

Abstract—This paper explores university course timetabling

problem. There are several characteristics that make scheduling and
timetabling problems particularly difficult to solve: they have huge
search spaces, they are often highly constrained, they require
sophisticated solution representation schemes, and they usually
require very time-consuming fitness evaluation routines. Thus
standard evolutionary algorithms lack of efficiency to deal with
them. In this paper we have proposed a memetic algorithm that
incorporates the problem specific knowledge such that most of
chromosomes generated are decoded into feasible solutions.
Generating vast amount of feasible chromosomes makes the progress
of search process possible in a time efficient manner. Experimental
results exhibit the advantages of the developed Hybrid Genetic
Algorithm than the standard Genetic Algorithm.

Keywords—University Course Timetabling, Memetic Algorithm,
Biased Chance Assignment, Optimization.

I. INTRODUCTION
HE University Course Timetabling Problem (UCTP)
consists of scheduling a set of lectures for each course

within a given number of rooms and time periods. In a UCTP,
we assign an event (course-lecture) into a time slot and also
assign a number of resources (professors, students, and
rooms) in such a way that there is no conflict between the
resources, time slots and events. Another similar problem is
school timetabling problem (STP). The main difference
between UCTP and the STP is that university courses can
have common students, whereas school classes are disjoint
sets of students. If two courses have common students then
they conflict, and they cannot be scheduled at the same period.
Moreover, school teachers always teach just one course,
whereas in universities, a professor can teach a set of course.
In addition, in the UCTP, availability of rooms (and their size)
plays an important role, whereas in the STP they are often
neglected because, in most cases, we can assume that each
class has its own room. As mentioned by Carter and Laporte
(1998) the UCTP is a multi-dimensional assignment problem,
in which students and teachers (or faculty members) are
assigned to courses, lectures or classes and events (individual
meetings between students and teachers) are assigned to
classrooms and time slots.

Several authors split the requirements into hard and soft
ones (Eiselt and Laporte, 1987). The hard requirements are

M. Basikhasteh is with the Mathematics Department of Islamic Azad

University, Dezful Branch, Dezful, Iran (e-mail: basikhasteh@iaud.ac.ir)
M. A. Movafaghpour is with the Jundi Shapur University of Technology,

Dezful, Iran. (Corresponding author, phone: +98-916-3419562; fax: +98-641-
6266666; e-mail: movafaghpour@jsu.ac.ir).

included in the constraints and they make the search space,
whereas the soft ones are included in the objective function.
Soft requirements generally include event spreading
constraints and room capacity constraints [5]. The real world
UCTP consists of different constraints: some are hard and
some are soft. Hard constraints have a higher priority than
soft. The objective of the UCTPs is to satisfy the hard
constraints and to minimize the violation of the soft
constraints.

Courses timetabling varies from university to university
according to the resources and constraints. There is no known
deterministic polynomial time algorithm for solving the
UCTP. Because, Even et al. 1976 proved the UCTP is an NP-
hard problem. So, it is very difficult to be solved by
conventional methods and the amount of computation
required finding optimal solution increases exponentially with
problem size.

A wide variety of solution techniques and approaches for
solving UCTPs have been described in the literature and
evaluated by standard problem instances. Note that, there is a
main difference between techniques and approaches; a
technique is an algorithm or a set of algorithms for solving the
problem (e.g., genetic algorithms). Instead an approach is a
general framework for developing a solution algorithm (e.g.,
constraint logic programming). Burke and Petrovic (2002)
classified these methods into four main types: sequential
methods, clustering methods, constraint-based methods, and
meta-heuristic methods.

