Search results for: Heat transfer
388 Simulation of the Performance of the Reforming of Methane in a Primary Reformer
Authors: A. Alkattib, M. Boumaza
Abstract:
Steam reforming is industrially important as it is incorporated in several major chemical processes including the production of ammonia, methanol, hydrogen and ox alcohols. Due to the strongly endothermic nature of the process, a large amount of heat is supplied by fuel burning (commonly natural gas) in the furnace chamber. Reaction conversions, tube catalyst life, energy consumption and CO2 emission represent the principal factors affecting the performance of this unit and are directly influenced by the high operating temperatures and pressures. This study presents a simulation of the performance of the reforming of methane in a primary reformer, through a developed empirical relation which enables to investigate the effects of operating parameters such as the pressure, temperature, steam to carbon ratio on the production of hydrogen, as well as the fraction of non converted methane. It appears from this analysis that the exit temperature Te, the operating pressure as well the steam to carbon ratio has an important effect on the reforming of methane.
Keywords: Reforming, methane, performance, hydrogen, parameters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2472387 Numerical Study of Vertical Wall Jets: Influence of the Prandtl Number
Authors: Amèni Mokni, Hatem Mhiri, Georges Le Palec, Philippe Bournot
Abstract:
This paper is a numerical investigation of a laminar isothermal plane two dimensional wall jet. Special attention has been paid to the effect of the inlet conditions at the nozzle exit on the hydrodynamic and thermal characteristics of the flow. The behaviour of various fluids evolving in both forced and mixed convection regimes near a vertical plate plane is carried out. The system of governing equations is solved with an implicit finite difference scheme. For numerical stability we use a staggered non uniform grid. The obtained results show that the effect of the Prandtl number is significant in the plume region in which the jet flow is governed by buoyant forces. Further for ascending X values, the buoyancy forces become dominating, and a certain agreement between the temperature profiles are observed, which shows that the velocity profile has no longer influence on the wall temperature evolution in this region. Fluids with low Prandtl number warm up more importantly, because for such fluids the effect of heat diffusion is higher.Keywords: Forced convection, Mixed convection, Prandtl number, Wall jet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1779386 Numerical Investigation on the Interior Wind Noise of a Passenger Car
Authors: Liu Ying-jie, Lu Wen-bo, Peng Cheng-jian
Abstract:
With the development of the automotive technology and electric vehicle, the contribution of the wind noise on the interior noise becomes the main source of noise. The main transfer path which the exterior excitation is transmitted through is the greenhouse panels and side windows. Simulating the wind noise transmitted into the vehicle accurately in the early development stage can be very challenging. The basic methodologies of this study were based on the Lighthill analogy; the exterior flow field around a passenger car was computed using unsteady Computational Fluid Dynamics (CFD) firstly and then a Finite Element Method (FEM) was used to compute the interior acoustic response. The major findings of this study include: 1) The Sound Pressure Level (SPL) response at driver’s ear locations is mainly induced by the turbulence pressure fluctuation; 2) Peaks were found over the full frequency range. It is found that the methodology used in this study could predict the interior wind noise induced by the exterior aerodynamic excitation in industry.
Keywords: Wind noise, computational fluid dynamics, finite element method, passenger car.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 863385 Microstructure and Mechanical Properties of Mg-Zn Alloys
Authors: Young Sik Kim, Tae Kwon Ha
Abstract:
Effect of Zn addition on the microstructure and mechanical properties of Mg-Zn alloys with Zn contents from 6 to 10 weight percent was investigated in this study. Through calculation of phase equilibria of Mg-Zn alloys, carried out by using FactSage® and FTLite database, solution treatment temperature was decided as temperatures from 300 to 400oC, where supersaturated solid solution can be obtained. Solid solution treatment of Mg-Zn alloys was successfully conducted at 380oC and supersaturated microstructure with all beta phase resolved into matrix was obtained. After solution treatment, hot rolling was successfully conducted by reduction of 60%. Compression and tension tests were carried out at room temperature on the samples as-cast, solution treated, hot-rolled and recrystallized after rolling. After solid solution treatment, each alloy was annealed at temperatures of 180 and 200oC for time intervals from 1 min to 48 hrs and hardness of each condition was measured by micro-Vickers method. Peak aging conditions were deduced as at the temperature of 200oC for 10 hrs. By addition of Zn by 10 weight percent, hardness and strength were enhanced.Keywords: Mg-Zn alloy, Heat treatment, Microstructure, Mechanical properties, Hardness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2367384 The Upconversion of co-doped Nd3+/Er3+Tellurite Glass
Authors: Azman, K., Sahar, M.R., Rohani, M.S.
