Measuring the Structural Similarity of Web-based Documents: A Novel Approach
Authors: Matthias Dehmer, Frank Emmert Streib, Alexander Mehler, Jürgen Kilian
Abstract:
Most known methods for measuring the structural similarity of document structures are based on, e.g., tag measures, path metrics and tree measures in terms of their DOM-Trees. Other methods measures the similarity in the framework of the well known vector space model. In contrast to these we present a new approach to measuring the structural similarity of web-based documents represented by so called generalized trees which are more general than DOM-Trees which represent only directed rooted trees.We will design a new similarity measure for graphs representing web-based hypertext structures. Our similarity measure is mainly based on a novel representation of a graph as strings of linear integers, whose components represent structural properties of the graph. The similarity of two graphs is then defined as the optimal alignment of the underlying property strings. In this paper we apply the well known technique of sequence alignments to solve a novel and challenging problem: Measuring the structural similarity of generalized trees. More precisely, we first transform our graphs considered as high dimensional objects in linear structures. Then we derive similarity values from the alignments of the property strings in order to measure the structural similarity of generalized trees. Hence, we transform a graph similarity problem to a string similarity problem. We demonstrate that our similarity measure captures important structural information by applying it to two different test sets consisting of graphs representing web-based documents.
Keywords: Graph similarity, hierarchical and directed graphs, hypertext, generalized trees, web structure mining.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1086031
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2556References:
[1] R. Bellman, Dynamic Programming. Princeton University Press, 1957
[2] R. A. Botafogo, B. Shneiderman: Structural analysis of hypertexts: Identifying hierarchies and useful metrics, ACM Trans. Inf. Syst. 10 (2), 1992, 142-180
[3] S. Chakrabarti: Mining the Web. Discovering Knowledge from Hypertext Data, Morgen and Kaufmann Publishers, 2003
[4] S. Chakrabarti: Integrating the document object model with hyperlinks for enhanced topic distillation and information extraction, Proc. of the 10th International World Wide Web Conference, Hong Kong, 2001, 211- 220
[5] I. F. Cruz, S. Borisov, M. A. Marks, T. R. Webb: Measuring Structural Similarity Among Web Documents: Preliminary Results , Lecture Notes In Computer Science, Vol. 1375, 1998
[6] M. Dehmer, Strukturelle Analyse web-basierter Dokumente, Ph.D Thesis, Department of Computer Science, Technische Universit¨at Darmstadt, 2005, unpublished
[7] M. Dehmer, R. Gleim, A. Mehler: Aspekte der Kategorisierung von Webseiten, GI-Edition - Lecture Notes in Informatics (LNI) - Proceedings, Jahrestagung der Gesellschaft f¨ur Informatik, Informatik 2004, Ulm/Germany, 2004, 39-43
[8] R. Gleim: HyGraph - Ein Framework zur Extraktion, Repr¨asentation und Analyse webbasierter Hypertextstrukturen, Beitr¨age zur GLDVTagung 2005, Bonn/Germany, 2005
[9] D. Gusfield: Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology, Cambridge University Press, 1997
[10] T. Jiang, L. Wang, K. Zhang: Alignment of trees - An alternative to tree edit, Theoretical Computer Science, Elsevier, Vol. 143, 1995, 137-148
[11] S. Joshi, N. Agrawal, R. Krishnapuram, S. Negi,: Bag of Paths Model for Measuring Structural Similarity in Web Documents, Proceedings of the ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), 2003, 577-582.
[12] Mehler A.: Textbedeutung. Zur prozeduralen Analyse und Repr¨asentation struktureller ¨Ahnlichkeiten von Texten, Peter Lang, Europ¨aischer Verlag der Wissenschaften, 2001
[13] A. Mehler, M. Dehmer, R. Gleim: Towards logical hypertext structure. A graph-theoretic perspective, Proc. of I2CS-04, Guadalajara/Mexico, Lecture Notes in Computer Science, Berlin-New York: Springer, 2004
[14] A. Mehler, R. Gleim, M. Dehmer: Towards structure-sensitive hypertext categorization, to appear in: Proceedings of the 29-th Annual Conference of the German Classification Society, 2005
[15] S. M. Selkow: The tree-to-tree editing problem, Information Processing Letters, Vol. 6 (6), 1977, 184-186
[16] T. F. Smith, M. S. Waterman: Identification of common molecular subsequences, Journal of Molecular Biology, Vol. 147 (1), 1981, 195- 197
[17] F. Sobik, Graphmetriken und Klassifikation strukturierter Objekte, ZKIInformationen, Akad. Wiss. DDR, Vol. 2 (82), 1982, 63-122
[18] J. R. Ullman, An algorithm for subgraph isomorphism, J. ACM, Vol. 23 (1), 1976, 31-42
[19] P. H. Winne., L. Gupta, J. C. Nesbit: Exploring individual differences in studying strategies using graph theoretic statistics, The Alberta Journal of Educational Research, Vol. 40, 1994, 177-193
[20] A. Winter: Exchanching Graphs with GXL, http://www.gupro. de/GXL
[21] Y. Yang, S. Slattery, R. Ghani: A study of approaches to hypertext categorization, Journal of Intelligent Information Systems, Vol. 18 (2-3), 2002, 219-241
[22] K. Zhang, D. Shasha: Simple fast algorithms for the editing distance between trees and related problems, SIAM Journal of Computing, Vol. 18 (6), 1989, 1245-1262
[23] B. Zelinka, On a certain distance between isomorphism classes of graphs, ˇ Casopis pro ˇpest. Mathematiky, Vol. 100, 1975, 371-373