Sequential methods order events using domain heuristics
and then assign the events sequentially into valid time periods
so that no events in the period are in conflict with each other
[12]. In these methods, timetabling problems are usually
represented as graphs where events (courses, lectures) are
represented as vertices, while conflicts between the events are
represented by edges (de Werra, 1985). In the clustering
methods the set of events is split into some clusters which
satisfy hard constraints and then the clusters are assigned to
time periods to fulfill the soft constraints. Different
optimization techniques have been employed to solve the
problem of assigning the clusters of events into time periods
(Balakrishnan et al. 1992). The main drawback of these
approaches is that the clusters of events are formed and fixed
at the beginning of the algorithm and that may result in a poor
quality timetable. In the constraint-based methods a
timetabling problem is modeled as a set of variables (i.e.,
events) to which values (i.e., resources such as rooms and
time periods) have to be assigned to satisfy a number of
constraints (Brailsford et al. 1999). Usually a number of rules

Hybridizing Genetic Algorithm with Biased
Chance Local Search

Mehdi Basikhasteh, and Mohamad A. Movafaghpour

T

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:5, No:9, 2011

1057International Scholarly and Scientific Research & Innovation 5(9) 2011 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:5

, N
o:

9,
 2

01
1

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/4

74
9.

pd
f

are defined for assigning resources to events. When no rule is
applicable to the current partial solution a backtracking is
performed until a solution is found that satisfies all
constraints. In the last two decades a variety of meta-heuristic
approaches such as simulated annealing (SA), tabu search
(TS), genetic algorithms (GAs) and hybrid approaches (e.g.,
memetic algorithms (MAs)) have been investigated for
timetabling. Meta-heuristic methods begin with one or more
initial solutions and employ search strategies that try to avoid
local optimum. All of these search algorithms can produce
high quality solutions but often have a considerable
computational cost.

Meta-heuristics are divided into two categories, local
search-based and population-based methods. The local search-
based methods consider one solution at a time. The solution
undergoes changes iteratively until a final solution which is
usually in the same region of the search space as the initial
solution is reached. They often use neighborhood structures
guided by a given acceptance rule to improve the quality of
solution. Although the biggest merit of using these methods is
their strength of fine-tuning the solution more structurally and
more quickly than population-based methods, the main
drawback is that they have a tendency to get stuck in a small
region of the search space. This is mainly due to local search-
based methods focusing on exploitation rather than
exploration, which means that they move in one direction
without performing a wider scan of the entire search space
(Al-Betar and Khader, 2010).

The hybridization method (an evolutionary algorithm
together with a local search) has been given various other
names in the literature such as memetic algorithms, hybrid
genetic algorithms, genetic local search algorithms and etc
(Hart et al. 2004). In this paper, a memetic algorithm is
proposed for solving the UCTP, which combines a local
search technique into GA. MAs are a class of meta-heuristic
methods, which combine the population-based method GA,
with local search made by individuals. Many researchers have
applied MAs to address timetabling problems by combining
GAs and local search techniques.

Burke and Newall (1999) proposed a multi stage
evolutionary algorithm which integrated an evolutionary
algorithm with a decomposition method. Real data sets were
used to evaluate the efficiency of the algorithm. The results of
real set of instances show the efficiency of their proposed
algorithm. Abdullah et al. (2005) developed a Variable
Neighborhood Search (VNS) approach which used a fixed
tabu list to penalize particular neighborhood structures. The
authors continue their work by developing a hybrid
Evolutionary Algorithm with VNS for solving UCTP with
very successful outcomes (Abdullah et al. 2007). As
mentioned before, inserting local search within GA is
considered as an effective way to produce high quality
solution than using GAs. Abdullah and Turabieh (2008)
applied a sequential search algorithm as a local search into
GA to improve the timetable by reducing the number of soft
constraint violated. They have applied repair process for

rectifying infeasible chromosomes that were generated during
evolution process. The repair function of their algorithm was
able to change infeasible timetable to feasible one.

Jat and Yang (2008) proposed a memetic algorithm for
UCTP, which integrates two local search techniques into GAs.
The first local search technique was based on events (i.e.
courses and subjects) and the second was based on time slots.
They considered three soft constraints and the goal of UCTP
was to minimize the soft constraint violations of a feasible
solution. Both local search techniques work in two steps. In
the first step a feasible solution was generated base on hard
constraint violations. They defined a solution as a feasible
solution if that satisfied all hard constraints. If there are hard
constraint violations for either an event or a time slots, local
searches try to resolve them by applying moves in the three
neighborhoods structures until a termination condition was
reached. In the second step, after reaching the state of a
feasible solution, local searches then deals with soft
constraints and again perform a similar process as in the first
step on each event or time slot to reduce its soft constraint
violations.

