzzy rule base. Secondly, a fuzzy neural network is constructed accordingly and parameters are tuned to increase the precision of the fuzzy rule base. This network is able to learn and optimize the rule base of a Sugeno like Fuzzy inference system using Hybrid learning algorithm, which combines gradient descent, and least mean square algorithm. This proposed neurofuzzy system has the advantage of determining the number of rules automatically and also reduce the number of rules, decrease computational time, learns faster and consumes less memory. The authors also investigate that how neurofuzzy techniques can be applied in the area of control theory to design a fuzzy controller for linear and nonlinear dynamic systems modelling from a set of input/output data. The simulation analysis on a wide range of processes, to identify nonlinear components on-linely in a control system and a benchmark problem involving the prediction of a chaotic time series is carried out. Furthermore, the well-known examples of linear and nonlinear systems are also simulated under the Matlab/Simulink environment. The above combination is also illustrated in modeling the relationship between automobile trips and demographic factors.
Keywords: Fuzzy control, neuro-fuzzy techniques, fuzzy subtractive clustering, extraction of rules, and optimization of membership functions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2594822 Template-Based Object Detection through Partial Shape Matching and Boundary Verification
Authors: Feng Ge, Tiecheng Liu, Song Wang, Joachim Stahl
Abstract:
This paper presents a novel template-based method to detect objects of interest from real images by shape matching. To locate a target object that has a similar shape to a given template boundary, the proposed method integrates three components: contour grouping, partial shape matching, and boundary verification. In the first component, low-level image features, including edges and corners, are grouped into a set of perceptually salient closed contours using an extended ratio-contour algorithm. In the second component, we develop a partial shape matching algorithm to identify the fractions of detected contours that partly match given template boundaries. Specifically, we represent template boundaries and detected contours using landmarks, and apply a greedy algorithm to search the matched landmark subsequences. For each matched fraction between a template and a detected contour, we estimate an affine transform that transforms the whole template into a hypothetic boundary. In the third component, we provide an efficient algorithm based on oriented edge lists to determine the target boundary from the hypothetic boundaries by checking each of them against image edges. We evaluate the proposed method on recognizing and localizing 12 template leaves in a data set of real images with clutter back-grounds, illumination variations, occlusions, and image noises. The experiments demonstrate the high performance of our proposed method1.Keywords: Object detection, shape matching, contour grouping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2305821 Understanding and Designing Situation-Aware Mobile and Ubiquitous Computing Systems
Authors: Kai Häussermann, Christoph Hubig, Paul Levi, Frank Leymann, Oliver Siemoneit, Matthias Wieland, Oliver Zweigle
Abstract:
Using spatial models as a shared common basis of information about the environment for different kinds of contextaware systems has been a heavily researched topic in the last years. Thereby the research focused on how to create, to update, and to merge spatial models so as to enable highly dynamic, consistent and coherent spatial models at large scale. In this paper however, we want to concentrate on how context-aware applications could use this information so as to adapt their behavior according to the situation they are in. The main idea is to provide the spatial model infrastructure with a situation recognition component based on generic situation templates. A situation template is – as part of a much larger situation template library – an abstract, machinereadable description of a certain basic situation type, which could be used by different applications to evaluate their situation. In this paper, different theoretical and practical issues – technical, ethical and philosophical ones – are discussed important for understanding and developing situation dependent systems based on situation templates. A basic system design is presented which allows for the reasoning with uncertain data using an improved version of a learning algorithm for the automatic adaption of situation templates. Finally, for supporting the development of adaptive applications, we present a new situation-aware adaptation concept based on workflows.Keywords: context-awareness, ethics, facilitation of system use through workflows, situation recognition and learning based on situation templates and situation ontology's, theory of situationaware systems
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1759820 A Machine Learning Approach for Earthquake Prediction in Various Zones Based on Solar Activity
Authors: Viacheslav Shkuratskyy, Aminu Bello Usman, Michael O’Dea, Mujeeb Ur Rehman, Saifur Rahman Sabuj
Abstract:
