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Abstract—In supervised binary classification and regression
problems, it is well-known that learnability is equivalent to uniform
convergence of the hypothesis class, and if a problem is learnable, it
is learnable by empirical risk minimization. For the general learning
setting of unsupervised learning tasks, there are non-trivial learning
problems where uniform convergence does not hold. We present here
the task of learning centers of mass with an extra feature that “activates”
some of the coordinates over the unit ball in a Hilbert space. We
show that the learning problem is learnable under a stable RLM rule.
We introduce a family of distributions over the domain space with
some mild restrictions for which the sample complexity of uniform
convergence for these problems must grow logarithmically with the
dimension of the Hilbert space. If we take this dimension to infinity,
we obtain a learnable problem for which the uniform convergence
property fails for a vast family of distributions.

Keywords—Statistical learning theory, learnability, uniform
convergence, stability, regularized loss minimization

I. INTRODUCTION

INTUITIVELY, a problem is learnable if there exists a

training algorithm producing a learning rule such that,

with high probability on a randomly selected training set, the

generalization error is small. This is defined rigorously in

Definition 1. For supervised tasks such as binary classification,

regression, or multiclass prediction, different conditions have

been shown to be equivalent to learnability. Learning with

the empirical risk minimization rule (ERM) in the supervised

case is equivalent to uniform convergence of the empirical

risk to the true risk with a rate that is independent of the

distribution over the instance set. For binary classification,

Vapnik and Chervonenkis [1] showed that finiteness of a

combinatorial condition known as the VC-dimension is a

necessary and sufficient condition for learnability under the

ERM rule. For some regression problems, finite fat-shattering

dimension characterizes learnability [2] and the Natarajan

dimension characterizes learnability of some multiclass learning

problems [3].

For the general learning setting, there is no equivalence

between learnability and uniform convergence, as

Shalev-Shwartz et al. showed in [4]. Instead, the key

notion is stability, as defined in Section III. Examples of

learnable problems without uniform convergence can shed

more light into how Vapnik’s notion of “strict” learnability

fails in the framework of unsupervised learning.

In this paper we present two unsupervised tasks for the

center of mass over the unit ball in some Hilbert spaces. The

second problem is a modification of the first that makes it a

strictly convex, bounded, smooth problem. We show that these
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tasks are learnable by exhibiting stability using smoothness

of the corresponding loss functions, with a coefficient that is

independent of the dimension d of the Hilbert space. We also

show that these tasks possess distributions D concentrated in a

small ball around the origin for which the uniform convergence

property does not hold in the infinite dimensional case.
In Section II, we present the formal definitions of learning

under the ERM rule in the supervised case and discuss the

equivalent notions of uniform convergence and finiteness of

VC-dimension in the binary classification case. In Section III

we introduce the generalized concept of learning as defined in

[4]. After defining the equivalent concept of stability, we present

a theorem from [4] that shows that for convex-smooth-bounded

problems, the Regularized Loss Minimization rule (RLM) with

Tikhonov regularization leads to a stable learning algorithm.

Finally, in Section IV, we introduce our learning problem where

the uniform convergence property fails. This can be described

as the task of finding the “center of mass” of a distribution

over the unit ball of Rd, where an extra parameter α indicates

which of the coordinates are marked as “active” or “inactive”.

We show that this problem is learnable using the RLM rule

with a sample complexity that does not depend on d. Then we

choose a probability distribution for the instance space such

that if m < log2(d), there is a high probability that a sample

of i.i.d. labeled points of size m has a high estimation error.

We say that such samples are not “ε-representative”. The main

theorems of this paper are Theorems 5 and 6 where we show

that for distributions D on the domain Z concentrated in a ball

of radius 1/4 and yielding a uniform Bernoulli distribution

on the parameter α, a.s. the ERM rule does not converge

to a minimizer of the true population risk as the sample

size m → ∞, not even for strictly convex bounded smooth

problems where the ERM minimizer is unique. We hope that

the distributions presented here are only the starting point for

a rich variety of stable problems in unsupervised settings that

lack the uniform convergence property.

