Search results for: Large Data
7378 Performance Evaluation of Bluetooth Links in the Presence of Specific Types of Interference
Authors: Radosveta Sokullu, Engin Karatepe
Abstract:
In the last couple of years Bluetooth has gained a large share in the market of home and personal appliances. It is now a well established technology a short range supplement to the wireless world of 802.11. The two main trends of research that have sprung from these developments are directed towards the coexistence and performance issues of Bluetooth and 802.11 as well as the co-existence in the very short range of multiple Bluetooth devices. Our work aims at thoroughly investigating different aspects of co-channel interference and effects of transmission power, distance and 802.11 interference on Bluetooth connections.
Keywords: Bluetooth, co-channel interference, 802.11, performance analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17547377 Liquid Chromatography Microfluidics for Detection and Quantification of Urine Albumin Using Linear Regression Method
Authors: Patricia B. Cruz, Catrina Jean G. Valenzuela, Analyn N. Yumang
Abstract:
Nearly a hundred per million of the Filipino population is diagnosed with Chronic Kidney Disease (CKD). The early stage of CKD has no symptoms and can only be discovered once the patient undergoes urinalysis. Over the years, different methods were discovered and used for the quantification of the urinary albumin such as the immunochemical assays where most of these methods require large machinery that has a high cost in maintenance and resources, and a dipstick test which is yet to be proven and is still debated as a reliable method in detecting early stages of microalbuminuria. This research study involves the use of the liquid chromatography concept in microfluidic instruments with biosensor as a means of separation and detection respectively, and linear regression to quantify human urinary albumin. The researchers’ main objective was to create a miniature system that quantifies and detect patients’ urinary albumin while reducing the amount of volume used per five test samples. For this study, 30 urine samples of unknown albumin concentrations were tested using VITROS Analyzer and the microfluidic system for comparison. Based on the data shared by both methods, the actual vs. predicted regression were able to create a positive linear relationship with an R2 of 0.9995 and a linear equation of y = 1.09x + 0.07, indicating that the predicted values and actual values are approximately equal. Furthermore, the microfluidic instrument uses 75% less in total volume – sample and reagents combined, compared to the VITROS Analyzer per five test samples.
Keywords: Chronic kidney disease, microfluidics, linear regression, VITROS analyzer, urinary albumin.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8717376 Novel Design of Quantum Dot Arrays to Enhance Near-Fields Excitation Resonances
Authors: N. H. Ismail, A. A. A. Nassar, K. H. Baz
Abstract:
Semiconductor crystals smaller than about 10 nm, known as quantum dots, have properties that differ from large samples, including a band gap that becomes larger for smaller particles. These properties create several applications for quantum dots. In this paper new shapes of quantum dot arrays are used to enhance the photo physical properties of gold nano-particles. This paper presents a study of the effect of nano-particles shape, array, and size on their absorption characteristics.
Keywords: Quantum Dots, Nano-Particles, LSPR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18027375 Generalized Method for Estimating Best-Fit Vertical Alignments for Profile Data
Authors: Said M. Easa, Shinya Kikuchi
Abstract:
When the profile information of an existing road is missing or not up-to-date and the parameters of the vertical alignment are needed for engineering analysis, the engineer has to recreate the geometric design features of the road alignment using collected profile data. The profile data may be collected using traditional surveying methods, global positioning systems, or digital imagery. This paper develops a method that estimates the parameters of the geometric features that best characterize the existing vertical alignments in terms of tangents and the expressions of the curve, that may be symmetrical, asymmetrical, reverse, and complex vertical curves. The method is implemented using an Excel-based optimization method that minimizes the differences between the observed profile and the profiles estimated from the equations of the vertical curve. The method uses a 'wireframe' representation of the profile that makes the proposed method applicable to all types of vertical curves. A secondary contribution of this paper is to introduce the properties of the equal-arc asymmetrical curve that has been recently developed in the highway geometric design field.Keywords: Optimization, parameters, data, reverse, spreadsheet, vertical curves
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24487374 Early Depression Detection for Young Adults with a Psychiatric and AI Interdisciplinary Multimodal Framework
Authors: Raymond Xu, Ashley Hua, Andrew Wang, Yuru Lin
Abstract:
During COVID-19, the depression rate has increased dramatically. Young adults are most vulnerable to the mental health effects of the pandemic. Lower-income families have a higher ratio to be diagnosed with depression than the general population, but less access to clinics. This research aims to achieve early depression detection at low cost, large scale, and high accuracy with an interdisciplinary approach by incorporating clinical practices defined by American Psychiatric Association (APA) as well as multimodal AI framework. The proposed approach detected the nine depression symptoms with Natural Language Processing sentiment analysis and a symptom-based Lexicon uniquely designed for young adults. The experiments were conducted on the multimedia survey results from adolescents and young adults and unbiased Twitter communications. The result was further aggregated with the facial emotional cues analyzed by the Convolutional Neural Network on the multimedia survey videos. Five experiments each conducted on 10k data entries reached consistent results with an average accuracy of 88.31%, higher than the existing natural language analysis models. This approach can reach 300+ million daily active Twitter users and is highly accessible by low-income populations to promote early depression detection to raise awareness in adolescents and young adults and reveal complementary cues to assist clinical depression diagnosis.