In this paper we have proposed a chance based selection
step enhanced by a biased weighting process as a rapid local
search module. This module is then embedded in a Genetic
Algorithm which results an efficient Memetic Algorithm.
Developed MA is implemented on a spread sheet for to solve
real world problems. In the remaining of the paper first we
define the real world problem dealt with in details in section 2,
and then the developed algorithm is described in section 3.
Some experimental results are provided in section 4 and some
concluding remarks with threads for feature studies are
reviewed in section 5.

II. UNIVERSITY COURSE TIMETABLING IN I.A.U. DEZFUL
Islamic Azad University Dezful branch (I.A.U. Dezful)

enrolls about 18000 students in over 20 academic
departments. The Department of Mathematical Sciences
(DMS) offers about 400 hours of courses in each semester
through the cooperation of about 45 full time and part time
faculty staff. Each semester, all departments provide the DMS
an estimated enrollment and special requirements (e.g., with
regard to a special instructor, room, or timeslot) for each
section of each course.

Because of the growing demand for higher education in
recent years, DMS lacks of enough educational spaces to plan
the courses as compared with last years; and timetabling
process turns out to be a more difficult problem. The problem
of course timetabling in DMS entails planning the courses
specific to students of mathematics (specific courses) and
courses serviced to the students of other departments (service
courses). The scheduler at DMS must assign 150 classes to
about 7 classrooms. The assignment has to take a number of
objectives into consideration. A room with fewer seats than
students is undesirable, as is a room that is much too large. In
addition, the location of the room is also important. From a

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:5, No:9, 2011

1058International Scholarly and Scientific Research & Innovation 5(9) 2011 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:5

, N
o:

9,
 2

01
1

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/4

74
9.

pd
f

professor’s point of view, it is nice to have a room that is close
to his or her office. From a students’ point of view it is
convenient to have consecutive classes close together.

It is not easy to state a formal objective for this optimization
problem, since there are often no clear priorities. For example,
if there is no room to accommodate both Numerical Methods
and General Math at the same time, then it is not easy to make
a choice based on a priori principle. Fortunately, some policy
guidelines had been established on standard time patterns for
offering courses. The twelve-hour day, starting at 8 a.m., is
divided into twelve one hour blocks. Classes may be
scheduled only for single, dual or triplet consecutive blocks.
The classes with more weekly teaching hours are to be
departed into two partitions each requiring less than three
consecutive time blocks.

Students of mathematics admitted in the same year all
called ‘year-mate’. Since the policy of DMS is to facilitate the
process of course selection for student, they are categorized
into groups called ‘year-mates’ and there is a recommended
set of courses for each set of year-mates designated for each
semester. The hard constraint ‘no student conflict’ compels
the planner to avoid the overlaps between the schedules of
courses gathered in a same recommended courses list.

Each instructor is capable of teaching a set of courses and is
favored to have its working hours in certain timeslots in
distinct days. No instructor conflict is allowed, i.e. each
instructor can teach at most one section of a course at a time.
Each course has a distinct ‘teaching units’ such as: 2, 3, …, 6.
Which it means that course is to be taught 2, 3, …, 6 hours a
week respectively. No course can be planned to be taught
continuously for more than 3 hours. In other words the
courses with 4 or more ‘teaching units’ should be divided into
two sessions during the week and the sessions can be held in
different rooms. Beside the standard constraints usually dealt
with in a university course timetabling, DMS faces some other
hard constraint which makes the timetabling more
complicated. They are listed below:
• No classroom conflict: Available classrooms are bounded

to be at most 7 classrooms a day and are extendable to 8
in special cases. No overlap is allowed in the schedule of
the classrooms.

• No student conflict: a group a year-mates with the same
recommended courses list should have the possibility to
select the recommended courses in each semester without
any conflict. This means that each course in each
recommended courses list for a given semester should
have at least one of its sections planned so that it has no
time overlap with all other courses of that list.