Abstract:
Series of tellurite glass of the system 78TeO2-10PbO- 10Li2O-(2-x)Nd2O3-xEr2O3, where x = 0.5, 1.0, 1.5 and 2.0 was successfully been made. A study of upconversion luminescence of the Nd3+/Er3+ co-doped tellurite glass has been carried out. From Judd-Ofelt analysis, the experimental lifetime, exp. τ of the glass serie are found higher in the visible region as they varies from 65.17ms to 114.63ms, whereas in the near infrared region (NIR) the lifetime are varies from 2.133ms to 2.270ms. Meanwhile, the emission cross section,σ results are found varies from 0.004 x 1020 cm2 to 1.007 x 1020 cm2 with respect to composition. The emission spectra of the glass are found been contributed from Nd3+ and Er3+ ions by which nine significant transition peaks are observed. The upconversion mechanism of the co-doped tellurite glass has been shown in the schematic energy diagrams. In this works, it is found that the excited state-absorption (ESA) is still dominant in the upconversion excitation process as the upconversion excitation mechanism of the Nd3+ excited-state levels is accomplished through a stepwise multiphonon process. An efficient excitation energy transfer (ET) has been observed between Nd3+ as a donor and Er3+ as the acceptor. As a result, respective emission spectra had been observed.Keywords: Tellurite glass, co-dopant, upconvertionluminescence spectra.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1843383 RS Based SCADA System for Longer Distance Powered Devices
Authors: Harkishen Singh, Gavin Mangeni
Abstract:
This project aims at building an efficient and automatic power monitoring SCADA system, which is capable of monitoring the electrical parameters of high voltage powered devices in real time for example RMS voltage and current, frequency, energy consumed, power factor etc. The system uses RS-485 serial communication interface to transfer data over longer distances. Embedded C programming is the platform used to develop two hardware modules namely: RTU and Master Station modules, which both use the CC2540 BLE 4.0 microcontroller configured in slave / master mode. The Si8900 galvanic ally isolated microchip is used to perform ADC externally. The hardware communicates via UART port and sends data to the user PC using the USB port. Labview software is used to design a user interface to display current state of the power loads being monitored as well as logs data to excel spreadsheet file. An understanding of the Si8900’s auto baud rate process is key to successful implementation of this project.Keywords: SCADA, RS485, CC2540, Labview, Si8900.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1482382 Genetically Optimized TCSC Controller for Transient Stability Improvement
Authors: Sidhartha Panda, N.P.Padhy, R.N.Patel
Abstract:
This paper presents a procedure for modeling and tuning the parameters of Thyristor Controlled Series Compensation (TCSC) controller in a multi-machine power system to improve transient stability. First a simple transfer function model of TCSC controller for stability improvement is developed and the parameters of the proposed controller are optimally tuned. Genetic algorithm (GA) is employed for the optimization of the parameter-constrained nonlinear optimization problem implemented in a simulation environment. By minimizing an objective function in which the oscillatory rotor angle deviations of the generators are involved, transient stability performance of the system is improved. The proposed TCSC controller is tested on a multi-machine system and the simulation results are presented. The nonlinear simulation results validate the effectiveness of proposed approach for transient stability improvement in a multimachine power system installed with a TCSC. The simulation results also show that the proposed TCSC controller is also effective in damping low frequency oscillations.
