Search results for: classification algorithms
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2452

Search results for: classification algorithms

862 Comparison of Three Meta Heuristics to Optimize Hybrid Flow Shop Scheduling Problem with Parallel Machines

Authors: Wahyudin P. Syam, Ibrahim M. Al-Harkan

Abstract:

This study compares three meta heuristics to minimize makespan (Cmax) for Hybrid Flow Shop (HFS) Scheduling Problem with Parallel Machines. This problem is known to be NP-Hard. This study proposes three algorithms among improvement heuristic searches which are: Genetic Algorithm (GA), Simulated Annealing (SA), and Tabu Search (TS). SA and TS are known as deterministic improvement heuristic search. GA is known as stochastic improvement heuristic search. A comprehensive comparison from these three improvement heuristic searches is presented. The results for the experiments conducted show that TS is effective and efficient to solve HFS scheduling problems.

Keywords: Flow shop, genetic algorithm, simulated annealing, tabu search.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2065
861 Defect Detection of Tiles Using 2D-Wavelet Transform and Statistical Features

Authors: M.Ghazvini, S. A. Monadjemi, N. Movahhedinia, K. Jamshidi

Abstract:

In this article, a method has been offered to classify normal and defective tiles using wavelet transform and artificial neural networks. The proposed algorithm calculates max and min medians as well as the standard deviation and average of detail images obtained from wavelet filters, then comes by feature vectors and attempts to classify the given tile using a Perceptron neural network with a single hidden layer. In this study along with the proposal of using median of optimum points as the basic feature and its comparison with the rest of the statistical features in the wavelet field, the relational advantages of Haar wavelet is investigated. This method has been experimented on a number of various tile designs and in average, it has been valid for over 90% of the cases. Amongst the other advantages, high speed and low calculating load are prominent.

Keywords: Defect detection, tile and ceramic quality inspection, wavelet transform, classification, neural networks, statistical features.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2376
860 Minimizing of Target Localization Error using Multi-robot System and Particle Filters

Authors: Jana Puchyova

Abstract:

In recent years a number of applications with multirobot systems (MRS) is growing in various areas. But their design is in practice often difficult and algorithms are proposed for the theoretical background and do not consider errors and noise in real conditions, so they are not usable in real environment. These errors are visible also in task of target localization enough, when robots try to find and estimate the position of the target by the sensors. Localization of target is possible also with one robot but as it was examined target finding and localization with group of mobile robots can estimate the target position more accurately and faster. The accuracy of target position estimation is made by cooperation of MRS and particle filtering. Advantage of usage the MRS with particle filtering was tested on task of fixed target localization by group of mobile robots.

Keywords: Multi-robot system, particle filter, position estimation, target localization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1565
859 Non-Smooth Economic Dispatch Solution by Using Enhanced Bat-Inspired Optimization Algorithm

Authors: Farhad Namdari, Reza Sedaghati

Abstract:

Economic dispatch (ED) has been considered to be one of the key functions in electric power system operation which can help to build up effective generating management plans. The practical ED problem has non-smooth cost function with nonlinear constraints which make it difficult to be effectively solved. This paper presents a novel heuristic and efficient optimization approach based on the new Bat algorithm (BA) to solve the practical non-smooth economic dispatch problem. The proposed algorithm easily takes care of different constraints. In addition, two newly introduced modifications method is developed to improve the variety of the bat population when increasing the convergence speed simultaneously. The simulation results obtained by the proposed algorithms are compared with the results obtained using other recently develop methods available in the literature.

Keywords: Non-smooth, economic dispatch, bat-inspired, nonlinear practical constraints, modified bat algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2081
858 Objective Evaluation of Mathematical Morphology Edge Detection on Computed Tomography (CT) Images

Authors: Emhimed Saffor, Abdelkader Salama

Abstract:

In this paper problem of edge detection in digital images is considered. Edge detection based on morphological operators was applied on two sets (brain & chest) ct images. Three methods of edge detection by applying line morphological filters with multi structures in different directions have been used. 3x3 filter for first method, 5x5 filter for second method, and 7x7 filter for third method. We had applied this algorithm on (13 images) under MATLAB program environment. In order to evaluate the performance of the above mentioned edge detection algorithms, standard deviation (SD) and peak signal to noise ratio (PSNR) were used for justification for all different ct images. The objective method and the comparison of different methods of edge detection,  shows that high values of both standard deviation and PSNR values of edge detection images were obtained. 