II. THE SUPERVISED LEARNING SETTING

In the supervised learning setting, we have an instant space

X , a label set Y , and a hypothesis class H. The domain

Z := X × Y has a sigma-algebra structure and we have a

“loss” function � : H × Z → R≥0 that is measurable for all

h ∈ H. We also assume the loss function is bounded over

H×Z .
Given a probability distribution D over Z , the risk or true

error of a hypothesis h ∈ H denoted as LD(h) is defined as

the expected value of the loss function over Z; that is,

LD(h) = E
(x,y)∼D

[�(h, (x, y))]
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While H,Z and the loss function � are known to the learner,

we assume that D is unknown. It is thus not possible to simply

choose h ∈ H that minimizes LD(h). Instead, we consider

training samples S ∼ Dm of m i.i.d. draws from Z . Each

sample S is a sequence of the form ((x1, y1), . . . , (xm, ym)),
where xi ∈ X and yi is the corresponding label. For any

m ∈ N, we will use the notation [m] to denote {1, . . . ,m}.

Our overall goal in this setting is to have a learning algorithm

A that picks a hypothesis A(S) ∈ H based on the training

sample S with approximately minimal possible risk. Generally,

we expect the approximation to get better with the sample size.

Before we give the formal definition of learnability, we present

some examples of supervised statistical learning tasks:

• Binary Classification: Let Y = {0, 1} and let H be the

set of functions h : X → {0, 1}. The loss function is

the indicator function �(h, (x, y)) = 1h(x) �=y . This is also

known as the 0 − 1 loss function, which measures if h
labeled the example (x, y) properly or not.

• Linear Regression: Let X be a bounded subset of R
n

and let Y be a bounded subset of R. Let H be a set of

bounded functions h : X → R, and let � be the square

loss function: �(h, (x, y)) = (h(x)− y)2.

• Ranking: We can consider ranking problems for

classification or information retrieval purposes. The

training data are a list of items and we assign a partial

order to the items in the list. If X is the set of instances, let

X ∗ =
⋃∞

n=1 Xn be the set of all sequences of instances

from X of arbitrary length. Here Z =
⋃∞

r=1(X r × R
r).

The hypothesis class H is the set of ranking hypotheses h
that receive a sequence of instances x = (x1, . . . ,xr) ∈
X ∗ and return a vector y ∈ R

r. By sorting the elements

of y in increasing order, we obtain a permutation of [r].
There are many possible ways to define a loss function

for ranking. If we denote by π(y) the permutation of [r]
induced by the vector y ∈ R

r, then one example is the

0− 1 loss function �(h, (x,y)) = 1[π(h(x)) �=π(y)]. Better

examples of loss functions for ranking are the Kendall-Tau

loss or the Normalized Discounted Cumulative Gain loss;

see [5] for more details.

Ideally, we wish to pick in this setting a hypothesis h ∈ H
that minimizes the true risk LD(h), but since D is unknown to

the learner, this is not feasible. We wish to obtain a learning

rule A such that, upon receiving a training sample S of size

m, A outputs a hypothesis A(S) and the expected value of

the difference between the true risk of A(S) and the minimal

risk is small, with this value approaching 0 as the sample size

m → ∞. That is,

E
S∼Dm

[LD(A(S))−min
h∈H

LD(h)] ≤ ε(m)

where Dm is the probability over m-tuples in Z induced by

applying D to pick each element of the tuple independently of

the other members of the tuple. We also require the rate ε(m)
to be monotonically decreasing with ε(m)

m→∞−−−−→ 0.

Since D is unknown, we ask for learnability that the above

inequality is consistent over all distributions D on Z . This

leads us to the formal definition of learnability of supervised

tasks.

