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Abstract—Deep Venous Thrombosis (DVT) occurs when a
thrombus is formed within a deep vein (most often in the legs). This
disease can be deadly if a part or the whole thrombus reaches the
lung and causes a Pulmonary Embolism (PE). This disorder, often
asymptomatic, has multifactorial causes: immobilization, surgery,
pregnancy, age, cancers, and genetic variations. Our project aims to
relate the thrombus epidemiology (origins, patient predispositions,
PE) to its structure using ultrasound images. Ultrasonography and
elastography were collected using Toshiba Aplio 500 at Brest
Hospital. This manuscript compares two classification approaches:
spectral clustering and scattering operator. The former is based on
the graph and matrix theories while the latter cascades wavelet
convolutions with nonlinear modulus and averaging operators.
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I. INTRODUCTION

IN normal conditions, a thrombus is formed to stop bleeding

in case of injuries [1]. This natural process, called clotting,

locally changes blood to a gel, thrombus, and lasts until the

injured vessel is healed. This natural process is normally

followed by a fibrinolysis step to dissolve the existing

thrombus. However, this last step may be deficient or a

thrombus may occur in an inappropriate situation (without the

presence of bleeding).

An abnormal thrombus in deep venous network of the leg

is named Deep Venous Thrombosis (DVT). Less known than

myocardial infarction or cardiovascular diseases, DVT may

also have deadly consequences. Indeed, a piece or the entire

thrombus could break off, be carried by the blood to the lung

and cause a Pulmonary Embolism (PE). In Europe, DVT and

PE affect respectively about 680 and 430 thousand individuals

per year [2].

Although DVT can be detected using ultrasound, this

disease is still difficult to diagnose at an early stage. In fact,

DVT is often clinically silent and, in many cases, the first

sign of the disease is an intense pain in the leg or a sudden

PE. DVT is a multifactorial disease [1] involving interactions
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among clinical risk factors (extended immobilization, surgery,

age, etc.) and predispositions to thrombosis (cancer, genetic

mutation, hormone, pregnancy, etc.).

The purpose of our project is to correlate the triggering

factors of the DVT, the presence of PE and the gelatinous

structure of the thrombus. Two ultrasound imaging techniques

are considered to visualize the thrombi: ultrasonography and

elastography. The two techniques highlight respectively the

thrombus echogenicity and its stiffness. More details about

these imaging techniques and the database are provided in

Section II.

To characterize the thrombus structure, this manuscript

considers two approaches: scattering operator and spectral

clustering. Both algorithms, explained in Section III, are

aiming to extract discriminative information from ultrasound

images. Section IV describes the simulation procedure and

discusses the obtained results.

II. DEEP VENOUS THROMBUS IMAGING

This section explains how a thrombus can be detected

and observed using ultrasound imagery techniques:

ultrasonography in Subsection II-A and elastography in

Subsection II-B. Then, Subsection II-C described our

database and the acquisition process.

A. Ultrasonography

Ultrasonography is a common approach to diagnose a

DVT. Using ultrasonography, physicians can observe the

blood network, view the blood flow and check on the

veins compressibility. A vein with a blood clot is relatively

incompressible and is more echogenic than a free vein.

In comparison with other techniques (Contrast venography,

Magnetic Resonance Angiography or Computed Tomography

Angiography) [3], ultrasonography may have a lower quality

image but it is direct, cheap, less-time-consuming, repeatable

and non-invasive.

At the beginning of a DVT episode (in the first hours or

days), the clot is hypoechoic, homogeneous, elastic and it

dilates the vein. On the contrary, an older clot (several weeks)

becomes slowly more heterogeneous, harder and smaller.

The clot echogenicity actually depends on the blood cell

composition, distribution and its fibrin mesh. The exact age

of the thrombus can help determining the right treatment

(anticoagulant, surgery). The study presented in [4] tries to
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age thrombi by characterizing their echostructure. However,

the authors of [5], [6] outcome more promising results to date

the thrombus with a more recent ultrasound imaging technique

named elastography.

