
 

 

  
Abstract—This paper explores university course timetabling 

problem. There are several characteristics that make scheduling and 
timetabling problems particularly difficult to solve:  they have huge 
search spaces, they are often highly constrained, they require 
sophisticated solution representation schemes, and they usually 
require very time-consuming fitness evaluation routines. Thus 
standard evolutionary algorithms lack of efficiency to deal with 
them. In this paper we have proposed a memetic algorithm that 
incorporates the problem specific knowledge such that most of 
chromosomes generated are decoded into feasible solutions. 
Generating vast amount of feasible chromosomes makes the progress 
of search process possible in a time efficient manner. Experimental 
results exhibit the advantages of the developed Hybrid Genetic 
Algorithm than the standard Genetic Algorithm. 
 

Keywords—University Course Timetabling, Memetic Algorithm, 
Biased Chance Assignment, Optimization.  

I. INTRODUCTION 
HE University Course Timetabling Problem (UCTP) 
consists of scheduling a set of lectures for each course 

within a given number of rooms and time periods. In a UCTP, 
we assign an event (course-lecture) into a time slot and also 
assign a number of resources (professors, students, and 
rooms) in such a way that there is no conflict between the 
resources, time slots and events. Another similar problem is 
school timetabling problem (STP). The main difference 
between UCTP and the STP is that university courses can 
have common students, whereas school classes are disjoint 
sets of students. If two courses have common students then 
they conflict, and they cannot be scheduled at the same period. 
Moreover, school teachers always teach just one course, 
whereas in universities, a professor can teach a set of course. 
In addition, in the UCTP, availability of rooms (and their size) 
plays an important role, whereas in the STP they are often 
neglected because, in most cases, we can assume that each 
class has its own room. As mentioned by Carter and Laporte 
(1998) the UCTP is a multi-dimensional assignment problem, 
in which students and teachers (or faculty members) are 
assigned to courses, lectures or classes and events (individual 
meetings between students and teachers) are assigned to 
classrooms and time slots. 

Several authors split the requirements into hard and soft 
ones (Eiselt and Laporte, 1987). The hard requirements are 
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included in the constraints and they make the search space, 
whereas the soft ones are included in the objective function. 
Soft requirements generally include event spreading 
constraints and room capacity constraints [5]. The real world 
UCTP consists of different constraints: some are hard and 
some are soft. Hard constraints have a higher priority than 
soft. The objective of the UCTPs is to satisfy the hard 
constraints and to minimize the violation of the soft 
constraints. 

Courses timetabling varies from university to university 
according to the resources and constraints. There is no known 
deterministic polynomial time algorithm for solving the 
UCTP. Because, Even et al. 1976 proved the UCTP is an NP-
hard problem. So, it is very difficult to be solved by 
conventional methods and the amount of computation 
required finding optimal solution increases exponentially with 
problem size. 

A wide variety of solution techniques and approaches for 
solving UCTPs have been described in the literature and 
evaluated by standard problem instances. Note that, there is a 
main difference between techniques and approaches; a 
technique is an algorithm or a set of algorithms for solving the 
problem (e.g., genetic algorithms). Instead an approach is a 
general framework for developing a solution algorithm (e.g., 
constraint logic programming). Burke and Petrovic (2002) 
classified these methods into four main types: sequential 
methods, clustering methods, constraint-based methods, and 
meta-heuristic methods. 

Sequential methods order events using domain heuristics 
and then assign the events sequentially into valid time periods 
so that no events in the period are in conflict with each other 
[12]. In these methods, timetabling problems are usually 
represented as graphs where events (courses, lectures) are 
represented as vertices, while conflicts between the events are 
represented by edges (de Werra, 1985). In the clustering 
methods the set of events is split into some clusters which 
satisfy hard constraints and then the clusters are assigned to 
time periods to fulfill the soft constraints. Different 
optimization techniques have been employed to solve the 
problem of assigning the clusters of events into time periods 
(Balakrishnan et al. 1992). The main drawback of these 
approaches is that the clusters of events are formed and fixed 
at the beginning of the algorithm and that may result in a poor 
quality timetable. In the constraint-based methods a 
timetabling problem is modeled as a set of variables (i.e., 
events) to which values (i.e., resources such as rooms and 
time periods) have to be assigned to satisfy a number of 
constraints (Brailsford et al. 1999). Usually a number of rules 
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are defined for assigning resources to events. When no rule is 
applicable to the current partial solution a backtracking is 
performed until a solution is found that satisfies all 
constraints. In the last two decades a variety of meta-heuristic 
approaches such as simulated annealing (SA), tabu search 
(TS), genetic algorithms (GAs) and hybrid approaches (e.g., 
memetic algorithms (MAs)) have been investigated for 
timetabling. Meta-heuristic methods begin with one or more 
initial solutions and employ search strategies that try to avoid 
local optimum. All of these search algorithms can produce 
high quality solutions but often have a considerable 
computational cost.  