Definition 1. A learning problem is learnable if there exist

a learning rule A and a monotonically decreasing sequence

εconst(m), such that εconst(m)
m→∞−−−−→ 0 and for all distributions

D on Z ,

E
S∼Dm

[LD(A(S))−min
h∈H

LD(h)] ≤ εconst(m). (1)

A learning rule A for which this holds is denoted as a

universally consistent learning rule.

This is a direct generalization of agnostic PAC-learnability

as seen in [2]. Note that instead of asking for an inequality

similar to (1) that holds with probability 1− δ over all samples

S, we ask for a uniform rate over the expected value of the

difference of errors for all distributions on Z .

A. Equivalent Forms of Learnability

The learner does not have access to the distribution D
of the domain. Nevertheless, the learner can compute an

empirical error or empirical risk based on the training

sample S. This is denoted by LS(h) and it is defined as

the error a hypothesis h incurs over the training sample. If

S = ((x1, y1), . . . , (xm, ym)), then

LS(h) :=
1

m

m∑
i=1

�(h, (xi, yi))

We say that a rule A is an ERM (Empirical Risk Minimizer)

if it minimizes the empirical risk

A(S) ∈ argmin
h∈H

LS(h).

Here argmin denotes the collection of hypotheses in H for

which the value of LS(h) over H is minimal.

We say that a problem is learnable under the ERM rule if

the ERM rule described above satisfies (1) for all distributions

D over Z .

A simple idea that is related to learnability is to have

a hypothesis class H for which the empirical risk of any

hypothesis h ∈ H is a good approximation of its true risk.

This is formalized in the definition of uniform convergence of

a learning problem.

Definition 2. A learning problem with domain Z = X × Y
and hypothesis class H is said to have the uniform convergence
property if

sup
D

E
S∼Dm

[
sup
h∈H

|LD(h)− LS(h)|
]

m→∞−−−−→ 0

More intuitively, given any ε > 0, there exists m ∈ N such

that for any distribution D on Z and any hypothesis h ∈ H,

the mean value of |LD(h)− LS(h)| is less than ε.
The uniform convergence property says that the empirical

risks of hypotheses in the hypothesis class converge to their

population risk uniformly, with a distribution-independent rate.

We offer a third combinatorial concept that is used in binary

classification problems only. Let Z = X × {0, 1}, where each
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hypothesis h ∈ H is a mapping h : X → {0, 1} and � is the

0− 1 loss function �(h, (x, y)) = 1h(x) �=y .

Definition 3. Let C be a finite subset of X . We say that a

hypothesis class H shatters C if any function from C to {0, 1}
can be obtained as a restriction of an element h ∈ H to C.

Vapnik and Chervonenkis defined in [1] a simple

combinatorial measure that implies uniform convergence.

Definition 4. Let H be a hypothesis class. The VC-dimension

of H, denoted VCdim(H), is the maximal cardinal D such

that a set of cardinality D in X is shattered by H.

For binary classification problems we have a chain of

equivalences explained in the next theorem.

Theorem 1 (The Fundamental Theorem of Statistical Learning,

see [5] Theorem 6.7). Let X be the set of instances and let H
be a hypothesis class of binary functions on X . Then, under
the 0− 1 loss function, the following are equivalent:

1) H has a finite VC-dimension.
2) H has the uniform convergence property.
3) Any ERM rule is a successful learner for H.
4) H is learnable according to Definition 1.

The situation is depicted in Fig. 1.

In the case of regression problems, a similar characterization

holds. This time a hypothesis h is a real-valued function h :
X → R and the loss function is the squared-loss function

�(h, (x, y)) = (h(x) − y)2. The VC dimension is replaced

by the fat-shattering dimension, but the basic equivalence still

holds: a problem is learnable if and only if uniform convergence

holds if and only if the uniform convergence property is present

(see [6]).