B. Elastography

Elastography consists in mapping the hardness, or the

elasticity, of human tissues: the harder a tissue is the more

elastic it becomes. Human soft tissues can distort under the

influence of two types of mechanical waves: compressional

and shear waves. Ultrasonography systems emit compressional

waves and analyze their echoes to build the image. By contrast,

elastography is obtained by estimating the shear wave velocity

through the tissue. Indeed, their velocity is linked to the tissue

elasticity E by

E = 3ρc2 (1)

where ρ is the volume density (kg/m3) and c the shear wave

velocity (m/s) [7].

Nowadays, elastography is extensively investigated in many

potential applications such as: liver fibrosis staging, thyroid,

lymph node, pancreas and breast cancer diagnosis [7]. As

aforementioned, several studies like [5] and [6] create an

animal model to estimate the exact age of the venous

thrombus in vivo using ultrasonography. On human patients,

the thrombus real age is difficult to be estimated because

patients normally consult their doctor after the first signs

(intense pain or PE) or when they have a high probability

of DVT (cancer). Thus, in our study cases, the blood clot can

have between 3 days and two weeks. However, elastography

can give information on the thrombus structure.

C. Data Acquisition Process and Database

In the case of a DVT suspicion, the physician locates the

thrombus head using compression ultrasonography. At Brest

Hospital, Toshiba Aplio 500 systems are used to diagnose

DVT using ultrasonography and elastography. After switching

to the elastography mode, the physician can select a Region

Of Interest (ROI). For an existing obstacle (such as a tumor

in the tissue or a clot in a vein), the shear wave velocity in

that area should be different from the velocity of surrounded

areas.

The Toshiba system displays the elastography on the left

side of the screen and the ultrasonography on the right side.

Later on, a physician selects a shape (like an ellipse) around

the thrombus shown in the ultrasound image. The shear wave

velocity mean and standard deviation in this area are evaluated.

The obtained values are called elastometry.

For each patient, transverse and longitudinal measures are

collected in our database (see Fig. 1). Each measure contains

several acquisitions (e.g. with or without the ellipse). Further

details on the acquisition system and process can be found in

our previous manuscript [8].

III. FEATURE EXTRACTION AND CLASSIFICATION

In order to characterize the thrombi structure with

ultrasound images (ultrasonography and elastography), two

Thrombus

Artery

(a) Transverse ultrasonography

Throhm

buhsAt ey

(b) Transverse elastography (m/s)

Thrombus

(c) Longitudinal ultrasonography

Thrombus

(d) Longitudinal elastography (m/s)

Fig. 1 Transverse and longitudinal ultrasonographies and elastographies
(speed map) of a thrombus in the femoral vein (images obtained with

Toshiba Aplio 500)

approaches, explained in Subsections III-B and III-C, are

considered in this manuscript: Scattering Operator(SO) and

Spectral Clustering (SC). Subsection III-A presentes the

preprocessing steps computed upstream the feature extraction

and the classification.

A. Preprocessing

Our database contains DICOM files composed of a

screenshot image and metadata. First, the acquisition

parameters, the orientation of the view (transverse,

longitudinal) and the epidemiology of the patient (thrombus

head localization, triggering factors, age, PE) are recovered

and stored in a file. Then, the ultrasonography and the

elastography are extracted from the screenshot image based

on the ROI highlighted by the physician (see Fig. 1).

During the medical examination, the physician often needs

to adjust some parameters to observe the blood clot. To

standardize our acquisition, we propose the equalization

of obtained histograms with Contrast-Limited Adaptive

Histogram Equalization (CLAHE) [9] which performs

histogram equalization over each region of the image using

a transformation function (e.g. Rayleigh distribution). The

slope associated with the gray level assignment function is

limited by a threshold to avoid the overamplification of small

amounts of noise in a large homogeneous region. As shown

in Fig. 2, CLAHE improves the local contrast and enhances

the definitions of edges.