Meta-heuristics are divided into two categories, local 
search-based and population-based methods. The local search-
based methods consider one solution at a time. The solution 
undergoes changes iteratively until a final solution which is 
usually in the same region of the search space as the initial 
solution is reached. They often use neighborhood structures 
guided by a given acceptance rule to improve the quality of 
solution. Although the biggest merit of using these methods is 
their strength of fine-tuning the solution more structurally and 
more quickly than population-based methods, the main 
drawback is that they have a tendency to get stuck in a small 
region of the search space. This is mainly due to local search-
based methods focusing on exploitation rather than 
exploration, which means that they move in one direction 
without performing a wider scan of the entire search space 
(Al-Betar and Khader, 2010). 

The hybridization method (an evolutionary algorithm 
together with a local search) has been given various other 
names in the literature such as memetic algorithms, hybrid 
genetic algorithms, genetic local search algorithms and etc 
(Hart et al. 2004). In this paper, a memetic algorithm is 
proposed for solving the UCTP, which combines a local 
search technique into GA. MAs are a class of meta-heuristic 
methods, which combine the population-based method GA, 
with local search made by individuals. Many researchers have 
applied MAs to address timetabling problems by combining 
GAs and local search techniques.  

Burke and Newall (1999) proposed a multi stage 
evolutionary algorithm which integrated an evolutionary 
algorithm with a decomposition method. Real data sets were 
used to evaluate the efficiency of the algorithm. The results of 
real set of instances show the efficiency of their proposed 
algorithm. Abdullah et al. (2005) developed a Variable 
Neighborhood Search (VNS) approach which used a fixed 
tabu list to penalize particular neighborhood structures. The 
authors continue their work by developing a hybrid 
Evolutionary Algorithm with VNS for solving UCTP with 
very successful outcomes (Abdullah et al. 2007). As 
mentioned before, inserting local search within GA is 
considered as an effective way to produce high quality 
solution than using GAs. Abdullah and Turabieh (2008) 
applied a sequential search algorithm as a local search into 
GA to improve the timetable by reducing the number of soft 
constraint violated. They have applied repair process for 

rectifying infeasible chromosomes that were generated during 
evolution process. The repair function of their algorithm was 
able to change infeasible timetable to feasible one. 

Jat and Yang (2008) proposed a memetic algorithm for 
UCTP, which integrates two local search techniques into GAs. 
The first local search technique was based on events (i.e. 
courses and subjects) and the second was based on time slots. 
They considered three soft constraints and the goal of UCTP 
was to minimize the soft constraint violations of a feasible 
solution. Both local search techniques work in two steps. In 
the first step a feasible solution was generated base on hard 
constraint violations. They defined a solution as a feasible 
solution if that satisfied all hard constraints. If there are hard 
constraint violations for either an event or a time slots, local 
searches try to resolve them by applying moves in the three 
neighborhoods structures until a termination condition was 
reached. In the second step, after reaching the state of a 
feasible solution, local searches then deals with soft 
constraints and again perform a similar process as in the first 
step on each event or time slot to reduce its soft constraint 
violations. 

In this paper we have proposed a chance based selection 
step enhanced by a biased weighting process as a rapid local 
search module. This module is then embedded in a Genetic 
Algorithm which results an efficient Memetic Algorithm. 
Developed MA is implemented on a spread sheet for to solve 
real world problems. In the remaining of the paper first we 
define the real world problem dealt with in details in section 2, 
and then the developed algorithm is described in section 3. 
Some experimental results are provided in section 4 and some 
concluding remarks with threads for feature studies are 
reviewed in section 5.  