Keywords: Artificial intelligence, depression detection, facial emotion recognition, natural language processing, mental disorder.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11807373 Construction Port Requirements for Floating Offshore Wind Turbines
Authors: Alan Crowle, Philpp Thies
Abstract:
s the floating offshore wind turbine industry continues to develop and grow, the capabilities of established port facilities need to be assessed as to their ability to support the expanding construction and installation requirements. This paper assesses current infrastructure requirements and projected changes to port facilities that may be required to support the floating offshore wind industry. Understanding the infrastructure needs of the floating offshore renewable industry will help to identify the port-related requirements. Floating offshore wind turbines can be installed further out to sea and in deeper waters than traditional fixed offshore wind arrays, meaning it can take advantage of stronger winds. Separate ports are required for substructure construction, fit-out of the turbines, moorings, subsea cables and maintenance. Large areas are required for the laydown of mooring equipment, inter array cables, turbine blades and nacelles. The capabilities of established port facilities to support floating wind farms are assessed by evaluation of size of substructures, height of wind turbine with regards to the cranes for fitting of blades, distance to offshore site and offshore installation vessel characteristics. The paper will discuss the advantages and disadvantages of using large land based cranes, inshore floating crane vessels or offshore crane vessels at the fit-out port for the installation of the turbine. Water depths requirements for import of materials and export of the completed structures will be considered. There are additional costs associated with any emerging technology. However, part of the popularity of Floating Offshore Wind Turbines stems from the cost savings against permanent structures like fixed wind turbines. Floating Offshore Wind Turbine developers can benefit from lighter, more cost effective equipment which can be assembled in port and towed to site rather than relying on large, expensive installation vessels to transport and erect fixed bottom turbines. The ability to assemble Floating Offshore Wind Turbines equipment on shore means minimising highly weather dependent operations like offshore heavy lifts and assembly, saving time and costs and reducing safety risks for offshore workers. Maintenance might take place in safer onshore conditions for barges and semi submersibles. Offshore renewables, such as floating wind, can take advantage of this wealth of experience, while oil and gas operators can deploy this experience at the same time as entering the renewables space. The floating offshore wind industry is in the early stages of development and port facilities are required for substructure fabrication, turbine manufacture, turbine construction and maintenance support. The paper discusses the potential floating wind substructures as this provides a snapshot of the requirements at the present time, and potential technological developments required for commercial development. Scaling effects of demonstration-scale projects will be addressed; however the primary focus will be on commercial-scale (30+ units) device floating wind energy farms.