Keywords: Genetic algorithm, TCSC, transient stability, multimachinepower system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2385381 The Effect of Waste Magnesium to Boric Acid Ratio in Hydrothermal Magnesium Borate Synthesis at 70oC
Authors: E. Moroydor Derun, A. S. Kipcak, A. Kaplan, S. Piskin
Abstract:
Magnesium wastes are produced by many industrial activities. This waste problem is becoming a future problem for the world. Magnesium borates have many advantages such as; high corrosion resistance, heat resistance, high coefficient of elasticity and can also be used in the production of material against radiation. Addition, magnesium borates have great potential in sectors including ceramic and detergents industry and superconducting materials. In this study, using the starting materials of waste magnesium and H3BO3 the hydrothermal method was applied at a moderate temperature of 70oC. Several mole ratios of waste magnesium to H3BO3 are selected as; 1:2, 1:4, 1:6, 1:8, 1:10. Reaction time was determined as 1 hour. After the synthesis, X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR) techniques are applied to products. As a result the forms of mcallisterite “Mg2(B6O7(OH)6)2.9(H2O)”, admontite “MgO(B2O3)3.7(H2O)” and magnesium boron hydrate (MgO(B2O3)3.6(H2O)” are obtained.
Keywords: Hydrothermal synthesis, magnesium borates, waste magnesium.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2411380 Springback Simulations of Monolithic and Layered Steels Used for Pressure Equipment
Authors: Anish H. Gandhi, Harit K. Raval
Abstract:
Carbon steel is used in boilers, pressure vessels, heat exchangers, piping, structural elements and other moderatetemperature service systems in which good strength and ductility are desired. ASME Boiler and Pressure Vessel Code, Section II Part A (2004) provides specifications of ferrous materials for construction of pressure equipment, covering wide range of mechanical properties including high strength materials for power plants application. However, increased level of springback is one of the major problems in fabricating components of high strength steel using bending. Presented work discuss the springback simulations for five different steels (i.e. SA-36, SA-299, SA-515 grade 70, SA-612 and SA-724 grade B) using finite element analysis of air V-bending. Analytical springback simulations of hypothetical layered materials are presented. Result shows that; (i) combination of the material property parameters controls the springback, (ii) layer of the high ductility steel on the high strength steel greatly suppresses the springback.Keywords: Carbon steel, Finite element analysis, Layeredmaterial, Springback
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2234379 Data Embedding Based on Better Use of Bits in Image Pixels
Authors: Rehab H. Alwan, Fadhil J. Kadhim, Ahmad T. Al-Taani
Abstract:
In this study, a novel approach of image embedding is introduced. The proposed method consists of three main steps. First, the edge of the image is detected using Sobel mask filters. Second, the least significant bit LSB of each pixel is used. Finally, a gray level connectivity is applied using a fuzzy approach and the ASCII code is used for information hiding. The prior bit of the LSB represents the edged image after gray level connectivity, and the remaining six bits represent the original image with very little difference in contrast. The proposed method embeds three images in one image and includes, as a special case of data embedding, information hiding, identifying and authenticating text embedded within the digital images. Image embedding method is considered to be one of the good compression methods, in terms of reserving memory space. Moreover, information hiding within digital image can be used for security information transfer. The creation and extraction of three embedded images, and hiding text information is discussed and illustrated, in the following sections.