Remark 1. In our definitions of learnability, uniform

convergence, and stability in the next section, we have used

convergence in expectation, and defined the rates as rates on

the expectation. Since the loss function � is bounded, by the

dominated convergence theorem, convergence in expectation

is equivalent to convergence in probability. Furthermore, using

Markov’s inequality we can translate a rate of the form

E[|X|] ≤ ε(m) to a “low confidence” guarantee P[|X| >
ε(m)/δ] ≤ δ. Thus “learnability” can be replaced with agnostic

PAC learnability as defined in [5] in Theorem 1. For simplicity,

we will not discuss in this paper the computational aspects

of learnability, although for the tasks presented here there are

well-known efficient algorithms such as SGD that solve the

problem.

III. GENERAL LEARNING FRAMEWORK

We now consider the general learning setting, where the

domain Z is an arbitrary measurable space. There is still a

hypothesis class H and a loss function � : H×Z → R≥0 that

is measurable on Z and bounded by some constant B. That

is, �(h, z) ≤ B for all h ∈ H and z ∈ Z .

Some examples of general learning tasks that do not fit in

the supervised setting are:

• K-means clustering: Let Z = R
n, let H be all subsets of

R
n with k elements, and let �(h, z) = minc∈h ‖c− z‖2.

Here, each h represents a set of k centroids, and �
measures the square of the Euclidean distance between

an instance z and its nearest centroid, according to the

hypothesis h.

• Stochastic Convex Optimization in Hilbert Spaces:
Let Z be any measurable set, let H be a closed, convex

and bounded subset of a Hilbert space, and let �(h, z)
be Lipschitz and and convex with respect to its first

argument. The task is to minimize the true risk function

LD(h) = Ez∼D[�(h, z)], where the distribution D over Z

is unknown, based on a training sample S = (z1, . . . , zm).

The definitions of learnability and uniform convergence in the

general case are exactly as in Definitions 1 and 2 respectively,

with the only difference being a more general domain space

Z .

In the next section we will prove that in the general

framework learnability is no longer equivalent to uniform

convergence. We will define an equivalent notion of learnability

that is no longer concerned about the complexity of the

hypothesis class. Instead, we wish to control the variance of

the learning rule. Intuitively, an algorithm is considered stable

if a slight change of its input does not change its output much.

To be more precise, given the training set S and an additional

example z′ from Z , let S(i) be the training set obtained by

replacing the i’th example of S with z′. That is,

S(i) = (z1, . . . , zi−1, z
′, zi+1, . . . , zm)

By “a small change of the input” we mean that we feed the

learner A the sample S(i) instead of S. We observe that only

one training sample is replaced. We then compare the loss of

the hypothesis A(S) on the element zi to the loss of A(S(i))
on the same element zi. We say that A is a stable algorithm

if changing a single example in the training set does not lead

to a significant change. Formally,

Definition 5. Let εst(m) be a monotonically decreasing

function with εst(m)
m→∞−−−−→ 0 and let U(m) be the uniform

distribution over [m]. We say that a learning algorithm A
is on-average-replace-one-stable with rate εst(m) if for every

distribution D over Z
E

(S,z′)∼Dm+1,i∼U(m)

[
�(A(S(i)), zi)− �(A(S), zi)

]
≤ εst(m)

For simplicity, we will call a learning algorithm that is

on-average-replace-one-stable just universally stable or simply

stable.

For supervised learning tasks like binary classification or

regression, by the Fundamental Theorem of Statistical Learning,

if a problem is learnable then it is learnable under any ERM

rule. This is no longer true in the general setting. In this case,

the correct approach is to choose a rule that is “asymptotically”

ERM or AERM for short. The precise definition is as follows.

Definition 6. A rule A is universally an AERM rule with rate

εerm(m)
m→∞−−−−→ 0 if

E
S∼Dm

[LS(A(S))−min
h∈H

LS(h)] ≤ εerm(m)

for all distributions D over Z .
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Fig. 1 The Fundamental Theorem of Statistical Learning

In [4], Shalev-Shwarz et al. proved that general learnability

is equivalent to having a stable universal AERM rule.