Finally, to characterize only the thrombus and optimize the

scattering operator computation, a square image, as big as

possible, is extracted inside the drawn ellipse. The square

size differs according to the patient (its anatomy), the clot

age, its size and its localization (vein). The scattering operator

technique requires that the input images should have the same

size. In this manuscript, the images are resized using zero

padding in the discrete cosine transform at the size 64 × 64
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(a) Before CLAHE (b) After CLAHE

Fig. 2 Longitudinal ultrasonography before and after Contrast-Limited
Adaptive Histogram Equalization (CLAHE) [9] (images obtained with

Toshiba Aplio 500)

pixels (about the median value of the sizes of all the extracted

images). Our preprocessing steps are available in a previous

manuscript [10].

B. Scattering Operator

An ultrasound image often presents as textured areas

with organs, tumors, vessels, etc. The textured areas are

non-homogenous in appearance as they suffer from small

local deformations due to the characteristics of the human

tissues and the image acquisition process. The key idea is to

build a new representation where the high variability within

a same class of images is reduced. One possible approach

is to consider the Scattering Operator (SO) which provides

a representation that is invariant to global translations and

specifically stable to local deformations [11]. This operator

shows promising results to classify synthetic textured images

[12] but also sonar images of seabed [13].

A scattering transform convolutes the input images with

dilated and oriented wavelets which are obtained by rotating

and scaling of a mother wavelet Ψ by θ ∈ Θ angles and by

j ∈ [0, J ] scales:

Ψj,θ(u) = 2−2jΨ(2−jr−1
θ u) (2)

where u ∈ R
2 stands for the spatial position vector and the

rotation matrix is given by

rθ =

(
cos θ − sin θ
sin θ cos θ

)
. (3)

In the simulations described Section IV, Ψ is a Morlet

wavelet [11] which is a complex wavelet composed of a

complex exponential multiplied by a Gaussian window.

Wavelets are localized waveforms stable to small

deformations but they are translation variant. The invariance

can be obtained with a complex modulus and a local

averaging. The averaging is obtained using a low pass-filter

Φ:

ΦJ(u) = 2−2JΦ(2−Ju) (4)

where 2J is the maximum scale and Φ is a scaling function

called the father wavelet. In our simulations, Φ is selected as

a rotationally invariant Gaussian [11]. The directional wavelet

transform vector of an image x at position u (� is a convolution

product) is defined by :

WJx(u) = {x �Ψj,θ(u), x � ΦJ(u)}j<J,θ∈Θ. (5)

The image average S[∅]x defines the first coefficient of the

scattering transform of x:

S[∅]x = x � ΦJ . (6)

where ∅ means that no scale j or orientation θ are used to

computed S[∅]x.

The averaged wavelet coefficients S[j1, θ1]x, obtained for

each scale j1 < J and each orientation θ ∈ Θ, form the first

order coefficients:

S[j1, θ1]x = |x �Ψj1,θ1 | � ΦJ . (7)

It is worth mentioning that the averaging reduces the high

frequency information so the scattering operator recovers

the lost in high frequencies by applying a convolution with

wavelets Ψj2,θ2 at scales j2 < J and orientations θ2 ∈ Θ. The

convolution with Ψj2,θ2 give co-occurrence coefficients for any

pair of scales 2j1, 2j2 and any two orientations θ1 and θ2.

These two levels of decomposition can be used to distinguish

corners and junctions from edges. To make these co-occurence

coefficients translation invariant, another modulus and another

averaging process are again applied:

S[(j1, θ1), (j2, θ2)]x = ||x �Ψj1,θ1 | �Ψj2,θ2 | � ΦJ (8)

S[(j1, θ1), (j2, θ2)]x are named the ordre-2 coefficients.

Further iterations on the wavelet transforms and the

modulus operators enable evaluating more translation invariant

coefficients. A scattering transform aggregates all these

coefficients up to a maximum order M . For a large invariant

representation, several layers are necessary to avoid losing

crucial information. The number of rotations, scales and layers

are key parameters of the scattering transform and need to be

optimized.