• No instructor conflict: each instructor prefers to teach some
arbitrary time blocks through the week. All the sections
assigned to each instructor should be planned through
his/her preferred time blocks with no overlaps.

• Each full time mentor has to teach at least 16 hours a week.
• Each full time assistant professor has to teach at least 9

hours a week.

• Each faculty member (part time or full time) has to teach at
most 23 hours a week.

• Working days of each full time faculty member has to be at
least 4 days a week.

• Each working day consists of twelve one hour time blocks
and the 5th one is reserved for lunch and prayers time. All
sessions planned before 5th time block have to be
finished before lunch time.

• Courses should be planned for 2 or 3 hour sessions (each
session is 2 or 3 consecutive time blocks in a day)
through the week and those having 4, 5, or 6 teaching
units should be departed into two partitions each with 2 or
3 hour sessions.

DMS faces the soft constraints listed below:
• Decrease the distance traveled by each instructor as much

as possible. Since there may be some specific or service
courses assigned to an instructor, the rooms available to
planner are scattered in different departments physically
distributed in the university.

• Increase the efficiency of the timetable for each professor.
Lessen the idle slots between a pair of working slots.

• Increase the efficiency of the timetable of each room.
Lessen the idle interim single slots.

• Increase the efficiency of the timetable for each student. i.e.
Decrease the active days required for each set of
recommended courses list.

III. MEMETIC ALGORITHM
It is possible to think of a memetic algorithm as an

evolutionary algorithm that incorporates knowledge about the
problem domain being solved (Burke and Landa Silva, 2005).
This knowledge can be in the form of specialized operators,
heuristics and other local searches that contribute towards
self-improvement ability in the individuals of the population.
Since memetic algorithms also are known as a combination of
genetic algorithms with local search heuristics, they are also
called genetic local search, hybrid genetic algorithms, hybrid
evolutionary algorithms (Talbi, 2002). This type of hybrid
approach has been applied to a vast number of optimization
problems with considerable success.

It is generally believed that memetic algorithms are
successful because they combine the explorative search ability
of genetic algorithms and the exploitive search ability of local
searches. An analogy is that the evolutionary part of a
memetic algorithm attempts to simulate the genetic evolution
of individuals through generations, while the local search part
attempts to simulate the individual learning within a lifetime.
This local search can be for example, constructive heuristics,
repair methods, specialized self-improvement operators, etc.
The local search phase can be applied before, after or in
between the genetic operations (Fig. 1). Krasnogor (2002)
argues that in a truly memetic system:

1. Memes also evolve representing the way in which
"individuals learn, adopt or imitate certain memes or modify
other memes" and,

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:5, No:9, 2011

1059International Scholarly and Scientific Research & Innovation 5(9) 2011 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:5

, N
o:

9,
 2

01
1

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/4

74
9.

pd
f

2. The distribution of memes changes dynamically within
the population representing the effects of "teaching,
preaching, etc." within the population of individuals.

Fig. 1 Possible places to incorporate knowledge or other operators

within MA (Hart et al. 2004)

In this paper we have introduced a biased decoding scheme
for MA and developing Biased Decoded Memetic Algorithm
(BDMA) in which a string of random numbers is decoded into
a solution (timetable). We have applied the problem specific
knowledge to assign biased chance to each component
(course, professor, room, day, time slot) of the chromosomes
in order to avoid infeasible timetables satisfying hard
constraints.

IV. DEVELOPED MEMETIC ALGORITHM
In order to solve the problem of UCTP in DMS we have

developed 'Biased Decoded Memetic Algorithm' (BiD-MA).
BiD-MA takes the following parameters as input:
• Properties of the courses: teaching units and the number of

sections required of each course,
• Teaching interests: the ability or interests of professors to

teach the courses,
• Time interests: the time blocks afforded by each instructor

as teaching time,
• Recommended courses list: the courses recommended to be

taken in the same semester by each set of year-mates,
and tries to produce feasible timetables satisfying hard
constraints. Soft constraints are considered as evaluation
function in selection phase. Five evolutionary operators of the
BiD-MA are discussed below.