Theorem 2 ([4], Theorem 7). A learning problem is learnable
if and only if there exists a stable universally AERM learning
rule.

The theorem even relates the three distinct convergence

rates εconst(m), εerm(m), and εst(m), although we shall not

be concerned about this. It should also be mentioned that,

contrary to binary classification, not any AERM rule is

enough for learnability; the AERM rule must also be stable.

Fig. 2 illustrates the correspondences in the general learning

framework.
Note that the uniform convergence property no longer

appears as an equivalent condition for learnability. It can

be shown (see [4]) that uniform convergence is a sufficient

condition for a stable universally AERM rule and hence

learnability, but it is by no means a necessary condition.
In the next section, we consider two types of learning

problems that are learnable by a stable universally AERM

rule, but do not possess the uniform convergence property.

IV. A LEARNABLE PROBLEM WITHOUT UNIFORM

CONVERGENCE

Let B be the unit ball in R
d, let H = B, and let Z =

B × [0, 1]d. We define a loss function � : H×Z → R≥0 as:

�(h, (x,α)) =

d∑
i=1

αi(xi − hi)
2 =

∥∥√α ∗ (x− h)
∥∥2 (2)

where
√
α is the element-wise square root and u ∗ v denotes

an element-wise product. This is an unsupervised learning task

where we try to find the “center of mass” of the distribution

over B and the vector α represents a vector of stochastic

per-coordinate “confidence” weights αi for each coordinate in

R
d.
We will prove that this problem is learnable using smoothness

properties of the loss function. First we define formally the

concept of smoothness that we will use in this paper.

Definition 7. A differentiable function f : R
d → R is

β-smooth if its gradient is β-Lipschitz. That is, for all v,w in

R
d we have ‖∇f(v)−∇f(w)‖ ≤ β‖v −w‖.

Now we can show that our loss function is β-smooth in its

first argument for a constant β that does not depend on the

dimension d.

Lemma 1. The loss function �(·, (x,α)) in (2) is 2-smooth
for all d ∈ N.

Proof 1. Fix (x,α) in Z . Then for v,w in H,

‖∇�(v)−∇�(w)‖ = 2‖〈α1(v1 − w1), . . . , αd(vd − wd)〉‖
≤ 2‖v −w‖

where the last inequality follows since each αi satisfies 0 ≤
αi ≤ 1.

We have thus a learning problem (H,Z, �) where the

following holds:

• H is a convex bounded subset of Rd.

• For all z ∈ H, the loss function �(·, z) is a convex,

nonnegative, 2-smooth function such that �(0, z) =∑d
i=1 αix

2
i ≤ ‖x‖2 ≤ 1.

This is known as a Convex-Smooth-Bounded Learning

problem (see [5, Definition 12.13]). Instead of working directly

with the loss function �, we use a “regularized” version of it;

namely, we use an ERM rule for the regularized loss function

�(h, z) +
λ

2
‖h‖2

for some parameter λ > 0 to be chosen later. This is also known

as the “Regularized Loss Minimization” (RLM) rule. The extra

function λ‖h‖2/2 is known as Tikhonov regularization. If A is

an RLM learner for some parameter λ > 0, then upon receiving

a sample S ∼ Dm, the algorithm returns a hypothesis

A(S) ∈ argmin
h∈H

(
�(h, z) +

λ

2
‖h‖2

)
Theorem 3 says that the RLM rule is a successful learner for

Convex-Smooth-Bounded Learning problems with a suitable

boundedness condition on the loss function.

Theorem 3 ([5], Corollary 13.11). Let (H,Z, �) be a
convex-smooth-bounded learning problem with parameters
β,B, where ‖h‖ ≤ B for all h ∈ H. We assume in addition
that �(0, z) ≤ 1 for all z ∈ Z . For any ε ∈ (0, 1), let

m ≥ 150βB2

ε2
and set λ = ε/(3B2). Let A be an RLM

learner with parameter λ. Then, for every distribution D of Z ,

E
S∼Dm

[
LD(A(S))− min

h∈H
LH(h)

]
≤ ε

For our center of mass problem, β = 2 and B = 1. Thus

the RLM rule is stable and the problem is learnable under

Definition 1 for any d ∈ N.