Keywords: Floating offshore wind turbine, port logistics, installation, construction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5077372 Aggregation Scheduling Algorithms in Wireless Sensor Networks
Authors: Min Kyung An
Abstract:
In Wireless Sensor Networks which consist of tiny wireless sensor nodes with limited battery power, one of the most fundamental applications is data aggregation which collects nearby environmental conditions and aggregates the data to a designated destination, called a sink node. Important issues concerning the data aggregation are time efficiency and energy consumption due to its limited energy, and therefore, the related problem, named Minimum Latency Aggregation Scheduling (MLAS), has been the focus of many researchers. Its objective is to compute the minimum latency schedule, that is, to compute a schedule with the minimum number of timeslots, such that the sink node can receive the aggregated data from all the other nodes without any collision or interference. For the problem, the two interference models, the graph model and the more realistic physical interference model known as Signal-to-Interference-Noise-Ratio (SINR), have been adopted with different power models, uniform-power and non-uniform power (with power control or without power control), and different antenna models, omni-directional antenna and directional antenna models. In this survey article, as the problem has proven to be NP-hard, we present and compare several state-of-the-art approximation algorithms in various models on the basis of latency as its performance measure.Keywords: Data aggregation, convergecast, gathering, approximation, interference, omni-directional, directional.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7997371 Health Assessment of Electronic Products using Mahalanobis Distance and Projection Pursuit Analysis
Authors: Sachin Kumar, Vasilis Sotiris, Michael Pecht
Abstract:
With increasing complexity in electronic systems there is a need for system level anomaly detection and fault isolation. Anomaly detection based on vector similarity to a training set is used in this paper through two approaches, one the preserves the original information, Mahalanobis Distance (MD), and the other that compresses the data into its principal components, Projection Pursuit Analysis. These methods have been used to detect deviations in system performance from normal operation and for critical parameter isolation in multivariate environments. The study evaluates the detection capability of each approach on a set of test data with known faults against a baseline set of data representative of such “healthy" systems.Keywords: Mahalanobis distance, Principle components, Projection pursuit, Health assessment, Anomaly.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16817370 Evolutionary Origin of the αC Helix in Integrins
Authors: B. Chouhan, A. Denesyuk, J. Heino, M. S. Johnson, K. Denessiouk
Abstract:
Integrins are a large family of multidomain α/β cell signaling receptors. Some integrins contain an additional inserted I domain, whose earliest expression appears to be with the chordates, since they are observed in the urochordates Ciona intestinalis (vase tunicate) and Halocynthia roretzi (sea pineapple), but not in integrins of earlier diverging species. The domain-s presence is viewed as a hallmark of integrins of higher metazoans, however in vertebrates, there are clearly three structurally-different classes: integrins without I domains, and two groups of integrins with I domains but separable by the presence or absence of an additional αC helix. For example, the αI domains in collagen-binding integrins from Osteichthyes (bony fish) and all higher vertebrates contain the specific αC helix, whereas the αI domains in non-collagen binding integrins from vertebrates and the αI domains from earlier diverging urochordate integrins, i.e. tunicates, do not. Unfortunately, within the early chordates, there is an evolutionary gap due to extinctions between the tunicates and cartilaginous fish. This, coupled with a knowledge gap due to the lack of complete genomic data from surviving species, means that the origin of collagen-binding αC-containing αI domains remains unknown. Here, we analyzed two available genomes from Callorhinchus milii (ghost shark/elephant shark; Chondrichthyes – cartilaginous fish) and Petromyzon marinus (sea lamprey; Agnathostomata), and several available Expression Sequence Tags from two Chondrichthyes species: Raja erinacea (little skate) and Squalus acanthias (dogfish shark); and Eptatretus burgeri (inshore hagfish; Agnathostomata), which evolutionary reside between the urochordates and osteichthyes. In P. marinus, we observed several fragments coding for the αC-containing αI domain, allowing us to shed more light on the evolution of the collagen-binding integrins.Keywords: Integrin αI domain, integrin evolution, collagen binding, structure, αC helix
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36727369 Application of the Data Distribution Service for Flexible Manufacturing Automation
Authors: Marco Ryll, Svetan Ratchev
Abstract:
This paper discusses the applicability of the Data Distribution Service (DDS) for the development of automated and modular manufacturing systems which require a flexible and robust communication infrastructure. DDS is an emergent standard for datacentric publish/subscribe middleware systems that provides an infrastructure for platform-independent many-to-many communication. It particularly addresses the needs of real-time systems that require deterministic data transfer, have low memory footprints and high robustness requirements. After an overview of the standard, several aspects of DDS are related to current challenges for the development of modern manufacturing systems with distributed architectures. Finally, an example application is presented based on a modular active fixturing system to illustrate the described aspects.Keywords: Flexible Manufacturing, Publish/Subscribe, Plug & Produce.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23537368 Impacts of Building Design Factors on Auckland School Energy Consumptions
Authors: Bin Su
Abstract:
This study focuses on the impact of school building design factors on winter extra energy consumption which mainly includes space heating, water heating and other appliances related to winter indoor thermal conditions. A number of Auckland schools were randomly selected for the study which introduces a method of using real monthly energy consumption data for a year to calculate winter extra energy data of school buildings. The study seeks to identify the relationships between winter extra energy data related to school building design data related to the main architectural features, building envelope and elements of the sample schools. The relationships can be used to estimate the approximate saving in winter extra energy consumption which would result from a changed design datum for future school development, and identify any major energy-efficient design problems. The relationships are also valuable for developing passive design guides for school energy efficiency.