Keywords: Medical images, Matlab, Edge detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2637
857 Rule Insertion Technique for Dynamic Cell Structure Neural Network

Authors: Osama Elsarrar, Marjorie Darrah, Richard Devin

Abstract:

This paper discusses the idea of capturing an expert’s knowledge in the form of human understandable rules and then inserting these rules into a dynamic cell structure (DCS) neural network. The DCS is a form of self-organizing map that can be used for many purposes, including classification and prediction. This particular neural network is considered to be a topology preserving network that starts with no pre-structure, but assumes a structure once trained. The DCS has been used in mission and safety-critical applications, including adaptive flight control and health-monitoring in aerial vehicles. The approach is to insert expert knowledge into the DCS before training. Rules are translated into a pre-structure and then training data are presented. This idea has been demonstrated using the well-known Iris data set and it has been shown that inserting the pre-structure results in better accuracy with the same training.

Keywords: Neural network, rule extraction, rule insertion, self-organizing map.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 529
856 A Hyper-Domain Image Watermarking Method based on Macro Edge Block and Wavelet Transform for Digital Signal Processor

Authors: Yi-Pin Hsu, Shin-Yu Lin

Abstract:

In order to protect original data, watermarking is first consideration direction for digital information copyright. In addition, to achieve high quality image, the algorithm maybe can not run on embedded system because the computation is very complexity. However, almost nowadays algorithms need to build on consumer production because integrator circuit has a huge progress and cheap price. In this paper, we propose a novel algorithm which efficient inserts watermarking on digital image and very easy to implement on digital signal processor. In further, we select a general and cheap digital signal processor which is made by analog device company to fit consumer application. The experimental results show that the image quality by watermarking insertion can achieve 46 dB can be accepted in human vision and can real-time execute on digital signal processor.

Keywords: watermarking, digital signal processor, embedded system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1246
855 Intelligent System for Breast Cancer Prognosis using Multiwavelet Packets and Neural Network

Authors: Sepehr M.H.Jamarani, M.H.Moradi, H.Behnam, G.A.Rezai Rad

Abstract:

This paper presents an approach for early breast cancer diagnostic by employing combination of artificial neural networks (ANN) and multiwaveletpacket based subband image decomposition. The microcalcifications correspond to high-frequency components of the image spectrum, detection of microcalcifications is achieved by decomposing the mammograms into different frequency subbands,, reconstructing the mammograms from the subbands containing only high frequencies. For this approach we employed different types of multiwaveletpacket. We used the result as an input of neural network for classification. The proposed methodology is tested using the Nijmegen and the Mammographic Image Analysis Society (MIAS) mammographic databases and images collected from local hospitals. Results are presented as the receiver operating characteristic (ROC) performance and are quantified by the area under the ROC curve.

Keywords: Breast cancer, neural networks, diagnosis, multiwavelet packet, microcalcification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1399
854 Research on Weakly Hard Real-Time Constraints and Their Boolean Combination to Support Adaptive QoS

Authors: Xiangbin Zhu

Abstract:

Advances in computing applications in recent years have prompted the demand for more flexible scheduling models for QoS demand. Moreover, in practical applications, partly violated temporal constraints can be tolerated if the violation meets certain distribution. So we need extend the traditional Liu and Lanland model to adapt to these circumstances. There are two extensions, which are the (m, k)-firm model and Window-Constrained model. This paper researches on weakly hard real-time constraints and their combination to support QoS. The fact that a practical application can tolerate some violations of temporal constraint under certain distribution is employed to support adaptive QoS on the open real-time system. The experiment results show these approaches are effective compared to traditional scheduling algorithms.