This paper examines relationships between solar activity and earthquakes, it applied machine learning techniques: K-nearest neighbour, support vector regression, random forest regression, and long short-term memory network. Data from the SILSO World Data Center, the NOAA National Center, the GOES satellite, NASA OMNIWeb, and the United States Geological Survey were used for the experiment. The 23rd and 24th solar cycles, daily sunspot number, solar wind velocity, proton density, and proton temperature were all included in the dataset. The study also examined sunspots, solar wind, and solar flares, which all reflect solar activity, and earthquake frequency distribution by magnitude and depth. The findings showed that the long short-term memory network model predicts earthquakes more correctly than the other models applied in the study, and solar activity is more likely to effect earthquakes of lower magnitude and shallow depth than earthquakes of magnitude 5.5 or larger with intermediate depth and deep depth
.Keywords: K-Nearest Neighbour, Support Vector Regression, Random Forest Regression, Long Short-Term Memory Network, earthquakes, solar activity, sunspot number, solar wind, solar flares.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 205819 Challenges and Professional Perspectives for Pedagogy Undergraduates with Specific Learning Disability: A Greek Case Study
Authors: Tatiani D. Mousoura
Abstract:
Specific learning disability (SLD) in higher education has been partially explored in Greece so far. Moreover, opinions on professional perspectives for university students with SLD, is scarcely encountered in Greek research. The perceptions of the hidden character of SLD along with the university policy towards it and professional perspectives that result from this policy have been examined in the present research. This study has applied the paradigm of a Greek Tertiary Pedagogical Education Department (Early Childhood Education). Via mixed methods, data have been collected from different groups of people in the Pedagogical Department: students with SLD and without SLD, academic staff and administration staff, all of which offer the opportunity for triangulation of the findings. Qualitative methods include ten interviews with students with SLD and 15 interviews with academic staff and 60 hours of observation of the students with SLD. Quantitative methods include 165 questionnaires completed by third and fourth-year students and five questionnaires completed by the administration staff. Thematic analyses of the interviews’ data and descriptive statistics on the questionnaires’ data have been applied for the processing of the results. The use of medical terms to define and understand SLD was common in the student cohort, regardless of them having an SLD diagnosis. However, this medical model approach is far more dominant in the group of students without SLD who, by majority, hold misconceptions on a definitional level. The academic staff group seems to be leaning towards a social approach concerning SLD. According to them, diagnoses may lead to social exclusion. The Pedagogical Department generally endorses the principles of inclusion and complies with the provision of oral exams for students with SLD. Nevertheless, in practice, there seems to be a lack of regular academic support for these students. When such support does exist, it is only through individual initiatives. With regards to their prospective profession, students with SLD can utilize their personal experience, as well as their empathy; these appear to be unique weapons in their hands –in comparison with other educators− when it comes to teaching students in the future. In the Department of Pedagogy, provision towards SLD results sporadic, however the vision of an inclusive department does exist. Based on their studies and their experience, pedagogy students with SLD claim that they have an experiential internalized advantage for their future career as educators.
Keywords: Specific learning disability, dyslexia, pedagogy department, inclusion, professional role of SLDed educators, higher education, university policy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1034818 Improving Activity Recognition Classification of Repetitious Beginner Swimming Using a 2-Step Peak/Valley Segmentation Method with Smoothing and Resampling for Machine Learning
Authors: Larry Powell, Seth Polsley, Drew Casey, Tracy Hammond
Abstract:
Human activity recognition (HAR) systems have shown positive performance when recognizing repetitive activities like walking, running, and sleeping. Water-based activities are a reasonably new area for activity recognition. However, water-based activity recognition has largely focused on supporting the elite and competitive swimming population, which already has amazing coordination and proper form. Beginner swimmers are not perfect, and activity recognition needs to support the individual motions to help beginners. Activity recognition algorithms are traditionally built around short segments of timed sensor data. Using a time window input can cause performance issues in the machine learning model. The window’s size can be too small or large, requiring careful tuning and precise data segmentation. In this work, we present a method that uses a time window as the initial segmentation, then separates the data based on the change in the sensor value. Our system uses a multi-phase segmentation method that pulls all peaks and valleys for each axis of an accelerometer placed on the swimmer’s lower back. This results in high recognition performance using leave-one-subject-out validation on our study with 20 beginner swimmers, with our model optimized from our final dataset resulting in an F-Score of 0.95.