A. Encoding Scheme
Every chromosome consists of a main string and a tail

string. The main string is a sequence of 5-tuple sub-strings
and the tail string is a sequence of triplet sub-strings. Each 5-
tuple sub-string determines how to select a set of 1) course, 2)
professor, 3) classroom, 4) day and 5) time slot to
accommodate one section of a course and triplet sub-strings
determine how to select a 1) classroom, 2) day, and 3) time
slot to accommodate the second partition of the classes with

teaching time more than 4 hours a week (Fig. 2).

Main string:

Rnd
#1

Rnd
#2

Rnd
#3

Rnd
#4

Rnd
#5

Rnd
#6

Rnd
#7

Rnd
#8

Rnd
#9

Rnd
#10

Rnd
#11

Tail string:

Rnd
#1

Rnd
#2

Rnd
#3

Rnd
#4

Rnd
#5

Rnd
#6

Rnd
#7

Rnd
#8

Rnd
#9

Rnd
#10

Rnd
#11

Fig. 2 The configuration of storing random numbers in main and tail

string of a chromosome

B. Parent Selection
In order to form pair of parents, each parent is randomly

selected from the population. Selected parents are removed
from the population and then are moved to mating pool.
Offsprings and parents are then evaluated based on their
evaluation function and the next population is selected among
them.

C. Crossover
Each pair of parents yields two offsprings. A binary mask

string is generated to determine which genes should be copied
from the first parent and which genes should be copied from
the second one to reproduce each offspring. The mechanism
of binary mask approach in illustrated in Fig. 3.

D. Mutation
Three percent of offsprings generated by crossover operator

are randomly selected and passed to mutation operator.

E. Fitness Evaluation
In order to evaluate the fitness of each chromosome, it is

decoded to its respective timetable satisfying hard constraints.
The evaluation function is calculated as the violation of soft
constraints in the schedule of professors, students, and
classrooms is measured in form of the summation of idle time
blocks surrounded by two working blocks in a daily schedule.

Parent #1:
a b c d e f g h i j k L m n

Parent #2:
A B C D E F G H I J K L M N

Binary mask:
1 1 1 1 0 0 0 1 1 1 1 1 0 0

Child #1:
a b c d E F G h i j k L M N

Child #2:

Local Search

Use of problem-
specific information in

operator

Initial Population

Population

Mating Pool

Offspring

Offspring

Modified Selection
operators

Use of problem-
specific information in

operator

Parent
Selection

Crossover

Mutation

Local Search

Survival Selection

Known solutions,
Constructive heuristics,

Local search, Over
selection

Assignment parameters
for 1st section

Assignment parameters
for 2nd section

Assignment
parameters

for 1st section

Assignment
parameters for

2nd section

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:5, No:9, 2011

1060International Scholarly and Scientific Research & Innovation 5(9) 2011 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:5

, N
o:

9,
 2

01
1

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/4

74
9.

pd
f

A B C D e f g H I J K L m n
Fig. 3 Applying a binary mask on parent #1 and parent #2 produces

child #1 and child #2

1) Read the main sub-string and consider it as active sub-string
2) Assign weights to courses
3) Read the first random number stored in the first gene of active

sub-string
4) Select a course based on roulette wheel
5) If the course requires 3 or less teaching hours a week
6) "required time blocks" ← "teaching hours"
7) Else
8) "required time blocks for first partition of the course" ←

roundup(("teaching hours")/2)
9) End

10) Assign weights to professors
11) Read the next random number stored in the active sub-string
12) Select a professor based on roulette wheel

13) Assign weights to classroom
14) Read the next random number stored in the active sub-string
15) Select a classroom based on roulette wheel

16) Assign weights to days
17) Read the next random number stored in the active sub-string
18) Select a day based on roulette wheel

19) Assign weights to time blocks
20) Read the next random number stored in the active sub-string
21) Select a time block as the starting time block based on roulette

wheel

22) If the course requires 4 or more teaching hours a week
23) "required time blocks for second partition of the course" ←