II. UNIVERSITY COURSE TIMETABLING IN I.A.U. DEZFUL 
Islamic Azad University Dezful branch (I.A.U. Dezful) 

enrolls about 18000 students in over 20 academic 
departments. The Department of Mathematical Sciences 
(DMS) offers about 400 hours of courses in each semester 
through the cooperation of about 45 full time and part time 
faculty staff. Each semester, all departments provide the DMS 
an estimated enrollment and special requirements (e.g., with 
regard to a special instructor, room, or timeslot) for each 
section of each course.  

Because of the growing demand for higher education in 
recent years, DMS lacks of enough educational spaces to plan 
the courses as compared with last years; and timetabling 
process turns out to be a more difficult problem. The problem 
of course timetabling in DMS entails planning the courses 
specific to students of mathematics (specific courses) and 
courses serviced to the students of other departments (service 
courses). The scheduler at DMS must assign 150 classes to 
about 7 classrooms. The assignment has to take a number of 
objectives into consideration. A room with fewer seats than 
students is undesirable, as is a room that is much too large. In 
addition, the location of the room is also important. From a 
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professor’s point of view, it is nice to have a room that is close 
to his or her office. From a students’ point of view it is 
convenient to have consecutive classes close together. 

It is not easy to state a formal objective for this optimization 
problem, since there are often no clear priorities. For example, 
if there is no room to accommodate both Numerical Methods 
and General Math at the same time, then it is not easy to make 
a choice based on a priori principle. Fortunately, some policy 
guidelines had been established on standard time patterns for 
offering courses. The twelve-hour day, starting at 8 a.m., is 
divided into twelve one hour blocks. Classes may be 
scheduled only for single, dual or triplet consecutive blocks. 
The classes with more weekly teaching hours are to be 
departed into two partitions each requiring less than three 
consecutive time blocks.  

Students of mathematics admitted in the same year all 
called ‘year-mate’. Since the policy of DMS is to facilitate the 
process of course selection for student, they are categorized 
into groups called ‘year-mates’ and there is a recommended 
set of courses for each set of year-mates designated for each 
semester. The hard constraint ‘no student conflict’ compels 
the planner to avoid the overlaps between the schedules of 
courses gathered in a same recommended courses list. 

Each instructor is capable of teaching a set of courses and is 
favored to have its working hours in certain timeslots in 
distinct days. No instructor conflict is allowed, i.e. each 
instructor can teach at most one section of a course at a time. 
Each course has a distinct ‘teaching units’ such as: 2, 3, …, 6. 
Which it means that course is to be taught 2, 3, …, 6 hours a 
week respectively. No course can be planned to be taught 
continuously for more than 3 hours. In other words the 
courses with 4 or more ‘teaching units’ should be divided into 
two sessions during the week and the sessions can be held in 
different rooms. Beside the standard constraints usually dealt 
with in a university course timetabling, DMS faces some other 
hard constraint which makes the timetabling more 
complicated. They are listed below: 
• No classroom conflict: Available classrooms are bounded 

to be at most 7 classrooms a day and are extendable to 8 
in special cases. No overlap is allowed in the schedule of 
the classrooms. 

• No student conflict: a group a year-mates with the same 
recommended courses list should have the possibility to 
select the recommended courses in each semester without 
any conflict. This means that each course in each 
recommended courses list for a given semester should 
have at least one of its sections planned so that it has no 
time overlap with all other courses of that list. 

• No instructor conflict: each instructor prefers to teach some 
arbitrary time blocks through the week. All the sections 
assigned to each instructor should be planned through 
his/her preferred time blocks with no overlaps. 

• Each full time mentor has to teach at least 16 hours a week. 
• Each full time assistant professor has to teach at least 9 

hours a week. 

• Each faculty member (part time or full time) has to teach at 
most 23 hours a week. 

• Working days of each full time faculty member has to be at 
least 4 days a week. 

• Each working day consists of twelve one hour time blocks 
and the 5th one is reserved for lunch and prayers time. All 
sessions planned before 5th time block have to be 
finished before lunch time. 