Now we take H to be the unit sphere B of an

infinite-dimensional Hilbert space with orthonormal basis

e1, e2, . . ., where for v ∈ H, we refer to its coordinates

vj = 〈v, ej〉. The weights α are now a mapping of each

coordinate to [0, 1]. That is, α is an infinite sequence of

reals in [0, 1]. The loss function in (2) is defined with

respect to this orthonormal basis and is still well-defined

in this Hilbert space. Since β = 2 was independent of the

dimension d, the infinite-dimensional problem (H,Z, �) is still

a convex-smooth-bounded learning problem and we thus obtain

Theorem 4. Let (H,Z, �) be the infinite-dimensional problem
where H = B,Z is formed of pairs (x,α) where x ∈ B and
α is a sequence of numbers in [0, 1], and �(h, (x,α)) is as
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Fig. 2 The General Learning Framework

in (2). Then (H,Z, �) is a convex-smooth bounded problem
learnable under a stable RLM rule.

Next we present a family of distributions on Z for which

suph∈H |LD(h)− LS(h)| does not converge in mean to 0 as

m → ∞, showing that the uniform convergence property fails

for this problem. This is an extension of the work in [4], where

only one such distribution was shown. The main goal of this

paper is to show how easy it is to find distributions where

the true risk of a hypothesis is considerably bigger than the

empirical risk, even when the true risk converges in mean

to the minimal risk achievable by elements in the hypothesis

class.

We start with the finite-dimensional case. Let d be a positive

integer and consider the learning problem (H,Z, �) defined

above where H is the unit ball B in R
d. Let D be a distribution

only over B × {0, 1}d satisfying the following two conditions:

1) P
(x,α)∼D

(‖x‖ > 1/4) = 0

2) ∀i ∈ [d] : P
(x,α)∼D

(αi = 1) =
1

2

The two conditions state that the distribution is 0 away from

the ball of radius 1/4 in R
d and that the marginal distribution

on {0, 1}d is a sum of independent, uniform Bernoulli random

variables. Here are two examples of such distributions:

Let C be a finite subset of B such that ‖x‖ ≤ 1/4 for all

x ∈ C. Let D1 be the uniform distribution on C×{0, 1}d. More

generally, let C = {x1,x2, . . .} be a denumerable collection

in R
d such that ‖xi‖ ≤ 1/4 for all i. Assign to each (xi,α) a

probability of 2−i−d. This yields a distribution D2 satisfying

the two conditions above.

As a generalization of the previous example, let μ be any

probability measure on B1/4, the ball of radius 1/4 in R
d

centered at 0 and let U be the uniform distribution on {0, 1}d.

Then for D3 = μ×U extended to 0 over B × {0, 1}d the two

conditions hold.

We will show that the rate of uniform convergence for the

problem (H,Z, �) grows with d. First we define a notion of

“representative” samples with respect to a distribution D.

Definition 8. Let ε > 0. A training set S is called

ε-representative (with respect to domain Z , hypothesis class

H, loss function �, and distribution D) if

∀h ∈ H, |LD(h)− LS(h)| ≤ ε

Lemma 2. Let D be a distribution over B×{0, 1}d satisfying
(1) and (2). We assume 2m < d. Then with probability of at
least 1 − e−1, a sample S of size m is not 1

5 -representative
w.r.t. (H,Z, �,D).