("teaching hours" – "required time blocks for first partition of the
course")

24) Else
25) Stop
26) End
27) Read the tail sub-string and consider it as active sub-string
28) Repeat 13-21 for the second partition of the course.
29) Stop
Fig. 4 Enrolling an event based on the random numbers stored in

chromosomes

Events are enrolled consecutively by reading consecutive
sub-strings in main string and tail string of each chromosome.
Each 5 random number stored in the main sub-string are used
in a roulette wheel procedure to select: course, professor,
classroom, day, and starting time block for single partitioned
courses. the courses with 4 or more weekly teaching hours
that have to fragmented into two partitions, the first partition
is enrolled with regard to the random numbers stored in the
main sub-string and the recourses for the second partition
(classroom, day, starting time block) is enrolled by reading the
random numbers stored in the tail sub-string.

As it was mentioned before a ‘Biased Decoding’ procedure
is developed in this paper. This procedure enrolls each
individual event based on hierarchically assigning a biased
chance to the candidate alternatives for each of 5 components
of an event (course, professor, classroom, day, and starting
time block). And then the random number stored in the
respective gene in the related sub-string of the chromosome is

used in a roulette wheel procedure to select the best alternative
for each component. Decoding procedure is illustrated in Fig.
4.

In steps 2, 10, 13, 16, and 19 if the weighting modules
assign uniform chance to all alternatives, no problem specific
knowledge is applied, but we have proposed biased weighting
in which more promising alternatives take more chance to be
selected. This issue increases the probability of generating
more probable feasible timetables. Each of weighting modules
named above uses the respective considerations below to
increase the probability of reaching feasible timetables.
• Weighting courses: The group of specific courses is highly

prioritized than the group of service courses. Within each
group, the courses with less candidate feasible professors
and less required sections are given more weight.

• Weighting professors: For the selected course, professors
with more free and feasible time blocks and less number
of favorite courses are given more weight.

• Weighting days: For the selected course and professor the
days with more feasible options for starting time block in
different classrooms are given more weight.

• Weighting starting time blocks: For the selected course,
professor, and day, the starting time blocks whose lessen
the evaluation function in all possible classrooms are
given more weight.

• Weighting classrooms: For the selected course, and
professor, day, and starting time block, the classrooms
whose lessen the evaluation function are given more
weight.

The term "feasible options" refers to satisfying hard
constraints listed in section 2. As it was mentioned in section
4-5 the evaluation function of each chromosome (timetable) is
measured in form of the summation of idle time blocks
surrounded by two working blocks in a daily schedule of
professor, classroom and each group of year-mates. When
assigning weights to time block in order to select the starting
time block of each event, the Evaluation Function (EF) of the
decoded chromosome is also calculated. This EF should be
minimized.

F. Survival Selection
The fitness of i'th chromosome with EFi is calculated as

below:
Fitnessi =1÷ (1+EFi).

Fittest chromosomes are selected by a roulette wheel based
on the chromosomes' fitness calculated above. Elite size was
set on 1 chromosome.

V. EXPERIMENTAL RESULTS
In order to analyze the capabilities of developed BiD-MA, a

set of real world data for timetabling in the Department of
Mathematical Sciences of I.A.U. Dezful was gathered. The
problem consists of planning for 47 instructors and about 50
courses (30 specific courses and 20 service courses) summing
up to 117 sections or equivalently about 400 hours of course

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:5, No:9, 2011

1061International Scholarly and Scientific Research & Innovation 5(9) 2011 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:5

, N
o:

9,
 2

01
1

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/4

74
9.

pd
f

work. The instances were produced by selecting sub sets of
this dataset by varying number classrooms, total sections
required, and the number of professors.

Developed algorithm is compared with the basic GA in

which the decoding procedure is actuated based on uniform
weights. BiD-MA and GA are coded in MATLAB 7.0 and
executed on a PC with 256 MB of RAM and a 1.6 GHz CPU.
Total generation for GA and BiD-MA were bounded to 3
generations with a set of 10 chromosomes.