C. Spectral Clustering

Recently, Spectral Clustering (SC) [14], [15] is one of the

most widely used techniques for exploratory data analysis

in many applications related to machine learning, computer

vision and/or signal processing. The key idea of clustering is

to divide a dataset into similar groups. The algorithm presented

in [15] shows promising results for ultrasound segmentation

[16] and brain Magnetic Resonance Imaging segmentation

[17]. In our case, the objective is not to classify pixels

within an image (i.e. segmentation) but to classify the image

themselves. Therefore, our images are reshaped into vectors

before applying this algorithm.

The first step consists to build a similarity matrix W to

evaluate the resemblance among the image vectors xi of

our database composed of n images. Each couple (xi, xj) is

associated with a similarity value wij . Similarity matrix W is

then composed of terms wij which can be of cosine, fuzzy

or Gaussian types. In this manuscript, the most used Gaussian

type is considered and defined by:

wij = exp

(
−d2(xi, xj)

2σ2

)
(9)

where σ is the scaling parameter of the Gaussian function and

d(xi, xj) stands for the Euclidean distance between xi and xj .
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The second step is the construction of a weighted graph

G where the edge connecting two points is weighted by their

similarity value. There are several ways to build a graph (fully

connected, r-neighborhood, k-nearest neighbor) [14]. In our

study, fully connected graphs are considered to estimate the

similarities of each sample without a priori knowledge.

Many methods can then be used to cut the graph into

K clusters. The main objective is to minimize the weights

(or similarities) assigned to the removed edges. An efficient

approach is to use the Jordan and Weiss Spectral Clustering

(JWSC) algorithm [18]:

1) Construct the graph and the similarity matrix W
representing the dataset (as defined previously).

2) Compute the normalized Laplacian L:

L = D−1/2(D −W )D−1/2 (10)

where D ∈ R
n×n is a diagonal matrix, called degree

matrix, having on its diagonal the elements di:

di =
n∑

j=1

wij . (11)

3) Find the K first eigenvectors of L and form the matrix

U by stacking the eigenvectors in columns to obtain a

lower-dimensional representation.

4) Get the matrix T from U by normalizing each of Us

rows:

Tij = Uij

(∑n

j=1
U2
ij

)−1/2

(12)

5) In the new representation, classify each row of T
into K clusters using K-means algorithm or another

classification algorithm.

6) Label the original point xi to the cluster of the

corresponding row i of T .

At the end of the JWSC algorithm, the database is classified

into K clusters whose label number ([1, 2...K − 1,K])
depends on the K-means initialization. The classification

results presented in Subsection IV-B are computed after

permutation of the labels in order to get the best rate. The two

approaches (SO and SC) are compare by applying a K-means

algorithm directly on the scattering transforms.

IV. SIMULATIONS

Our project aims to extract thrombi structure features and to

link them to patients’ epidemiology. This manuscript considers

two approaches to extract features and classify our ultrasound

images:

1) Scattering Operator (SO)

2) Spectral Clustering (SC)

As explained in Subsection II-B, the SO parameters (number

of scales, orientations and orders) should be optimized.

However, this optimization step is difficult to carry out on

our ultrasound database for three main reasons:

• The size of our database: around 19 patients with a total

of almost 100 images;

• The patient epidemiology and the thrombus structure may

not be correlated;

• The cause to effect relationship may not be highlighted

with ultrasonography and elastography.

For the selection of the SO parameters, we suggest in

Subsection IV-A to apply the SO on a richer and more

consistent database which contains synthetic textured images.

In the Subsection IV-B, we evaluate the performances of the

two developed approaches (SO and SC) on this synthetic

textured database. Then, Subsection IV-C describes our

simulation results on our ultrasound images.