• Courses should be planned for 2 or 3 hour sessions (each 
session is 2 or 3 consecutive time blocks in a day) 
through the week and those having 4, 5, or 6 teaching 
units should be departed into two partitions each with 2 or 
3 hour sessions. 

DMS faces the soft constraints listed below: 
• Decrease the distance traveled by each instructor as much 

as possible. Since there may be some specific or service 
courses assigned to an instructor, the rooms available to 
planner are scattered in different departments physically 
distributed in the university. 

• Increase the efficiency of the timetable for each professor. 
Lessen the idle slots between a pair of working slots. 

• Increase the efficiency of the timetable of each room. 
Lessen the idle interim single slots. 

• Increase the efficiency of the timetable for each student. i.e. 
Decrease the active days required for each set of 
recommended courses list. 

III. MEMETIC ALGORITHM  
It is possible to think of a memetic algorithm as an 

evolutionary algorithm that incorporates knowledge about the 
problem domain being solved (Burke and Landa Silva, 2005). 
This knowledge can be in the form of specialized operators, 
heuristics and other local searches that contribute towards 
self-improvement ability in the individuals of the population. 
Since memetic algorithms also are known as a combination of 
genetic algorithms with local search heuristics, they are also 
called genetic local search, hybrid genetic algorithms, hybrid 
evolutionary algorithms (Talbi, 2002). This type of hybrid 
approach has been applied to a vast number of optimization 
problems with considerable success. 

It is generally believed that memetic algorithms are 
successful because they combine the explorative search ability 
of genetic algorithms and the exploitive search ability of local 
searches. An analogy is that the evolutionary part of a 
memetic algorithm attempts to simulate the genetic evolution 
of individuals through generations, while the local search part 
attempts to simulate the individual learning within a lifetime. 
This local search can be for example, constructive heuristics, 
repair methods, specialized self-improvement operators, etc. 
The local search phase can be applied before, after or in 
between the genetic operations (Fig. 1). Krasnogor (2002) 
argues that in a truly memetic system:  

1. Memes also evolve representing the way in which 
"individuals learn, adopt or imitate certain memes or modify 
other memes" and,  
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2. The distribution of memes changes dynamically within 
the population representing the effects of "teaching, 
preaching, etc." within the population of individuals. 

 
Fig. 1 Possible places to incorporate knowledge or other operators 

within MA (Hart et al. 2004) 
 

In this paper we have introduced a biased decoding scheme 
for MA and developing Biased Decoded Memetic Algorithm 
(BDMA) in which a string of random numbers is decoded into 
a solution (timetable). We have applied the problem specific 
knowledge to assign biased chance to each component 
(course, professor, room, day, time slot) of the chromosomes 
in order to avoid infeasible timetables satisfying hard 
constraints. 

IV. DEVELOPED MEMETIC ALGORITHM 
In order to solve the problem of UCTP in DMS we have 

developed 'Biased Decoded Memetic Algorithm' (BiD-MA). 
BiD-MA takes the following parameters as input: 
• Properties of the courses: teaching units and the number of 

sections required of each course, 
• Teaching interests: the ability or interests of professors to 

teach the courses, 
• Time interests: the time blocks afforded by each instructor 

as teaching time, 
• Recommended courses list: the courses recommended to be 

taken in the same semester by each set of year-mates, 
and tries to produce feasible timetables satisfying hard 
constraints. Soft constraints are considered as evaluation 
function in selection phase. Five evolutionary operators of the 
BiD-MA are discussed below. 

A. Encoding Scheme 
Every chromosome consists of a main string and a tail 

string. The main string is a sequence of 5-tuple sub-strings 
and the tail string is a sequence of triplet sub-strings. Each 5-
tuple sub-string determines how to select a set of 1) course, 2) 
professor, 3) classroom, 4) day and 5) time slot to 
accommodate one section of a course and triplet sub-strings 
determine how to select a 1) classroom, 2) day, and 3) time 
slot to accommodate the second partition of the classes with 

teaching time more than 4 hours a week (Fig. 2). 
 
 

 
Main string: 

Rnd 
#1 

Rnd 
#2

Rnd 
#3

Rnd 
#4

Rnd 
#5

Rnd 
#6 

Rnd 
#7 

Rnd 
#8 

Rnd 
#9 

Rnd
#10

Rnd 
#11 ....