As it can be inferred from table 1 uniform weighting (used
in GA) can not yield feasible solutions to the problem but
biased weighting in BiD-MA produces feasible schedules.

VI. CONCLUDING REMARKS
In this paper we focused on the problem of university

course timetabling and developed a Memetic Algorithm with
improved decoding approach. We proposed a novel approach
to incorporate problem specific knowledge into the standard
MA. The approach consists of biasing the weight of
alternative sources to be selected and forming a complete
timetable. The main advantage of this approach is providing a
high speed search with an efficient combination of
diversification and intensification in the search process. Since
producing feasible timetables for UCTP is difficult, we have
proposed a biased decoding procedure in which the promising
alternatives are charged with greater weights to be selected at
a higher chance in a roulette wheel procedure.

ACKNOWLEDGMENT
This research was supported by I.A.U. Dezful. We also

express our gratitude to the Department of Mathematical
Sciences of I.A.U Dezful for the supply of the data used to
analyzing the algorithm developed in this paper.

REFERENCES
[1] Abdullah S. and H. Turabieh, (2008). Generating University Course

Timetable Using Genetic Algorithms and Local Search. Third 2008
International Conference on Convergence and Hybrid Information
Technology.

[2] Abdullah, S., E. K. Burke, B. McCollum, (2005). An Investigation of
Variable Neighborhood Search for Course Timetabling. In: The
Proceedings of the 2nd Multidisciplinary International Conference on
Scheduling: Theory and Applications (MISTA 2005), New York, USA,
July 18 -21, pp. 413–427.

[3] Abdullah, S., E. K. Burke, B. McCollum, (2007). A hybrid evolutionary
approach to the university course timetabling problem. IEEE congress
on evolutionary computation 2007, pp. 1764–1768, Singapore.

[4] Al-Betar, M. A. and A. T. Khader, (2010). A harmony search algorithm
for university course timetabling. Annals of Operations Research, In
press.

[5] Aubin, J. and J. A. Ferland, (1989). A Large Scale Timetabling Problem.
Computers and Operational Research 16(1): 67–77.

[6] Balakrishnan, N., Lucena, A., Wong, R.T., (1992). Scheduling
examinations to reduce second-order conflicts. Computers and
Operations Research 19, 353–361.

[7] Brailsford, S. C., C. N. Potts, B. M. Smith, (1999). Constraint
satisfaction problems: Algorithms and applications. European Journal of
Operational Research 119, 557–581.

[8] Burke E. K. and J. D. Landa Silva, (2005). The Design of Memetic
Algorithms for Scheduling and Timetabling Problems, in "Recent

Advances in Memetic Algorithms", Springer Berlin / Heidelberg, 289-
311.

[9] Burke E. K. and J. P. Newall, (1999). A Multi-Stage Evolutionary
Algorithm for Timetable Problem, IEEE Transactions in Evolutionary
Computation 3(1), 63-74.

[10] Burke, E. K. and S. Petrovic, (2002). Recent research directions in
automated timetabling. European Journal of Operational Research,
140(2): 266-280.

[11] Carter, M. W. and G. Laporte, (1998). Recent developments in practical
course timetabling. Proc of the 2nd Int Conf on Practice and Theory of
Automated Timetabling, LNCS 1408, pp. 3–19.

[12] Carter, M. W., (1986). A survey of practical applications of examination
timetabling algorithms. Operations Research 34, 193–202.

[13] de Werra, D., (1985). An introduction to timetabling. European Journal
of Operational Research 19, 151–162.

[14] Eiselt, H. A. and G. Laporte, (1987). Combinatorial Optimization
Problems with Soft and Hard Requirements. Journal of the Operational
Research Society 38: 785–795.

[15] Even, S., A. Itai, and A. Shamir, (1976). On the complexity of timetable
and multicommodity flow problems. SIAM Journal on Computing, 5(4),
691–703.