Keywords: Building energy efficiency, Building thermal design, Building thermal performance, School building design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19457367 Information Systems Outsourcing Reasons and Risks: An Empirical Study
Authors: Reyes Gonzalez, Jose Gasco, Juan Llopis
Abstract:
Outsourcing, a management practice strongly consolidated within the area of Information Systems, is currently going through a stage of unstoppable growth. This paper makes a proposal about the main reasons which may lead firms to adopt Information Systems Outsourcing. It will equally analyse the potential risks that IS clients are likely to face. An additional objective is to assess these reasons and risks in the case of large Spanish firms, while simultaneously examining their evolution over time.Keywords: Information Systems, Information Technologies, Outsourcing, Reasons, Risks, Survey.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32777366 Tree Based Data Aggregation to Resolve Funneling Effect in Wireless Sensor Network
Authors: G. Rajesh, B. Vinayaga Sundaram, C. Aarthi
Abstract:
In wireless sensor network, sensor node transmits the sensed data to the sink node in multi-hop communication periodically. This high traffic induces congestion at the node which is present one-hop distance to the sink node. The packet transmission and reception rate of these nodes should be very high, when compared to other sensor nodes in the network. Therefore, the energy consumption of that node is very high and this effect is known as the “funneling effect”. The tree based-data aggregation technique (TBDA) is used to reduce the energy consumption of the node. The throughput of the overall performance shows a considerable decrease in the number of packet transmissions to the sink node. The proposed scheme, TBDA, avoids the funneling effect and extends the lifetime of the wireless sensor network. The average case time complexity for inserting the node in the tree is O(n log n) and for the worst case time complexity is O(n2).Keywords: Data Aggregation, Funneling Effect, Traffic Congestion, Wireless Sensor Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13167365 An Analysis of Eco-efficiency and GHG Emission of Olive Oil Production in Northeast of Portugal
Authors: M. Feliciano, F. Maia, A. Gonçalves
Abstract:
Olive oil production sector plays an important role in Portuguese economy. It had a major growth over the last decade, increasing its weight in the overall national exports. International market penetration for Mediterranean traditional products is increasingly more demanding, especially in the Northern European markets, where consumers are looking for more sustainable products. Trying to support this growing demand this study addresses olive oil production under the environmental and eco-efficiency perspectives. The analysis considers two consecutive product life cycle stages: olive trees farming; and olive oil extraction in mills. Addressing olive farming, data collection covered two different organizations: a middle-size farm (~12ha) (F1) and a large-size farm (~100ha) (F2). Results from both farms show that olive collection activities are responsible for the largest amounts of Green House Gases (GHG) emissions. In this activities, estimate for the Carbon Footprint per olive was higher in F2 (188g CO2e/kgolive) than in F1 (148g CO2e/kgolive). Considering olive oil extraction, two different mills were considered: one using a two-phase system (2P) and other with a three-phase system (3P). Results from the study of two mills show that there is a much higher use of water in 3P. Energy intensity (EI) is similar in both mills. When evaluating the GHG generated, two conditions are evaluated: a biomass neutral condition resulting on a carbon footprint higher in 3P (184g CO2e/Lolive oil) than in 2P (92g CO2e/Lolive oil); and a non-neutral biomass condition in which 2P increase its carbon footprint to 273g CO2e/Lolive oil. When addressing the carbon footprint of possible combinations among studied subsystems, results suggest that olive harvesting is the major source for GHG.