Keywords: Weakly Hard Real-Time, Real-Time, Scheduling, Quality of Service.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1578
853 Development of a Pipeline Monitoring System by Bio-mimetic Robots

Authors: Seung You Na, Daejung Shin, Jin Young Kim, Joo Hyun Jung, Yong-Gwan Won

Abstract:

To explore pipelines is one of various bio-mimetic robot applications. The robot may work in common buildings such as between ceilings and ducts, in addition to complicated and massive pipeline systems of large industrial plants. The bio-mimetic robot finds any troubled area or malfunction and then reports its data. Importantly, it can not only prepare for but also react to any abnormal routes in the pipeline. The pipeline monitoring tasks require special types of mobile robots. For an effective movement along a pipeline, the movement of the robot will be similar to that of insects or crawling animals. During its movement along the pipelines, a pipeline monitoring robot has an important task of finding the shapes of the approaching path on the pipes. In this paper we propose an effective solution to the pipeline pattern recognition, based on the fuzzy classification rules for the measured IR distance data.

Keywords: Bio-mimetic robots, Plant pipes monitoring, Pipepattern recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1648
852 A Family of Distributions on Learnable Problems without Uniform Convergence

Authors: César Garza

Abstract:

In supervised binary classification and regression problems, it is well-known that learnability is equivalent to uniform convergence of the hypothesis class, and if a problem is learnable, it is learnable by empirical risk minimization. For the general learning setting of unsupervised learning tasks, there are non-trivial learning problems where uniform convergence does not hold. We present here the task of learning centers of mass with an extra feature that “activates” some of the coordinates over the unit ball in a Hilbert space. We show that the learning problem is learnable under a stable RLM rule. We introduce a family of distributions over the domain space with some mild restrictions for which the sample complexity of uniform convergence for these problems must grow logarithmically with the dimension of the Hilbert space. If we take this dimension to infinity, we obtain a learnable problem for which the uniform convergence property fails for a vast family of distributions.

Keywords: Statistical learning theory, learnability, uniform convergence, stability, regularized loss minimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 353
851 The Effects of Speed on the Performance of Routing Protocols in Mobile Ad-hoc Networks

Authors: Narendra Singh Yadav, R.P.Yadav

Abstract:

Mobile ad hoc network is a collection of mobile nodes communicating through wireless channels without any existing network infrastructure or centralized administration. Because of the limited transmission range of wireless network interfaces, multiple "hops" may be needed to exchange data across the network. Consequently, many routing algorithms have come into existence to satisfy the needs of communications in such networks. Researchers have conducted many simulations comparing the performance of these routing protocols under various conditions and constraints. One question that arises is whether speed of nodes affects the relative performance of routing protocols being studied. This paper addresses the question by simulating two routing protocols AODV and DSDV. Protocols were simulated using the ns-2 and were compared in terms of packet delivery fraction, normalized routing load and average delay, while varying number of nodes, and speed.

Keywords: AODV, DSDV, MANET, relative performance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2161
850 Graphical Programming of Programmable Logic Controllers -Case Study for a Punching Machine-

Authors: Vasile Marinescu, Ionut Clementin Constantin, Alexandru Epureanu, Virgil Teodor

Abstract:

The Programmable Logic Controller (PLC) plays a vital role in automation and process control. Grafcet is used for representing the control logic, and traditional programming languages are used for describing the pure algorithms. Grafcet is used for dividing the process to be automated in elementary sequences that can be easily implemented. Each sequence represent a step that has associated actions programmed using textual or graphical languages after case. The programming task is simplified by using a set of subroutines that are used in several steps. The paper presents an example of implementation for a punching machine for sheets and plates. The use the graphical languages the programming of a complex sequential process is a necessary solution. The state of Grafcet can be used for debugging and malfunction determination. The use of the method combined with a set of knowledge acquisition for process application reduces the downtime of the machine and improve the productivity.