[16] Hart, W. E., N. Krasnogor and J. E. Smith, (2004). Memetic
Evolutionary Algorithms, Recent Advances in Memetic Algorithms:
Studies in Fuzziness and Soft Computing, Springer-Verlag, 3-27.

[17] Jat, S. N. and S. Yang, (2008). A Memetic Algorithm for the University
Course Timetabling Problem. 20th IEEE International Conference on
Tools with Artificial Intelligence.

[18] Krasnogor N., (2002). Studies on the theory and design space of
memetic algorithms. PhD thesis, Faculty of computing, engineering and
mathematical sciences, University of the West of England, UK.

[19] Rossi-Doria O., M. Sampels, M. Birattari, M. Chiarandini, M. Dorigo, L.
Gambardella, J. Knowles, M. Manfrin, M. Mastrolilli, B. Paechter, L.
Paquete, and T. Stutzle, (2002). A comparison of the performance of
different metaheuristics on the timetabling problem. Lecture Notes in
Computer Science 2740, pp. 329–351.

[20] Talbi, E. G., (2002). A Taxonomy of hybrid metaheuristics. Journal of
heuristics, 8, 541-564.

Mehdi Basikhasteh is a faculty member at Islamic Azad University of
Dezful, Dezful, Iran. He received a B.S. degree in Statistics from Isfahan
University of Technology and a M.S. degree in actuary from Shahid Beheshti
University, Tehran. His research is focused on the application of statistical
methods in swarm intelligence.
Mohamad Ali Movafaghpour is a senior PhD student at the Faculty of
Engineering, Tarbiat Modares University, Tehran, Iran. He received a B.S.
degree from Isfahan University of Technology, and an M.S. degree from
Amirkabir University of Technology, both in industrial engineering. He is
currently also an invited instructor at Jundi Shapur University of Technology.
His research is focused on hybrid mathematical programming, Metaheuristic
methods in Robotic Path Planning.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:5, No:9, 2011

1062International Scholarly and Scientific Research & Innovation 5(9) 2011 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:5

, N
o:

9,
 2

01
1

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/4

74
9.

pd
f

	v81-1.pdf
	v81-2.pdf
	v81-3.pdf
	v81-4.pdf
	v81-5.pdf
	v81-6.pdf
	v81-7.pdf
	v81-8.pdf
	v81-9.pdf
	v81-10.pdf
	v81-11.pdf
	v81-12.pdf
	v81-13.pdf
	v81-14.pdf
	v81-15.pdf
	v81-16.pdf
	v81-17.pdf
	v81-18.pdf
	v81-19.pdf
	v81-20.pdf
	v81-21.pdf
	v81-22.pdf
	v81-23.pdf
	v81-24.pdf
	v81-25.pdf
	v81-26.pdf
	v81-27.pdf
	v81-28.pdf
	v81-29.pdf
	v81-30.pdf
	v81-31.pdf
	v81-32.pdf
	v81-33.pdf
	v81-34.pdf
	v81-35.pdf
	v81-36.pdf
	v81-37.pdf
	v81-38.pdf
	v81-39.pdf
	v81-40.pdf
	v81-41.pdf
	v81-42.pdf
	v81-43.pdf
	v81-44.pdf
	v81-45.pdf
	v81-46.pdf
	v81-47.pdf
	v81-48.pdf
	v81-49.pdf
	v81-50.pdf
	v81-51.pdf
	v81-52.pdf
	v81-53.pdf
	v81-54.pdf
	v81-55.pdf
	v81-56.pdf
	v81-57.pdf
	v81-58.pdf
	v81-59.pdf
	v81-60.pdf
	v81-61.pdf
	v81-62.pdf
	v81-63.pdf
	v81-64.pdf
	v81-65.pdf
	v81-66.pdf
	v81-67.pdf
	v81-68.pdf
	v81-69.pdf
	v81-70.pdf
	v81-71.pdf
	v81-72.pdf
	v81-73.pdf
	v81-74.pdf
	v81-75.pdf
	v81-76.pdf
	v81-77.pdf
	v81-78.pdf
	v81-79.pdf
	v81-80.pdf
	v81-82.pdf