Keywords: Time window, peak/valley segmentation, feature extraction, beginner swimming, activity recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 206817 Pictorial Multimodal Analysis of Selected Paintings of Salvador Dali
Authors: Shaza Melies, Abeer Refky, Nihad Mansoor
Abstract:
Multimodality involves the communication between verbal and visual components in various discourses. A painting represents a form of communication between the artist and the viewer in terms of colors, shades, objects, and the title. This paper aims to present how multimodality can be used to decode the verbal and visual dimensions a painting holds. For that purpose, this study uses Kress and van Leeuwen’s theoretical framework of visual grammar for the analysis of the multimodal semiotic resources of selected paintings of Salvador Dali. This study investigates the visual decoding of the selected paintings of Salvador Dali and analyzing their social and political meanings using Kress and van Leeuwen’s framework of visual grammar. The paper attempts to answer the following questions: 1. How far can multimodality decode the verbal and non-verbal meanings of surrealistic art? 2. How can Kress and van Leeuwen’s theoretical framework of visual grammar be applied to analyze Dali’s paintings? 3. To what extent is Kress and van Leeuwen’s theoretical framework of visual grammar apt to deliver political and social messages of Dali? The paper reached the following findings: the framework’s descriptive tools (representational, interactive, and compositional meanings) can be used to analyze the paintings’ title and their visual elements. Social and political messages were delivered by appropriate usage of color, gesture, vectors, modality, and the way social actors were represented.
Keywords: Multimodality, multimodal analysis, paintings analysis, Salvador Dali, visual grammar.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 753816 Using Thinking Blocks to Encourage the Use of Higher Order Thinking Skills among Students When Solving Problems on Fractions
Authors: Abdul Halim Abdullah, Nur Liyana Zainal Abidin, Mahani Mokhtar
Abstract:
Problem-solving is an activity which can encourage students to use Higher Order Thinking Skills (HOTS). Learning fractions can be challenging for students since empirical evidence shows that students experience difficulties in solving the fraction problems. However, visual methods can help students to overcome the difficulties since the methods help students to make meaningful visual representations and link abstract concepts in Mathematics. Therefore, the purpose of this study was to investigate whether there were any changes in students’ HOTS at the four highest levels when learning the fractions by using Thinking Blocks. 54 students participated in a quasi-experiment using pre-tests and post-tests. Students were divided into two groups. The experimental group (n=32) received a treatment to improve the students’ HOTS and the other group acted as the control group (n=22) which used a traditional method. Data were analysed by using Mann-Whitney test. The results indicated that during post-test, students who used Thinking Blocks showed significant improvement in their HOTS level (p=0.000). In addition, the results of post-test also showed that the students’ performance improved significantly at the four highest levels of HOTS; namely, application (p=0.001), analyse (p=0.000), evaluate (p=0.000), and create (p=0.000). Therefore, it can be concluded that Thinking Blocks can effectively encourage students to use the four highest levels of HOTS which consequently enable them to solve fractions problems successfully.Keywords: Thinking blocks, higher order thinking skills, fractions, problem solving.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1357815 Fast Approximate Bayesian Contextual Cold Start Learning (FAB-COST)
Authors: Jack R. McKenzie, Peter A. Appleby, Thomas House, Neil Walton
Abstract:
Cold-start is a notoriously difficult problem which can occur in recommendation systems, and arises when there is insufficient information to draw inferences for users or items. To address this challenge, a contextual bandit algorithm – the Fast Approximate Bayesian Contextual Cold Start Learning algorithm (FAB-COST) – is proposed, which is designed to provide improved accuracy compared to the traditionally used Laplace approximation in the logistic contextual bandit, while controlling both algorithmic complexity and computational cost. To this end, FAB-COST uses a combination of two moment projection variational methods: Expectation Propagation (EP), which performs well at the cold start, but becomes slow as the amount of data increases; and Assumed Density Filtering (ADF), which has slower growth of computational cost with data size but requires more data to obtain an acceptable level of accuracy. By switching from EP to ADF when the dataset becomes large, it is able to exploit their complementary strengths. The empirical justification for FAB-COST is presented, and systematically compared to other approaches on simulated data. In a benchmark against the Laplace approximation on real data consisting of over 670, 000 impressions from autotrader.co.uk, FAB-COST demonstrates at one point increase of over 16% in user clicks. On the basis of these results, it is argued that FAB-COST is likely to be an attractive approach to cold-start recommendation systems in a variety of contexts.Keywords: Cold-start, expectation propagation, multi-armed bandits, Thompson sampling, variational inference.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 552814 A Static Android Malware Detection Based on Actual Used Permissions Combination and API Calls