Keywords: Carbon footprint, environmental indicators, farming subsystem, industrial subsystem, olive oil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29187364 Improvement of Overall Equipment Effectiveness through Total Productive Maintenance
Abstract:
Frequent machine breakdowns, low plant availability and increased overtime are a great threat to a manufacturing plant as they increase operating costs of an industry. The main aim of this study was to improve Overall Equipment Effectiveness (OEE) at a manufacturing company through the implementation of innovative maintenance strategies. A case study approach was used. The paper focuses on improving the maintenance in a manufacturing set up using an innovative maintenance regime mix to improve overall equipment effectiveness. Interviews, reviewing documentation and historical records, direct and participatory observation were used as data collection methods during the research. Usually production is based on the total kilowatt of motors produced per day. The target kilowatt at 91% availability is 75 Kilowatts a day. Reduced demand and lack of raw materials particularly imported items are adversely affecting the manufacturing operations. The company had to reset its targets from the usual figure of 250 Kilowatt per day to mere 75 per day due to lower availability of machines as result of breakdowns as well as lack of raw materials. The price reductions and uncertainties as well as general machine breakdowns further lowered production. Some recommendations were given. For instance, employee empowerment in the company will enhance responsibility and authority to improve and totally eliminate the six big losses. If the maintenance department is to realise its proper function in a progressive, innovative industrial society, then its personnel must be continuously trained to meet current needs as well as future requirements. To make the maintenance planning system effective, it is essential to keep track of all the corrective maintenance jobs and preventive maintenance inspections. For large processing plants these cannot be handled manually. It was therefore recommended that the company implement (Computerised Maintenance Management System) CMMS.
Keywords: Maintenance, Manufacturing, Overall Equipment Effectiveness
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39887363 Impact of Safety and Quality Considerations of Housing Clients on the Construction Firms’ Intention to Adopt Quality Function Deployment: A Case of Construction Sector
Authors: Saif Ul Haq
Abstract:
The current study intends to examine the safety and quality considerations of clients of housing projects and their impact on the adoption of Quality Function Deployment (QFD) by the construction firm. Mixed method research technique has been used to collect and analyze the data wherein a survey was conducted to collect the data from 220 clients of housing projects in Saudi Arabia. Then, the telephonic and Skype interviews were conducted to collect data of 15 professionals working in the top ten real estate companies of Saudi Arabia. Data were analyzed by using partial least square (PLS) and thematic analysis techniques. Findings reveal that today’s customer prioritizes the safety and quality requirements of their houses and as a result, construction firms adopt QFD to address the needs of customers. The findings are of great importance for the clients of housing projects as well as for the construction firms as they could apply QFD in housing projects to address the safety and quality concerns of their clients.Keywords: Construction industry, quality considerations, quality function deployment, safety considerations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9017362 Tourism Satellite Account: Approach and Information System Development
Authors: Pappas Theodoros, Michael Diakomichalis
Abstract:
Measuring the economic impact of tourism in a benchmark economy is a global concern, with previous measurements being partial and not fully integrated. Tourism is a phenomenon that requires individual consumption of visitors, and which should be observed and measured to reveal the overall contribution of tourism to an economy. The Tourism Satellite Account (TSA) is a critical tool for assessing the annual growth of tourism, providing reliable measurements. This article presents a system of TSA information that encompasses all functions TSA functions, including input, storage, management, and analysis of data, as well as additional future functions and enhances the efficiency of tourism data management and TSA collection utility. The methodology and results presented offer new insights for the development and implementation of TSA.