Proof 2. Let S = ((x(1),α(1)), . . . , (x(m),α(m))) be a sample
of m i.i.d. draws from Z with distribution D. We will show
that with probability at least 1 − e−1 > 0.63, there exists a
coordinate j ∈ [d] such that α(i)

j = 0 for all i ∈ [m]. Indeed,

the probability that this occurs is given by

P

⎛
⎝ ⋃

j∈[d]

⋂
i∈[m]

{α(i)
j = 0}

⎞
⎠ = 1− P

⎛
⎝ ⋂

j∈[d]

⋃
i∈[m]

{α(i)
j = 1}

⎞
⎠

By our choice of D, the α
(i)
j are independent uniform Bernoulli

random variables. Hence

1− P

⎛
⎝ ⋂

j∈[d]

⋃
i∈[m]

{α(i)
j = 1}

⎞
⎠

= 1−
∏
j∈[d]

(
1− P

(
α

(1)
j + . . .+α

(m)
j = 0

))

= 1− (1− 2−m)d

≥ 1− (e−2−m

)d

= 1− e−d2−m

(3)

≥ 1− e−1

Now we show that a sample S for which α
(i)
j = 0 for some

coordinate j ∈ [d] and all i ∈ [m] cannot be 1
5 representative

with respect to this distribution D. Let ej be the standard unit
vector along coordinate j in R

d. Then ej ∈ H and

LS(ej) =
1

m

∑
i∈[m]

�(ej , (x
(i),α(i)))

since α
(i)
j = 0 for all i and ej has only one nonzero coordinate,

=
1

m

∑
i∈[m]

∑
k∈[d]\{j}

α
(i)
k (x

(i)
k )2

≤ 1

m

∑
i∈[m]

∥∥∥x(i)
∥∥∥2

≤ 1

16

On the other hand, by the law of total expectation,

LD(ej) = E
(x,α)∼D

[�(ej , (x,α))]

= E
(x,α)

[�(ej , (x,α))|αj = 1]P(αj = 1)

+ E
(x,α)

[�(ej , (x,α))|αj = 0]P(αj = 0)

≥ 1

2
E

(x,α)
[(xj − 1)2 + . . .]

≥ 1

2

(
3

4

)2

=
9

32

We conclude that with probability of at least 1 − e−1 we
obtain a sample S of size m for which |LD(ej)− LS(ej)| ≥
9
32 − 1

16 > 1
5 for some j ∈ [d]. Such a sample is not

1
5 -representative.
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Lemma 2 shows that the sample complexity m for uniform

convergence in the (H,Z, �) finite-dimensional problem is

Ω(log(d)).
In the infinite dimensional case where H = B is the unit

sphere in a Hilbert space with orthonormal basis e1, e2, . . . and

� has the coordinate-free form in (2), we consider distributions

D of the following form:

1) D is nonzero only on B1/4 × [0, 1], where we have

identified sequences α in {0, 1} with real numbers in

the interval [0, 1].
2) The marginal distribution on [0, 1] is the uniform

distribution. If we regard α ∈ [0, 1] as a sequence where

each αj is 0 or 1, this means that all αj are independent

uniform Bernoulli random variables.

Theorem 5. Let (H,Z, �) be the learnable problem as in
Theorem 4. Then the problem does not have the uniform
convergence property.

Proof 5. Let D be a distribution on Z with the two properties
defined above. The estimates in (3) carry out the same in the
infinite dimensional case. If we take the limit as d → ∞, we
obtain that a.s. if we take a training sample S of size m, there
is a coordinate j such that α(i)

j = 0 for all i ∈ [m]. By the
same computations as in Lemma 2, we obtain that for such
distributions D and for all m,

E
S∼Dm

[
sup
h∈H

|LD(h)− LS(h)|
]
≥ 1

5

Therefore (H,Z, �) does not have the uniform convergence
property.

For the learning problem presented here, we were able to

show that there exists some hypothesis h ∈ H for which the

true risk does not converge to the empirical risk as m → ∞.

We can sharpen this example by exhibiting a problem for which

the empirical risk minimizer h∗ also exhibits this problem.