Keywords: Grafcet, Petrinet, PLC, punching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2116
849 Alertness States Classification By SOM and LVQ Neural Networks

Authors: K. Ben Khalifa, M.H. Bédoui, M. Dogui, F. Alexandre

Abstract:

Several studies have been carried out, using various techniques, including neural networks, to discriminate vigilance states in humans from electroencephalographic (EEG) signals, but we are still far from results satisfactorily useable results. The work presented in this paper aims at improving this status with regards to 2 aspects. Firstly, we introduce an original procedure made of the association of two neural networks, a self organizing map (SOM) and a learning vector quantization (LVQ), that allows to automatically detect artefacted states and to separate the different levels of vigilance which is a major breakthrough in the field of vigilance. Lastly and more importantly, our study has been oriented toward real-worked situation and the resulting model can be easily implemented as a wearable device. It benefits from restricted computational and memory requirements and data access is very limited in time. Furthermore, some ongoing works demonstrate that this work should shortly results in the design and conception of a non invasive electronic wearable device.

Keywords: Electroencephalogram interpretation, artificialneural networks, vigilance states, hardware implementation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1475
848 Electricity Consumption Prediction Model using Neuro-Fuzzy System

Authors: Rahib Abiyev, Vasif H. Abiyev, C. Ardil

Abstract:

In this paper the development of neural network based fuzzy inference system for electricity consumption prediction is considered. The electricity consumption depends on number of factors, such as number of customers, seasons, type-s of customers, number of plants, etc. It is nonlinear process and can be described by chaotic time-series. The structure and algorithms of neuro-fuzzy system for predicting future values of electricity consumption is described. To determine the unknown coefficients of the system, the supervised learning algorithm is used. As a result of learning, the rules of neuro-fuzzy system are formed. The developed system is applied for predicting future values of electricity consumption of Northern Cyprus. The simulation of neuro-fuzzy system has been performed.

Keywords: Fuzzy logic, neural network, neuro-fuzzy system, neuro-fuzzy prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2009
847 Sensitivity Analysis for Direction of Arrival Estimation Using Capon and Music Algorithms in Mobile Radio Environment

Authors: Mustafa Abdalla, Khaled A. Madi, Rajab Farhat

Abstract:

An array antenna system with innovative signal processing can improve the resolution of a source direction of arrival (DoA) estimation. High resolution techniques take the advantage of array antenna structures to better process the incoming waves. They also have the capability to identify the direction of multiple targets. This paper investigates performance of the DOA estimation algorithm namely; Capon and MUSIC on the uniform linear array (ULA). The simulation results show that in Capon and MUSIC algorithm the resolution of the DOA techniques improves as number of snapshots, number of array elements, signal-to-noise ratio and separation angle between the two sources θ increases.

Keywords: Antenna array, Capon, MUSIC, Direction-of-arrival estimation, signal processing, uniform linear arrays.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2728
846 Hybridizing Genetic Algorithm with Biased Chance Local Search

Authors: Mehdi Basikhasteh, Mohamad A. Movafaghpour

Abstract:

This paper explores university course timetabling problem. There are several characteristics that make scheduling and timetabling problems particularly difficult to solve: they have huge search spaces, they are often highly constrained, they require sophisticated solution representation schemes, and they usually require very time-consuming fitness evaluation routines. Thus standard evolutionary algorithms lack of efficiency to deal with them. In this paper we have proposed a memetic algorithm that incorporates the problem specific knowledge such that most of chromosomes generated are decoded into feasible solutions. Generating vast amount of feasible chromosomes makes the progress of search process possible in a time efficient manner. Experimental results exhibit the advantages of the developed Hybrid Genetic Algorithm than the standard Genetic Algorithm.