Keywords: Tourism Satellite Account, information system, data-based tourist account.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 617361 Input Data Balancing in a Neural Network PM-10 Forecasting System
Authors: Suk-Hyun Yu, Heeyong Kwon
Abstract:
Recently PM-10 has become a social and global issue. It is one of major air pollutants which affect human health. Therefore, it needs to be forecasted rapidly and precisely. However, PM-10 comes from various emission sources, and its level of concentration is largely dependent on meteorological and geographical factors of local and global region, so the forecasting of PM-10 concentration is very difficult. Neural network model can be used in the case. But, there are few cases of high concentration PM-10. It makes the learning of the neural network model difficult. In this paper, we suggest a simple input balancing method when the data distribution is uneven. It is based on the probability of appearance of the data. Experimental results show that the input balancing makes the neural networks’ learning easy and improves the forecasting rates.
Keywords: AI, air quality prediction, neural networks, pattern recognition, PM-10.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8267360 Tree Based Data Fusion Clustering Routing Algorithm for Illimitable Network Administration in Wireless Sensor Network
Authors: Y. Harold Robinson, M. Rajaram, E. Golden Julie, S. Balaji
Abstract:
In wireless sensor networks, locality and positioning information can be captured using Global Positioning System (GPS). This message can be congregated initially from spot to identify the system. Users can retrieve information of interest from a wireless sensor network (WSN) by injecting queries and gathering results from the mobile sink nodes. Routing is the progression of choosing optimal path in a mobile network. Intermediate node employs permutation of device nodes into teams and generating cluster heads that gather the data from entity cluster’s node and encourage the collective data to base station. WSNs are widely used for gathering data. Since sensors are power-constrained devices, it is quite vital for them to reduce the power utilization. A tree-based data fusion clustering routing algorithm (TBDFC) is used to reduce energy consumption in wireless device networks. Here, the nodes in a tree use the cluster formation, whereas the elevation of the tree is decided based on the distance of the member nodes to the cluster-head. Network simulation shows that this scheme improves the power utilization by the nodes, and thus considerably improves the lifetime.
Keywords: WSN, TBDFC, LEACH, PEGASIS, TREEPSI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11167359 Adaptive Nonlinear Backstepping Control
Authors: Sun Lim, Bong-Seok Kim
Abstract:
This paper presents an adaptive nonlinear position controller with velocity constraint, capable of combining the input-output linearization technique and Lyapunov stability theory. Based on the Lyapunov stability theory, the adaptation law of the proposed controller is derived along with the verification of the overall system-s stability. Computer simulation results demonstrate that the proposed controller is robust and it can ensure transient stability of BLDCM, under the occurrence of a large sudden fault.Keywords: BLDC Motor Control, Backstepping Control, Adaptive nonlinear control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22287358 Computer Modeling and Plant-Wide Dynamic Simulation for Industrial Flare Minimization
Authors: Sujing Wang, Song Wang, Jian Zhang, Qiang Xu
Abstract:
Flaring emissions during abnormal operating conditions such as plant start-ups, shut-downs, and upsets in chemical process industries (CPI) are usually significant. Flare minimization can help to save raw material and energy for CPI plants, and to improve local environmental sustainability. In this paper, a systematic methodology based on plant-wide dynamic simulation is presented for CPI plant flare minimizations under abnormal operating conditions. Since off-specification emission sources are inevitable during abnormal operating conditions, to significantly reduce flaring emission in a CPI plant, they must be either recycled to the upstream process for online reuse, or stored somewhere temporarily for future reprocessing, when the CPI plant manufacturing returns to stable operation. Thus, the off-spec products could be reused instead of being flared. This can be achieved through the identification of viable design and operational strategies during normal and abnormal operations through plant-wide dynamic scheduling, simulation, and optimization. The proposed study includes three stages of simulation works: (i) developing and validating a steady-state model of a CPI plant; (ii) transiting the obtained steady-state plant model to the dynamic modeling environment; and refining and validating the plant dynamic model; and (iii) developing flare minimization strategies for abnormal operating conditions of a CPI plant via a validated plant-wide dynamic model. This cost-effective methodology has two main merits: (i) employing large-scale dynamic modeling and simulations for industrial flare minimization, which involves various unit models for modeling hundreds of CPI plant facilities; (ii) dealing with critical abnormal operating conditions of CPI plants such as plant start-up and shut-down. Two virtual case studies on flare minimizations for start-up operation (over 50% of emission savings) and shut-down operation (over 70% of emission savings) of an ethylene plant have been employed to demonstrate the efficacy of the proposed study.