 
 
 

 
Tail string: 

Rnd 
#1 

Rnd 
#2

Rnd 
#3

Rnd 
#4

Rnd 
#5

Rnd 
#6 

Rnd 
#7 

Rnd 
#8 

Rnd 
#9 

Rnd 
#10

Rnd 
#11 ....

 
 
 

 
Fig. 2 The configuration of storing random numbers in main and tail 

string of a chromosome 
 

B. Parent Selection 
In order to form pair of parents, each parent is randomly 

selected from the population. Selected parents are removed 
from the population and then are moved to mating pool. 
Offsprings and parents are then evaluated based on their 
evaluation function and the next population is selected among 
them. 

C. Crossover  
Each pair of parents yields two offsprings. A binary mask 

string is generated to determine which genes should be copied 
from the first parent and which genes should be copied from 
the second one to reproduce each offspring. The mechanism 
of binary mask approach in illustrated in Fig. 3. 

D. Mutation 
Three percent of offsprings generated by crossover operator 

are randomly selected and passed to mutation operator. 

E. Fitness Evaluation  
In order to evaluate the fitness of each chromosome, it is 

decoded to its respective timetable satisfying hard constraints. 
The evaluation function is calculated as the violation of soft 
constraints in the schedule of professors, students, and 
classrooms is measured in form of the summation of idle time 
blocks surrounded by two working blocks in a daily schedule. 

Parent #1: 
a b c d e f g h i j k L m n 

Parent #2: 
A B C D E F G H I J K L M N 

Binary mask: 
1 1 1 1 0 0 0 1 1 1 1 1 0 0 

Child #1: 
a b c d E F G h i j k L M N 

Child #2: 

Local Search 

Use of problem-
specific information in 

operator 

Initial Population 

Population 

Mating Pool 

Offspring 

Offspring 

Modified Selection 
operators 

Use of problem-
specific information in 

operator 

Parent 
Selection 

Crossover 

Mutation 

Local Search 

Survival Selection 

Known solutions, 
Constructive heuristics, 

Local search, Over 
selection 

Assignment parameters 
for 1st section 

Assignment parameters 
for 2nd section 

Assignment 
parameters 

for 1st section

Assignment 
parameters for 

2nd section 
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A B C D e f g H I J K L m n 
Fig. 3 Applying a binary mask on parent #1 and parent #2 produces 

child #1 and child #2 
 
 

1) Read    the main sub-string and consider it as active sub-string 
2) Assign     weights to courses 
3) Read     the first random number stored in the  first gene of active 

sub-string 
4) Select     a course based on roulette wheel 
5) If     the course requires 3 or less teaching hours a week 
6)            "required time blocks" ← "teaching hours" 
7) Else 
8)            "required time blocks for first partition of the course" ← 

roundup(("teaching hours")/2) 
9) End 
 
10) Assign     weights to professors 
11) Read     the next random number stored in the active sub-string 
12) Select     a professor based on roulette wheel 
 
13) Assign     weights to classroom 
14) Read     the next random number stored in the active sub-string 
15) Select     a classroom based on roulette wheel 
 
16) Assign     weights to days 
17) Read     the next random number stored in the active sub-string 
18) Select     a day based on roulette wheel 
 
19) Assign     weights to time blocks 
20) Read     the next random number stored in the active sub-string 
21) Select     a time block as the starting time block based on roulette 

wheel 
 
22) If     the course requires 4 or more teaching hours a week 
23)            "required time blocks for second partition of the course"  ← 

("teaching hours" – "required time blocks for first partition of the 
course") 

24) Else 
25)            Stop 
26) End 
27) Read the tail sub-string and consider it as active sub-string 
28) Repeat 13-21 for the second partition of the course. 
29) Stop 
Fig. 4 Enrolling an event based on the random numbers stored in 

chromosomes 
 

Events are enrolled consecutively by reading consecutive 
sub-strings in main string and tail string of each chromosome. 
Each 5 random number stored in the main sub-string are used 
in a roulette wheel procedure to select: course, professor, 
classroom, day, and starting time block for single partitioned 
courses. the courses with 4 or more weekly teaching hours 
that have to fragmented into two partitions, the first partition 
is enrolled with regard to the random numbers stored in the 
main sub-string and the recourses for the second partition 
(classroom, day, starting time block) is enrolled by reading the 
random numbers stored in the tail sub-string. 