Keywords: University Course Timetabling, Memetic Algorithm, Biased Chance Assignment, Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1698
845 Influence Maximization in Dynamic Social Networks and Graphs

Authors: Gkolfo I. Smani, Vasileios Megalooikonomou

Abstract:

Influence and influence diffusion have been studied extensively in social networks. However, most existing literature on this task are limited on static networks, ignoring the fact that the interactions between users change over time. In this paper, the problem of maximizing influence diffusion in dynamic social networks, i.e., the case of networks that change over time is studied. The DM algorithm is an extension of Matrix Influence (MATI) algorithm and solves the Influence Maximization (IM) problem in dynamic networks and is proposed under the Linear Threshold (LT) and Independent Cascade (IC) models. Experimental results show that our proposed algorithm achieves a diffusion performance better by 1.5 times than several state-of-the-art algorithms and comparable results in diffusion scale with the Greedy algorithm. Also, the proposed algorithm is 2.4 times faster than previous methods.

Keywords: Influence maximization, dynamic social networks, diffusion, social influence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 414
844 Scattering Operator and Spectral Clustering for Ultrasound Images: Application on Deep Venous Thrombi

Authors: Thibaud Berthomier, Ali Mansour, Luc Bressollette, Frédéric Le Roy, Dominique Mottier, Léo Fréchier, Barthélémy Hermenault

Abstract:

Deep Venous Thrombosis (DVT) occurs when a thrombus is formed within a deep vein (most often in the legs). This disease can be deadly if a part or the whole thrombus reaches the lung and causes a Pulmonary Embolism (PE). This disorder, often asymptomatic, has multifactorial causes: immobilization, surgery, pregnancy, age, cancers, and genetic variations. Our project aims to relate the thrombus epidemiology (origins, patient predispositions, PE) to its structure using ultrasound images. Ultrasonography and elastography were collected using Toshiba Aplio 500 at Brest Hospital. This manuscript compares two classification approaches: spectral clustering and scattering operator. The former is based on the graph and matrix theories while the latter cascades wavelet convolutions with nonlinear modulus and averaging operators.

Keywords: Deep venous thrombosis, ultrasonography, elastography, scattering operator, wavelet, spectral clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1177
843 A Comparison of First and Second Order Training Algorithms for Artificial Neural Networks

Authors: Syed Muhammad Aqil Burney, Tahseen Ahmed Jilani, C. Ardil

Abstract:

Minimization methods for training feed-forward networks with Backpropagation are compared. Feedforward network training is a special case of functional minimization, where no explicit model of the data is assumed. Therefore due to the high dimensionality of the data, linearization of the training problem through use of orthogonal basis functions is not desirable. The focus is functional minimization on any basis. A number of methods based on local gradient and Hessian matrices are discussed. Modifications of many methods of first and second order training methods are considered. Using share rates data, experimentally it is proved that Conjugate gradient and Quasi Newton?s methods outperformed the Gradient Descent methods. In case of the Levenberg-Marquardt algorithm is of special interest in financial forecasting.

Keywords: Backpropagation algorithm, conjugacy condition, line search, matrix perturbation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3641
842 A Robust STATCOM Controller for a Multi-Machine Power System Using Particle Swarm Optimization and Loop-Shaping

Authors: S.F. Faisal, A.H.M.A. Rahim, J.M. Bakhashwain

Abstract:

Design of a fixed parameter robust STATCOM controller for a multi-machine power system through an H-? based loop-shaping procedure is presented. The trial and error part of the graphical loop-shaping procedure has been eliminated by embedding a particle swarm optimization (PSO) technique in the design loop. Robust controllers were designed considering the detailed dynamics of the multi-machine system and results were compared with reduced order models. The robust strategy employing loop-shaping and PSO algorithms was observed to provide very good damping profile for a wide range of operation and for various disturbance conditions. 