A. Scattering Operator Optimization

The scattering operator can be adjusted and tuned by

changing some key parameters such as the numbers of scales

J , orientations L and orders M . The authors of [19] suggest

the use of 8 orientations (L = 8), at least 2 orders (M = 2)

and J scales with J defined by:

J =
log2(N)

2
− 2 (13)

where N is the total number of pixels in the image. With an

image containing 128× 128 pixels, J will be equal to 5.

As aforementioned, the parameter optimization is not

realized directly on our ultrasound database but rather on a

synthetic textured database called KTH-TIPS [20] (KTH is

the abbreviation of the authors’ university, and TIPS stands

for Textures under varying Illumination, Pose and Scale). This

database was created by providing variations in scale, pose and

illumination of ten materials (see Fig. 3). Each class contains

81 small images (128 × 128 pixels) which are converted to

grayscale images for the described simulations.

In order to select the parameters (J, L and M) and

to compare our results to the ones in [12], we suggest

to compute supervised classification. Generally, supervised

classifier conducts to divide our database into two sets: the

training and the test sets. As a scattering representation

linearizes the small deformations [11], an affine space model

classifier is well-adapted. In our simulations, the affine space

is computed with a Principal Component Analysis (PCA). The

PCA diagonalizes the covariance of the scattering transform

S. Then, k covariance eigenvectors of largest variance are

selected to generated the space model of each class. k is

called the dimension of the generated affine space. Finally,

each test image is assigned to the closest model (i.e. class).

The dimension k can be adjust by a cross validation with

the SO parameters J , L and M : the scattering operator and

PCA are computed for several J , L, M and k and the set of

parameters which gives the best classification rate is selected

[11].

For the cross validation procedure, we computed the

scattering transforms on the textured images for several set

of parameters noted by:

• Scales J : 2, 3, 4, 5, 6 and 7;

• Orientations L: 1, 2, 4, 6 and 8;

• Orders M : 1, 2 and 3
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(1) Aluminum foil (2) Brown bread (3) Corduroy

(4) Cotton (5) Cracker (6) Linen

(7) Orange peel (8) Sandpaper (9) Sponge

(10) Styrofoam

Fig. 3 Images of the materials present in the KTH-TIPS database [20]

The cross validation procedure (results none reported here)

justifies the selection of the parameters J = 5 and L = 8 and

highlights that M = 2 is already enough to obtain excellent

results.

Tables I gives the classification rates with those parameters

and over 200 random splits (training/test) of KTH-TIPS.

According to the cross validation procedure, k is defined as

the number of images in the training set. SO performances

are compared to those of three methods described and applied

in [12]: Log Gaussian Cox processes (COX) [21], Basic

Image, Features (BIF) [22] and Sorted Random Projection

(SRP) [23]. COX gives better classification rates with a small

training set (5 images) but lower rates with a more important

training set (20 or 40 images). SO, BIF and SRP have similar

performance (around 98%) with important training sets (40

training images). Our simulations with the SO produce very

similar results to [12].

However, as suggested by the authors of [12], the SO

performance can be improved by applying the PCA on the

logarithm of the scattering coefficients (see row ”SO + log”

in Table I). The logarithm linearizes the exponential decrease

of the scattering coefficient energy among each orders [11].

To improve the performance of the SO with a small training

set, one can scale the size of the training set by a power of 2

each scattering vector of the training set. This method, called

TABLE I
CLASSIFICATION RATES WITH STANDARD DEVIATIONS ON KTH-TIPS
DATABASE FOR THREE TRAINING SIZES PER CLASS: THE FIRST FOUR

ROWS GIVE THE RESULTS PUBLISHED IN [12] AND THE LAST THREE

ROWS GIVE OUR SIMULATION RESULTS

Train size 5 20 40
COX [21] 80.2± 2.2 92.4± 1.1 95.7± 0.5
BIF [22] - - 98.5
SRP [23] - - 99.3
SO [12] 69.1± 3.5 94.8± 1.3 98.0± 0.8