Authors: Xiaoqing Wang, Junfeng Wang, Xiaolan Zhu
Abstract:
Android operating system has been recognized by most application developers because of its good open-source and compatibility, which enriches the categories of applications greatly. However, it has become the target of malware attackers due to the lack of strict security supervision mechanisms, which leads to the rapid growth of malware, thus bringing serious safety hazards to users. Therefore, it is critical to detect Android malware effectively. Generally, the permissions declared in the AndroidManifest.xml can reflect the function and behavior of the application to a large extent. Since current Android system has not any restrictions to the number of permissions that an application can request, developers tend to apply more than actually needed permissions in order to ensure the successful running of the application, which results in the abuse of permissions. However, some traditional detection methods only consider the requested permissions and ignore whether it is actually used, which leads to incorrect identification of some malwares. Therefore, a machine learning detection method based on the actually used permissions combination and API calls was put forward in this paper. Meanwhile, several experiments are conducted to evaluate our methodology. The result shows that it can detect unknown malware effectively with higher true positive rate and accuracy while maintaining a low false positive rate. Consequently, the AdaboostM1 (J48) classification algorithm based on information gain feature selection algorithm has the best detection result, which can achieve an accuracy of 99.8%, a true positive rate of 99.6% and a lowest false positive rate of 0.Keywords: Android, permissions combination, API calls, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1916813 Automated Textile Defect Recognition System Using Computer Vision and Artificial Neural Networks
Authors: Atiqul Islam, Shamim Akhter, Tumnun E. Mursalin
Abstract:
Least Development Countries (LDC) like Bangladesh, whose 25% revenue earning is achieved from Textile export, requires producing less defective textile for minimizing production cost and time. Inspection processes done on these industries are mostly manual and time consuming. To reduce error on identifying fabric defects requires more automotive and accurate inspection process. Considering this lacking, this research implements a Textile Defect Recognizer which uses computer vision methodology with the combination of multi-layer neural networks to identify four classifications of textile defects. The recognizer, suitable for LDC countries, identifies the fabric defects within economical cost and produces less error prone inspection system in real time. In order to generate input set for the neural network, primarily the recognizer captures digital fabric images by image acquisition device and converts the RGB images into binary images by restoration process and local threshold techniques. Later, the output of the processed image, the area of the faulty portion, the number of objects of the image and the sharp factor of the image, are feed backed as an input layer to the neural network which uses back propagation algorithm to compute the weighted factors and generates the desired classifications of defects as an output.Keywords: Computer vision, image acquisition device, machine vision, multi-layer neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3301812 Elegant: An Intuitive Software Tool for Interactive Learning of Power System Analysis
Authors: Eduardo N. Velloso, Fernando M. N. Dantas, Luciano S. Barros
Abstract:
A common complaint from power system analysis students lies in the overly complex tools they need to learn and use just to simulate very basic systems or just to check the answers to power system calculations. The most basic power system studies are power-flow solutions and short-circuit calculations. This paper presents a simple tool with an intuitive interface to perform both these studies and assess its performance in comparison with existent commercial solutions. With this in mind, Elegant is a pure Python software tool for learning power system analysis developed for undergraduate and graduate students. It solves the power-flow problem by iterative numerical methods and calculates bolted short-circuit fault currents by modeling the network in the domain of symmetrical components. Elegant can be used with a user-friendly Graphical User Interface (GUI) and automatically generates human-readable reports of the simulation results. The tool is exemplified using a typical Brazilian regional system with 18 buses. This study performs a comparative experiment with 1 undergraduate and 4 graduate students who attempted the same problem using both Elegant and a commercial tool. It was found that Elegant significantly reduces the time and labor involved in basic power system simulations while still providing some insights into real power system designs.