Keywords: Flare minimization, large-scale modeling and simulation, plant shut-down, plant start-up.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17367357 Large Eddy Simulation of Flow Separation Control over a NACA2415 Airfoil
Authors: M. Tahar Bouzaher
Abstract:
This study involves a numerical simulation of the flow around a NACA2415 airfoil, with a 15°angle of attack, and flow separation control using a rod, It reposes inputting a cylindrical rod upstream of the leading edge in order to accelerate the transition of the boundary layer by interaction between the rod wake and the boundary layer. The viscous, non-stationary flow is simulated using ANSYS FLUENT 13. Our results showed a substantial modification in the flow behavior and a maximum drag reduction of 51%.
Keywords: CFD, Flow separation, Active control, Boundary layer, rod, NACA 2415.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24617356 Deoiling Hydrocyclones Flow Field-A Comparison between k-Epsilon and LES
Authors: Maysam Saidi, Reza Maddahian, Bijan Farhanieh
Abstract:
In this research a comparison between k-epsilon and LES model for a deoiling hydrocyclone is conducted. Flow field of hydrocyclone is obtained by three-dimensional simulations with OpenFOAM code. Potential of prediction for both methods of this complex swirl flow is discussed. Large eddy simulation method results have more similarity to experiment and its results are presented in figures from different hydrocyclone cross sections.Keywords: Deoiling hydrocyclones, k-epsilon model, Largeeddy simulation, OpenFOAM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25257355 Holistic Face Recognition using Multivariate Approximation, Genetic Algorithms and AdaBoost Classifier: Preliminary Results
Authors: C. Villegas-Quezada, J. Climent
Abstract:
Several works regarding facial recognition have dealt with methods which identify isolated characteristics of the face or with templates which encompass several regions of it. In this paper a new technique which approaches the problem holistically dispensing with the need to identify geometrical characteristics or regions of the face is introduced. The characterization of a face is achieved by randomly sampling selected attributes of the pixels of its image. From this information we construct a set of data, which correspond to the values of low frequencies, gradient, entropy and another several characteristics of pixel of the image. Generating a set of “p" variables. The multivariate data set with different polynomials minimizing the data fitness error in the minimax sense (L∞ - Norm) is approximated. With the use of a Genetic Algorithm (GA) it is able to circumvent the problem of dimensionality inherent to higher degree polynomial approximations. The GA yields the degree and values of a set of coefficients of the polynomials approximating of the image of a face. By finding a family of characteristic polynomials from several variables (pixel characteristics) for each face (say Fi ) in the data base through a resampling process the system in use, is trained. A face (say F ) is recognized by finding its characteristic polynomials and using an AdaBoost Classifier from F -s polynomials to each of the Fi -s polynomials. The winner is the polynomial family closer to F -s corresponding to target face in data base.
Keywords: AdaBoost Classifier, Holistic Face Recognition, Minimax Multivariate Approximation, Genetic Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14987354 Application of Exact String Matching Algorithms towards SMILES Representation of Chemical Structure
Authors: Ahmad Fadel Klaib, Zurinahni Zainol, Nurul Hashimah Ahamed, Rosma Ahmad, Wahidah Hussin
Abstract:
Bioinformatics and Cheminformatics use computer as disciplines providing tools for acquisition, storage, processing, analysis, integrate data and for the development of potential applications of biological and chemical data. A chemical database is one of the databases that exclusively designed to store chemical information. NMRShiftDB is one of the main databases that used to represent the chemical structures in 2D or 3D structures. SMILES format is one of many ways to write a chemical structure in a linear format. In this study we extracted Antimicrobial Structures in SMILES format from NMRShiftDB and stored it in our Local Data Warehouse with its corresponding information. Additionally, we developed a searching tool that would response to user-s query using the JME Editor tool that allows user to draw or edit molecules and converts the drawn structure into SMILES format. We applied Quick Search algorithm to search for Antimicrobial Structures in our Local Data Ware House.