SO 68.8± 3.96 96.2± 1.1 99.0± 0.6
SO + log 75.5± 3.6 96.8± 1.2 99.1± 0.6

SO + log + MT 79.7± 3.3 96.9± 1.0 98.9± 0.7

TABLE II
CLASSIFICATION RATES WITH STANDARD DEVIATIONS ON KTH-TIPS

DATABASE FOR UNSUPERVISED CLASSIFICATION

Methods Mean and Standard deviation
SO 39.6± 2.1

SO + log 48.2± 3.9
SC 44.0± 3.9

Multi training (MT), combined with logarithm makes the SO

as performing as COX with 5 training images per class (see

row ”SO + log + MT” in Table I). Therefore, this methode

can so be interesting when the size of our ultrasound database

will become large enough for supervized classification.

B. Scattering Operator and Spectral Clustering
Comparison

The previous Subsection describes how we selected the

SO parameters (L, J and M ) using supervised classification.

However, the objective is to classify the thrombi images but,

with the current database (small and uncertain classes), we

propose in this manuscript two unsupervised approach:

• Scattering operator followed by a K-means;

• Spectral clustering with the JWSC algorithm.

This Subsection evaluates the performance of the two

developed approaches (SO and SC) on the KTH-TIPS

database. Table II shows the mean and the standard deviation

classification rates computed over 10 simulations. On the

presented simulations, SC outperforms ”normal” SO but the

use of the logarithm makes the SO more performing.

Table III gives the confusion matrices of the simulations

with the SC and with the SO followed by a logarithm.

Each row of the confusion matrix corresponds to an actual

class while each column represents the classes predected

by the classifer [24]. We can see that six classes are

satisfactorily classified (aluminum, brown bread, cracker, linen

and styrofoam). Applying the two approaches on only those six

classes increase the classification rates to 72.43% (respectively

63, 17%) with the ”SO + log” (resp. the SC).

Three classes are correctly classified with the spectral

clustering (aluminum, corduroy and linen). Simulations focus

on those three classes improve the performance to 90.1%
(resp. 78.07%) for the SC (resp. the ”SO + log”). On the

contrary, three classes are very misclassified (cotton, sandpaper

and sponge) and considering only those three classes do not

increase the classification rate (49.8% for ”SO + log” and

46.6% for the SC). The most confused classes still remain

undistinguishable.
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TABLE III
MEAN CONFUSION MATRICES OVER 10 SIMULATIONS

(a) SCATTERING OPERATOR AND LOGARITHM

1 2 3 4 5 6 7 8 9 10
1 95 0 0 0 0 0 0 5 0 0
2 0 53 0 0 34 0 0 0 13 0
3 0 4 42 11 3 17 12 0 4 6
4 0 0 13 38 0 15 3 12 3 16
5 12 11 0 0 58 0 0 0 19 0
6 0 2 0 0 0 50 5 5 1 36
7 0 12 10 1 0 0 59 5 6 5
8 0 3 0 17 0 15 13 17 2 33
9 0 28 1 5 6 5 36 6 11 2
10 0 2 0 1 0 19 5 15 0 58

(b) SPECTRAL CLUSTERING

1 2 3 4 5 6 7 8 9 10
1 93 4 0 0 1 2 0 0 0 0
2 11 36 25 1 0 13 0 8 5 0
3 0 4 66 1 0 14 0 12 3 0
4 0 1 2 17 0 23 0 12 23 22
5 7 10 1 10 40 20 0 8 3 0
6 0 1 1 2 0 51 25 2 7 10
7 0 8 2 1 1 0 44 6 6 32
8 0 3 9 16 0 2 0 25 26 19
9 0 1 22 16 1 11 0 18 31 0
10 0 0 3 10 0 10 0 13 27 36

C. Application on Thrombi Images

A reduced database is selected in our recent study with

images having similar parameters. A patient, Pi, is represented

by one or two couple of transverse and longitudinal ultrasound

images. The reduced database contains 8 patients that should

be classified according to the DVT origin or/and the presence

of PE. We have four patients with cancer, including one who

has contracted a PE. One patient gets a DVT and a PE due

to an immobilization. Our database contains also two patients

with a PE, without clear triggering factors, but with genetic

predisposition. The last patient of the database contracts a

DVT with unknown cause, which is called idiopathic DVT.