Keywords: Free- and open-source software, power-flow, power system analysis, Python, short-circuit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 457811 Strengthening Adult Literacy Programs in Order to End Female Genital Mutilation to Achieve Sustainable Development Goals
Authors: Odenigbo Veronica Ngozi, Lorreta Chika Ukwuaba
Abstract:
This study focuses on how the strengthening adult literacy programs can help accelerate transformative strategies to end Female Genital Mutilation (FGM) in Nigeria, specifically in Nsukka Local Government Area of Enugu State. The research delved into the definition of FGM, adult literacy programs, and how to achieve ending FGM in order to attain Sustainable Development Goals (SDGs) in 2030. It further discussed the practice of FGM in Nigeria and emphasized the statement of the problem. Main purpose of the study was to investigate how strengthening adult literacy programs can help accelerate transformative strategies to end FGM in Nigeria and achieve SDGs in 2030. A survey research design was used to conduct the study in Nsukka L.G.A. The population was composed of 26 facilitators and adult learners in five adult learning centres in the area. The entire population was used as a sample. Structured questionnaires were employed to elicit information from the respondents. The items on the questionnaire were face-validated by three experts while the reliability of the instrument was verified using Cronbach Alpha Reliability Technique. The research questions were analysed using means and standard deviation while the hypothesis was tested at 0.05 level of degree of significance using a t-test statistics. The result of the findings shows that the practices of FGM can end through strengthening adult literacy programs. Strengthening adult literacy programs is a good channel to end or stop FGM through the knowledge and skill acquired from the learning centres. The theoretical importance of the study lies in the fact that it highlights the role of adult literacy programs in accelerating transformative strategies to combat harmful cultural practices such as FGM. It further supports the importance of education and knowledge in achieving SDGs by 2030. The study addressed the question of how strengthening adult literacy programs can help accelerate transformative strategies which can end FGM in Nigeria and achieve SDGs by 2030. In conclusion, the study revealed that adult literacy is a good tool to end FGM in Nigeria. The recommendation was that (NGOs), community-based organizations (CBOs), and individuals should support the funding and establishment of adult literacy centres in communities so as to reach all illiterate parents or individuals so that they can acquire the knowledge and skill needed to understand the negative effect of FGM in the life of a girl child.
Keywords: Adult literacy, female genital mutilation, learning centres, Sustainable Development Goals.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 67810 Upgraded Rough Clustering and Outlier Detection Method on Yeast Dataset by Entropy Rough K-Means Method
Authors: P. Ashok, G. M. Kadhar Nawaz
Abstract:
Rough set theory is used to handle uncertainty and incomplete information by applying two accurate sets, Lower approximation and Upper approximation. In this paper, the rough clustering algorithms are improved by adopting the Similarity, Dissimilarity–Similarity and Entropy based initial centroids selection method on three different clustering algorithms namely Entropy based Rough K-Means (ERKM), Similarity based Rough K-Means (SRKM) and Dissimilarity-Similarity based Rough K-Means (DSRKM) were developed and executed by yeast dataset. The rough clustering algorithms are validated by cluster validity indexes namely Rand and Adjusted Rand indexes. An experimental result shows that the ERKM clustering algorithm perform effectively and delivers better results than other clustering methods. Outlier detection is an important task in data mining and very much different from the rest of the objects in the clusters. Entropy based Rough Outlier Factor (EROF) method is seemly to detect outlier effectively for yeast dataset. In rough K-Means method, by tuning the epsilon (ᶓ) value from 0.8 to 1.08 can detect outliers on boundary region and the RKM algorithm delivers better results, when choosing the value of epsilon (ᶓ) in the specified range. An experimental result shows that the EROF method on clustering algorithm performed very well and suitable for detecting outlier effectively for all datasets. Further, experimental readings show that the ERKM clustering method outperformed the other methods.
Keywords: Clustering, Entropy, Outlier, Rough K-Means, validity index.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1413809 Machine Learning Framework: Competitive Intelligence and Key Drivers Identification of Market Share Trends among Healthcare Facilities
Authors: A. Appe, B. Poluparthi, L. Kasivajjula, U. Mv, S. Bagadi, P. Modi, A. Singh, H. Gunupudi, S. Troiano, J. Paul, J. Stovall, J. Yamamoto
Abstract:
The necessity of data-driven decisions in healthcare strategy formulation is rapidly increasing. A reliable framework which helps identify factors impacting a healthcare provider facility or a hospital (from here on termed as facility) market share is of key importance. This pilot study aims at developing a data-driven machine learning-regression framework which aids strategists in formulating key decisions to improve the facility’s market share which in turn impacts in improving the quality of healthcare services. The US (United States) healthcare business is chosen for the study, and the data spanning 60 key facilities in Washington State and about 3 years of historical data are considered. In the current analysis, market share is termed as the ratio of the facility’s encounters to the total encounters among the group of potential competitor facilities. The current study proposes a two-pronged approach of competitor identification and regression approach to evaluate and predict market share, respectively. Leveraged model agnostic technique, SHAP (SHapley Additive exPlanations), to quantify the relative importance of features impacting the market share. Typical techniques in literature to quantify the degree of competitiveness among facilities use an empirical method to calculate a competitive factor to interpret the severity of competition. The proposed method identifies a pool of competitors, develops Directed Acyclic Graphs (DAGs) and feature level word vectors, and evaluates the key connected components at the facility level. This technique is robust since it is data-driven, which minimizes the bias from empirical techniques. The DAGs factor in partial correlations at various segregations and key demographics of facilities along with a placeholder to factor in various business rules (for e.g., quantifying the patient exchanges, provider references, and sister facilities). Identified are the multiple groups of competitors among facilities. Leveraging the competitors' identified developed and fine-tuned Random Forest Regression model to predict the market share. To identify key drivers of market share at an overall level, permutation feature importance of the attributes was calculated. For relative quantification of features at a facility level, incorporated SHAP, a model agnostic explainer. This helped to identify and rank the attributes at each facility which impacts the market share. This approach proposes an amalgamation of the two popular and efficient modeling practices, viz., machine learning with graphs and tree-based regression techniques to reduce the bias. With these, we helped to drive strategic business decisions.