As it was mentioned before a ‘Biased Decoding’ procedure 
is developed in this paper. This procedure enrolls each 
individual event based on hierarchically assigning a biased 
chance to the candidate alternatives for each of 5 components 
of an event (course, professor, classroom, day, and starting 
time block). And then the random number stored in the 
respective gene in the related sub-string of the chromosome is 

used in a roulette wheel procedure to select the best alternative 
for each component. Decoding procedure is illustrated in Fig. 
4. 

In steps 2, 10, 13, 16, and 19 if the weighting modules 
assign uniform chance to all alternatives, no problem specific 
knowledge is applied, but we have proposed biased weighting 
in which more promising alternatives take more chance to be 
selected. This issue increases the probability of generating 
more probable feasible timetables. Each of weighting modules 
named above uses the respective considerations below to 
increase the probability of reaching feasible timetables. 
• Weighting courses: The group of specific courses is highly 

prioritized than the group of service courses. Within each 
group, the courses with less candidate feasible professors 
and less required sections are given more weight. 

• Weighting professors: For the selected course, professors 
with more free and feasible time blocks and less number 
of favorite courses are given more weight. 

• Weighting days: For the selected course and professor the 
days with more feasible options for starting time block in 
different classrooms are given more weight. 

• Weighting starting time blocks: For the selected course, 
professor, and day, the starting time blocks whose lessen 
the evaluation function in all possible classrooms are 
given more weight. 

• Weighting classrooms: For the selected course, and 
professor, day, and starting time block, the classrooms 
whose lessen the evaluation function are given more 
weight. 

The term "feasible options" refers to satisfying hard 
constraints listed in section 2. As it was mentioned in section 
4-5 the evaluation function of each chromosome (timetable) is 
measured in form of the summation of idle time blocks 
surrounded by two working blocks in a daily schedule of 
professor, classroom and each group of year-mates. When 
assigning weights to time block in order to select the starting 
time block of each event, the Evaluation Function (EF) of the 
decoded chromosome is also calculated. This EF should be 
minimized. 

F. Survival Selection 
The fitness of i'th chromosome with EFi is calculated as 

below: 
Fitnessi =1÷ (1+EFi). 

Fittest chromosomes are selected by a roulette wheel based 
on the chromosomes' fitness calculated above. Elite size was 
set on 1 chromosome. 

V. EXPERIMENTAL RESULTS 
In order to analyze the capabilities of developed BiD-MA, a 

set of real world data for timetabling in the Department of 
Mathematical Sciences of I.A.U. Dezful was gathered. The 
problem consists of planning for 47 instructors and about 50 
courses (30 specific courses and 20 service courses) summing 
up to 117 sections or equivalently about 400 hours of course 
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work. The instances were produced by selecting sub sets of 
this dataset by varying number classrooms, total sections 
required, and the number of professors. 

 
Developed algorithm is compared with the basic GA in 

which the decoding procedure is actuated based on uniform 
weights. BiD-MA and GA are coded in MATLAB 7.0 and 
executed on a PC with 256 MB of RAM and a 1.6 GHz CPU. 
Total generation for GA and BiD-MA were bounded to 3 
generations with a set of 10 chromosomes. 

As it can be inferred from table 1 uniform weighting (used 
in GA) can not yield feasible solutions to the problem but 
biased weighting in BiD-MA produces feasible schedules. 

VI. CONCLUDING REMARKS 
In this paper we focused on the problem of university 

course timetabling and developed a Memetic Algorithm with 
improved decoding approach. We proposed a novel approach 
to incorporate problem specific knowledge into the standard 
MA. The approach consists of biasing the weight of 
alternative sources to be selected and forming a complete 
timetable. The main advantage of this approach is providing a 
high speed search with an efficient combination of 
diversification and intensification in the search process. Since 
producing feasible timetables for UCTP is difficult, we have 
proposed a biased decoding procedure in which the promising 
alternatives are charged with greater weights to be selected at 
a higher chance in a roulette wheel procedure.  
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