We consider the problem (H,Z, �′) where H and Z are as

in Theorem 4, but the loss function is now

�′(h, (x,α)) =
∥∥√α ∗ (x− h)

∥∥2 + η
∞∑
j=1

bj(hj − 1)2 (4)

where η = 0.01 and {bj : j ∈ N} is any set of positive numbers

such that
∑

bj = 1.

The new loss function �′ is (2 + 2η)-smooth and since

the additional term is strictly convex, �′ is strictly convex.

Therefore, for any training sample S of any size,

h∗ ∈ argmin
h∈H

L′
S(h)

is unique, where L′
S(h) is the empirical risk of the hypothesis

h with respect to the new loss function �′. We assume that

D is a product measure on B1/4 × [0, 1] satisfying conditions

(1) and (2). In particular, x and α are independent random

variables.

Lemma 3. Let S be a i.i.d. sample of size m of Z according
to Dm. If h∗ ∈ H is the unique empirical risk minimizer of �′,
then a.s. ‖h∗‖ = 1.

Proof 3. First consider the unconstrained optimization problem
of finding

h∗
UC ∈ argmin

h
L′
S(h)

For any training sample S of size m, a.s. there exists a
coordinate j such that α

(i)
j = 0 for all i ∈ [m]. Thus only

the second term in (4) depends on hj . Since h∗
UC is the

unique minimizer of L′
S , we obtain h∗

UC,j = 1. Consequently,
‖h∗

UC‖ ≥ 1. It follows that in the constrained case where
h ∈ H, we must have ‖h∗‖ = 1.

We will denote by L′
D(h) the true risk of hypothesis h under

the loss function (4).

Theorem 6. Let S be a i.i.d. sample of size m of Z according
to Dm. Let h∗ ∈ H be the unique empirical risk minimizer of
�′, and let L∗ = minh∈H L′

D(h). Then a.s.

|L′
D(h

∗)− L∗| ≥ 1

5

Proof 6. By Lemma 3, ‖h∗‖ = 1. We write

L′
D(h

∗) = E
(x,α)

[�′(h∗, (x,α))]

≥ E
(x,α)

[ ∞∑
k=1

αk(xk − h∗
k)

2

]

since x and α are independent with our choice of D:

=

∞∑
k=1

E
α
[αk]E

x
(xk − h∗

k)
2

=
1

2
E
x
[‖x− h∗‖2]

≥ 9

32

On the other hand,

L∗ = min
h∈H

L′
D(h)

≤ L′
D(0)

= E
(x,α)

[�′(0, (x,α))]

= E
(x,α)

[
∥∥√α ∗ x∥∥2] + η

≤ E
(x,α)

[‖x‖2] + η

≤ 1

16
+ η

Since η = .01, |L′
D(h

∗)− L∗| ≥ 9
32 − 1

16 − .01 > 1
5 .

Theorem 6 says that for any product measure D = μ×U[0,1]

on B1/4 × [0, 1] where U[0,1] is the uniform distribution on

[0, 1], then a.s. the unique empirical risk minimizer h∗ of

(H,Z, �′) performs much worse than the population optimum

L∗ and therefore does not converge to it as m → ∞. Thus

this problem is not learnable under the ERM rule, although

we already showed that is learnable under a RLM rule.
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V. CONCLUSION

Theorems 5 and 6 are generalizations of Example 4.1 in [4].

In that paper, the authors only presented a single distribution D
concentrated on 0 ∈ B where the uniform convergence property

fails. We have presented a very rich family of distributions

over B × [0, 1] where the gap between the empirical risk and

the true risk is bounded away from 0 a.s. for any sample

size m. The only restrictions on D that we have imposed are

a concentration of D in a smaller ball of radius 1/4, and a

corresponding distribution of independent, uniform Bernouilli

random variables on the α variable. We can even relax some

conditions on the problem we have studied here. For example,

we can ask that the hypothesis class H is a bounded convex

set only. This family of distributions for the weighted center

of mass problem also shows that “pathogenic” distributions

on Z where the uniform convergence property fails are much

more common than originally thought.
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