Keywords: STATCOM, Robust control, Power system damping, Particle Swarm Optimization, Loop-shaping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1880
841 Empirical Mode Decomposition Based Denoising by Customized Thresholding

Authors: Wahiba Mohguen, Raïs El’hadi Bekka

Abstract:

This paper presents a denoising method called EMD-Custom that was based on Empirical Mode Decomposition (EMD) and the modified Customized Thresholding Function (Custom) algorithms. EMD was applied to decompose adaptively a noisy signal into intrinsic mode functions (IMFs). Then, all the noisy IMFs got threshold by applying the presented thresholding function to suppress noise and to improve the signal to noise ratio (SNR). The method was tested on simulated data and real ECG signal, and the results were compared to the EMD-Based signal denoising methods using the soft and hard thresholding. The results showed the superior performance of the proposed EMD-Custom denoising over the traditional approach. The performances were evaluated in terms of SNR in dB, and Mean Square Error (MSE).

Keywords: Customized thresholding, ECG signal, EMD, hard thresholding, Soft-thresholding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1083
840 A Stereo Vision System for Top View Book Scanners

Authors: Erik Lilienblum, Robert Niese, Bernd Michaelis

Abstract:

This paper proposes a novel stereo vision technique for top view book scanners which provide us with dense 3d point clouds of page surfaces. This is a precondition to dewarp bound volumes independent of 2d information on the page. Our method is based on algorithms, which normally require the projection of pattern sequences with structured light. We use image sequences of the moving stripe lighting of the top view scanner instead of an additional light projection. Thus the stereo vision setup is simplified without losing measurement accuracy. Furthermore we improve a surface model dewarping method through introducing a difference vector based on real measurements. Although our proposed method is hardly expensive neither in calculation time nor in hardware requirements we present good dewarping results even for difficult examples.

Keywords: stereo vision, 3d surface reconstruction, dewarpingdocuments, book scanner

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1586
839 An Enhanced Slicing Algorithm Using Nearest Distance Analysis for Layer Manufacturing

Authors: M. Vatani, A. R. Rahimi, F. Brazandeh, A. Sanati nezhad

Abstract:

Although the STL (stereo lithography) file format is widely used as a de facto industry standard in the rapid prototyping industry due to its simplicity and ability to tessellation of almost all surfaces, but there are always some defects and shortcoming in their usage, which many of them are difficult to correct manually. In processing the complex models, size of the file and its defects grow extremely, therefore, correcting STL files become difficult. In this paper through optimizing the exiting algorithms, size of the files and memory usage of computers to process them will be reduced. In spite of type and extent of the errors in STL files, the tail-to-head searching method and analysis of the nearest distance between tails and heads techniques were used. As a result STL models sliced rapidly, and fully closed contours produced effectively and errorless.

Keywords: Layer manufacturing, STL files, slicing algorithm, nearest distance analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4157
838 Common Carotid Artery Intima Media Thickness Segmentation Survey

Authors: L. Ashok Kumar, C. Nagarajan

Abstract:

The ultrasound imaging is very popular to diagnosis the disease because of its non-invasive nature. The ultrasound imaging slowly produces low quality images due to the presence of spackle noise and wave interferences. There are several algorithms to be proposed for the segmentation of ultrasound carotid artery images but it requires a certain limit of user interaction. The pixel in an image is highly correlated so the spatial information of surrounding pixels may be considered in the process of image segmentation which improves the results further. When data is highly correlated, one pixel may belong to more than one cluster with different degree of membership. There is an important step to computerize the evaluation of arterial disease severity using segmentation of carotid artery lumen in 2D and 3D ultrasonography and in finding vulnerable atherosclerotic plaques susceptible to rupture which can cause stroke.

Keywords: IMT measurement, Image Segmentation, common carotid artery, internal and external carotid arteries, ultrasound imaging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1997
837 A K-Means Based Clustering Approach for Finding Faulty Modules in Open Source Software Systems

Authors: Parvinder S. Sandhu, Jagdeep Singh, Vikas Gupta, Mandeep Kaur, Sonia Manhas, Ramandeep Sidhu

Abstract:

Prediction of fault-prone modules provides one way to support software quality engineering. Clustering is used to determine the intrinsic grouping in a set of unlabeled data. Among various clustering techniques available in literature K-Means clustering approach is most widely being used. This paper introduces K-Means based Clustering approach for software finding the fault proneness of the Object-Oriented systems. The contribution of this paper is that it has used Metric values of JEdit open source software for generation of the rules for the categorization of software modules in the categories of Faulty and non faulty modules and thereafter empirically validation is performed. The results are measured in terms of accuracy of prediction, probability of Detection and Probability of False Alarms.