Keywords: Competition, DAGs, hospital, healthcare, machine learning, market share, random forest, SHAP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 287808 A Look at the History of Calligraphy in Decoration of Mosques in Iran: 630-1630 AD
Authors: Cengiz Tavşan, Niloufar Akbarzadeh
Abstract:
Architecture in Iran has a continuous history from at least 5000 BC to the present, and numerous Iranian pre-Islamic elements have contributed significantly to the formation of Islamic art. At first, decoration was limited to small objects and containers and then progressed in the art of plaster and brickwork. They later applied in architecture as well. The art of gypsum and brickwork, which was prevalent in the form of motifs (animals and plants) in pre-Islam, was used in the aftermath of Islam with the art of calligraphy in decorations. The splendor and beauty of Iranian architecture, especially during the Islamic era, are related to decoration and design. After the invasion of Iran by the Arabs and the introduction of Islam to Iran, the arrival of the Iranian classical architecture significantly changed, and we saw the Arabic calligraphy decoration of the mosques in Iran. The principles of aesthetics in the art of calligraphy in Iran are based precisely on the principles of the beauty of ancient Iranian and Islamic art. On the other hand, after Islam, calligraphy was one of the most important sources of Islamic art in Islam and one of the important features of Islamic culture. First, the calligraphy had no cultural meaning and was only for decoration and beautification, it had the same meaning only in the inscriptions; however, over time, it became meaningful. This article provides a summary of the history of calligraphy in the mosques (from the entrance to Islam until the Safavid period), which cannot ignore the role of the calligraphy in their decorative ideas; and also, the important role that decorative elements play in creating a public space in terms of social and aesthetic performance. This study was conducted using library studies and field studies. The purpose of this study is to show the characteristics of architecture and art of decorations in Iran, especially in the mosque's architecture, which reaches the pinnacle of progress. We will see that religious beliefs and artistic practices are merging and trying to bring a single concept.Keywords: Islamic art, Islamic architecture, decorations in Iranian mosques, calligraphy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2195807 Beam Coding with Orthogonal Complementary Golay Codes for Signal to Noise Ratio Improvement in Ultrasound Mammography
Authors: Y. Kumru, K. Enhos, H. Köymen
Abstract:
In this paper, we report the experimental results on using complementary Golay coded signals at 7.5 MHz to detect breast microcalcifications of 50 µm size. Simulations using complementary Golay coded signals show perfect consistence with the experimental results, confirming the improved signal to noise ratio for complementary Golay coded signals. For improving the success on detecting the microcalcifications, orthogonal complementary Golay sequences having cross-correlation for minimum interference are used as coded signals and compared to tone burst pulse of equal energy in terms of resolution under weak signal conditions. The measurements are conducted using an experimental ultrasound research scanner, Digital Phased Array System (DiPhAS) having 256 channels, a phased array transducer with 7.5 MHz center frequency and the results obtained through experiments are validated by Field-II simulation software. In addition, to investigate the superiority of coded signals in terms of resolution, multipurpose tissue equivalent phantom containing series of monofilament nylon targets, 240 µm in diameter, and cyst-like objects with attenuation of 0.5 dB/[MHz x cm] is used in the experiments. We obtained ultrasound images of monofilament nylon targets for the evaluation of resolution. Simulation and experimental results show that it is possible to differentiate closely positioned small targets with increased success by using coded excitation in very weak signal conditions.
Keywords: Coded excitation, complementary Golay codes, DiPhAS, medical ultrasound.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 905