Keywords: Exact String-matching Algorithms, NMRShiftDB, SMILES Format, Antimicrobial Structures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22247353 Intrusion Detection based on Distance Combination
Authors: Joffroy Beauquier, Yongjie Hu
Abstract:
The intrusion detection problem has been frequently studied, but intrusion detection methods are often based on a single point of view, which always limits the results. In this paper, we introduce a new intrusion detection model based on the combination of different current methods. First we use a notion of distance to unify the different methods. Second we combine these methods using the Pearson correlation coefficients, which measure the relationship between two methods, and we obtain a combined distance. If the combined distance is greater than a predetermined threshold, an intrusion is detected. We have implemented and tested the combination model with two different public data sets: the data set of masquerade detection collected by Schonlau & al., and the data set of program behaviors from the University of New Mexico. The results of the experiments prove that the combination model has better performances.
Keywords: Intrusion detection, combination, distance, Pearson correlation coefficients.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18427352 Fault Tolerance in Distributed Database Systems
Authors: M. A. Adeboyejo, O. O. Adeosun
Abstract:
Pioneer networked systems assume that connections are reliable, and a faulty operation will be considered in case of losing a connection. Transient connections are typical of mobile devices. Areas of application of data sharing system such as these, lead to the conclusion that network connections may not always be reliable, and that the conventional approaches can be improved. Nigerian commercial banking industry is a critical system whose operation is increasingly becoming dependent on information technology (IT) driven information system. The proposed solution to this problem makes use of a hierarchically clustered network structure which we selected to reflect (as much as possible) the typical organizational structure of the Nigerian commercial banks. Representative transactions such as data updates and replication of the results of such updates were used to simulate the proposed model to show its applicability.
Keywords: Dependability, reliability, data redundancy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33577351 Normalization Discriminant Independent Component Analysis
Authors: Liew Yee Ping, Pang Ying Han, Lau Siong Hoe, Ooi Shih Yin, Housam Khalifa Bashier Babiker
Abstract:
In face recognition, feature extraction techniques attempts to search for appropriate representation of the data. However, when the feature dimension is larger than the samples size, it brings performance degradation. Hence, we propose a method called Normalization Discriminant Independent Component Analysis (NDICA). The input data will be regularized to obtain the most reliable features from the data and processed using Independent Component Analysis (ICA). The proposed method is evaluated on three face databases, Olivetti Research Ltd (ORL), Face Recognition Technology (FERET) and Face Recognition Grand Challenge (FRGC). NDICA showed it effectiveness compared with other unsupervised and supervised techniques.
Keywords: Face recognition, small sample size, regularization, independent component analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19557350 IVE: Virtual Humans’ AI Prototyping Toolkit
Authors: Cyril Brom, Zuzana Vlckova
Abstract:
IVE toolkit has been created for facilitating research,education and development in the field of virtual storytelling and computer games. Primarily, the toolkit is intended for modelling action selection mechanisms of virtual humans, investigating level-of-detail AI techniques for large virtual environments, and for exploring joint behaviour and role-passing technique (Sec. V). Additionally, the toolkit can be used as an AI middleware without any changes. The main facility of IVE is that it serves for prototyping both the AI and virtual worlds themselves. The purpose of this paper is to describe IVE's features in general and to present our current work - including an educational game - on this platform.
Keywords: AI middleware, simulation, virtual world.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17117349 Daily Global Solar Radiation Modeling Using Multi-Layer Perceptron (MLP) Neural Networks
Authors: Seyed Fazel Ziaei Asl, Ali Karami, Gholamreza Ashari, Azam Behrang, Arezoo Assareh, N.Hedayat
Abstract:
Predict daily global solar radiation (GSR) based on meteorological variables, using Multi-layer perceptron (MLP) neural networks is the main objective of this study. Daily mean air temperature, relative humidity, sunshine hours, evaporation, wind speed, and soil temperature values between 2002 and 2006 for Dezful city in Iran (32° 16' N, 48° 25' E), are used in this study. The measured data between 2002 and 2005 are used to train the neural networks while the data for 214 days from 2006 are used as testing data.
Keywords: Multi-layer Perceptron (MLP) Neural Networks;Global Solar Radiation (GSR), Meteorological Parameters, Prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2983