In previous studies [10], [25], the scattering operator

was only applied on ultrasonography. However, both

ultrasonography and elastography are recently considered. The

Scattering Operator (SO) and then the Spectral Clustering

(SC) are applied and compared. SO parameters are selected

by taking into account the parameter optimization described

in Subsection IV-A (M = 2, L = 8, J = 4 and logarithm

of the scattering coefficients). Whatever the approach, the

classification step is made with the K-means algorithm with

K in range of 2 to 5. Transverse and longitudinal views are

simultaneously considered. The scattering transforms of each

view are combined to form a single vector before applying

K-means. For spectral clustering, the two images are fused

upstream.

Figs. 4a and 4b show the classification results with

respectively the scattering operator and spectral clustering

applied on the ultrasonographies. With both approaches, the

patients with genetic predisposition (P6 and P7) are not in

the same class, independently from the number of clusters.

Spectral clustering classifies the four patients with a cancer

in the same class (in two and three clusters) whereas the

scattering operator dispatches them into two or three classes.

The presence of PE seems to be not related with the thrombus

echogenicity: there are often patients with PE in each cluster.

However, we can see similarity between SO and CS clusters:

P6, P1 and P4 form mostly a same class; the two couples of

P7 images are in the same class too.

The classification results with elastographies (see Figs. 4c

and 4d) do not show real correlation between the thrombus

stiffness and the patient epidemiology. As previously, patients

with cancer are dispatched in different clusters. The patients

with genetic predisposition (P6 and P7) are classified within

a same class with the SO. SC clusters seem to be less stable

than SO clusters with elastography (P3, P8 and P4 are not

always classified in the same classes).

Furthermore, the different classification results between

ultrasonographies and elastographies could suggest that

the echostructure and the stiffness of the thrombus are

not correlated. In further simulations, ultrasonography and

elastography are combined, transverse and longitudinal images

are also classified separately but the similar results are

observed. A major drawback of our study can be explained by

the small size of the available (up to now) reduced database.

V. CONCLUSION

DVT is a major public-health problem, with about half a

million DVT events including a third of a million PE events

per annum in Europe. This multifactorial disease is often

asymptomatic and can also occur with no obvious causes.

DVT can progress to more life-threatening PE. Our project

is looking to correlate DVT causes, PE appearance and the

thrombus structure.

In this manuscript, we describe and implement two

approaches (scattering operator and spectral clustering)

to characterize a thrombus using ultrasonography and

elastography. In order to tune the various parameters required

in each approach, we evaluate the two approaches on

a synthetic textured database. The previously described

simulations show that the scattering operator can achieve

excellent performance with supervised classification

(about 98% with principal component analysis). The

two unsupervised approaches (scattering operator with

K-means and spectral clustering) gives satisfactory results

(almost 50%). However, the scattering operator outperforms

the spectral clustering on the synthetic textured database

(respectively 44.0% and 48.2%).

On the thrombi database, whatever the approaches,

scattering operator or spectral clustering, the obtained

classification results seem to be not related to the DVT

epidemiology. However, the major limitation of these

experimentations is the small size of the database. Currently,

we are looking to increase the size of our database and to

assess these methods on salivary gland to help the diagnosis

of the Gougerot-Sjgren syndrome. In our future works, we

are planning to consider other classification techniques mainly

based on statistics approaches such as support vector machine

or deep learning.
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(a) K-means applied on the scattering transforms computed on ultrasonographies

(b) Spectral clustering in K classes computed on ultrasonographies

(c) K-means applied on the scattering transforms computed on elastographies

(d) Spectral clustering in K classes computed on elastographies

Fig. 4 Results with Transverse (T) and Longitudinal (L) ultrasound images (the number inside the parenthesis near the patient ID is the patient age)
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