Keywords: K-Means, Software Fault, Classification, ObjectOriented Metrics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2303
836 UB-Tree Indexing for Semantic Query Optimization of Range Queries

Authors: S. Housseno, A. Simonet, M. Simonet

Abstract:

Semantic query optimization consists in restricting the search space in order to reduce the set of objects of interest for a query. This paper presents an indexing method based on UB-trees and a static analysis of the constraints associated to the views of the database and to any constraint expressed on attributes. The result of the static analysis is a partitioning of the object space into disjoint blocks. Through Space Filling Curve (SFC) techniques, each fragment (block) of the partition is assigned a unique identifier, enabling the efficient indexing of fragments by UB-trees. The search space corresponding to a range query is restricted to a subset of the blocks of the partition. This approach has been developed in the context of a KB-DBMS but it can be applied to any relational system.

Keywords: Index, Range query, UB-tree, Space Filling Curve, Query optimization, Views, Database, Integrity Constraint, Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1499
835 Segmentation of Images through Clustering to Extract Color Features: An Application forImage Retrieval

Authors: M. V. Sudhamani, C. R. Venugopal

Abstract:

This paper deals with the application for contentbased image retrieval to extract color feature from natural images stored in the image database by segmenting the image through clustering. We employ a class of nonparametric techniques in which the data points are regarded as samples from an unknown probability density. Explicit computation of the density is avoided by using the mean shift procedure, a robust clustering technique, which does not require prior knowledge of the number of clusters, and does not constrain the shape of the clusters. A non-parametric technique for the recovery of significant image features is presented and segmentation module is developed using the mean shift algorithm to segment each image. In these algorithms, the only user set parameter is the resolution of the analysis and either gray level or color images are accepted as inputs. Extensive experimental results illustrate excellent performance.

Keywords: Segmentation, Clustering, Image Retrieval, Features.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1459
834 User Requirements Analysis for the Development of Assistive Navigation Mobile Apps for Blind and Visually Impaired People

Authors: Paraskevi Theodorou, Apostolos Meliones

Abstract:

In the context of the development process of two assistive navigation mobile apps for blind and visually impaired people (BVI) an extensive qualitative analysis of the requirements of potential users has been conducted. The analysis was based on interviews with BVIs and aimed to elicit not only their needs with respect to autonomous navigation but also their preferences on specific features of the apps under development. The elicited requirements were structured into four main categories, namely, requirements concerning the capabilities, functionality and usability of the apps, as well as compatibility requirements with respect to other apps and services. The main categories were then further divided into nine sub-categories. This classification, along with its content, aims to become a useful tool for the researcher or the developer who is involved in the development of digital services for BVI.

Keywords: Accessibility, assistive mobile apps, blind and visually impaired people, user requirements analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 946
833 A Rough Sets Approach for Relevant Internet/Web Online Searching

Authors: Erika Martinez Ramirez, Rene V. Mayorga

Abstract:

The internet is constantly expanding. Identifying web links of interest from web browsers requires users to visit each of the links listed, individually until a satisfactory link is found, therefore those users need to evaluate a considerable amount of links before finding their link of interest; this can be tedious and even unproductive. By incorporating web assistance, web users could be benefited from reduced time searching on relevant websites. In this paper, a rough set approach is presented, which facilitates classification of unlimited available e-vocabulary, to assist web users in reducing search times looking for relevant web sites. This approach includes two methods for identifying relevance data on web links based on the priority and percentage of relevance. As a result of these methods, a list of web sites is generated in priority sequence with an emphasis of the search criteria.

Keywords: Web search, Web Mining, Rough Sets, Web Intelligence, Intelligent Portals, Relevance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1549