Keywords: Image embedding, Edge detection, gray level connectivity, information hiding, digital image compression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2149378 Characterization of Biodegradable Nanocomposites with Poly (Lactic Acid) and Multi-Walled Carbon Nanotubes
Authors: Md F. Mina, Mohammad D.H. Beg, Muhammad R. Islam, Abu K. M. M. Alam A. Nizam, Rosli M. Younus
Abstract:
In this study, structural, mechanical, thermal and electrical properties of poly (lactic acid) (PLA) nanocomposites with low-loaded (0-1.5 wt%) untreated, heat and nitric acid treated multiwalled carbon nanotubes (MWCNTs) were studied. Among the composites, untreated 0.5 wt % MWCNTs and acid-treated 1.0 wt% MWCNTs reinforced PLA show the tensile strength and modulus values higher than the others. These two samples along with pure PLA exhibit the stable orthorhombic α-form, whilst other samples reveal the less stable orthorhombic β-form, as demonstrated by X-ray diffraction study. Differential scanning calorimetry reveals the evolution of the mentioned different phases by controlled cooling and discloses an enhancement of PLA crystallization by nanotubes incorporation. Thermogravimetric analysis shows that the MWCNTs loaded sample degraded faster than PLA. Surface resistivity of the nanocomposites is found to be dropped drastically by a factor of 1013 with a low loading of MWCNTs (1.5 wt%).Keywords: Crystallization, multi-walled carbon nanotubes, nanocomposites, Poly (lactic acid).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2605377 Voltage Stability Investigation of Grid Connected Wind Farm
Authors: Trinh Trong Chuong
Abstract:
At present, it is very common to find renewable energy resources, especially wind power, connected to distribution systems. The impact of this wind power on voltage distribution levels has been addressed in the literature. The majority of this works deals with the determination of the maximum active and reactive power that is possible to be connected on a system load bus, until the voltage at that bus reaches the voltage collapse point. It is done by the traditional methods of PV curves reported in many references. Theoretical expression of maximum power limited by voltage stability transfer through a grid is formulated using an exact representation of distribution line with ABCD parameters. The expression is used to plot PV curves at various power factors of a radial system. Limited values of reactive power can be obtained. This paper presents a method to study the relationship between the active power and voltage (PV) at the load bus to identify the voltage stability limit. It is a foundation to build a permitted working operation region in complying with the voltage stability limit at the point of common coupling (PCC) connected wind farm.Keywords: Wind generator, Voltage stability, grid connected
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3655376 Estimation of Uncertainty of Thermal Conductivity Measurement with Single Laboratory Validation Approach
Authors: Saowaluck Ukrisdawithid
Abstract:
The thermal conductivity of thermal insulation materials are measured by Heat Flow Meter (HFM) apparatus. The components of uncertainty are complex and difficult on routine measurement by modelling approach. In this study, uncertainty of thermal conductivity measurement was estimated by single laboratory validation approach. The within-laboratory reproducibility was 1.1%. The standard uncertainty of method and laboratory bias by using SRM1453 expanded polystyrene board was dominant at 1.4%. However, it was assessed that there was no significant bias. For sample measurement, the sources of uncertainty were repeatability, density of sample and thermal conductivity resolution of HFM. From this approach to sample measurements, the combined uncertainty was calculated. In summary, the thermal conductivity of sample, polystyrene foam, was reported as 0.03367 W/m·K ± 3.5% (k = 2) at mean temperature 23.5 °C. The single laboratory validation approach is simple key of routine testing laboratory for estimation uncertainty of thermal conductivity measurement by using HFM, according to ISO/IEC 17025-2017 requirements. These are meaningful for laboratory competent improvement, quality control on products, and conformity assessment.
Keywords: Single laboratory validation approach, within-laboratory reproducibility, method and laboratory bias, certified reference material.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 813375 RF Power Consumption Emulation Optimized with Interval Valued Homotopies
Authors: Deogratius Musiige, François Anton, Vital Yatskevich, Laulagnet Vincent, Darka Mioc, Nguyen Pierre
Abstract:
This paper presents a methodology towards the emulation of the electrical power consumption of the RF device during the cellular phone/handset transmission mode using the LTE technology. The emulation methodology takes the physical environmental variables and the logical interface between the baseband and the RF system as inputs to compute the emulated power dissipation of the RF device. The emulated power, in between the measured points corresponding to the discrete values of the logical interface parameters is computed as a polynomial interpolation using polynomial basis functions. The evaluation of polynomial and spline curve fitting models showed a respective divergence (test error) of 8% and 0.02% from the physically measured power consumption. The precisions of the instruments used for the physical measurements have been modeled as intervals. We have been able to model the power consumption of the RF device operating at 5MHz using homotopy between 2 continuous power consumptions of the RF device operating at the bandwidths 3MHz and 10MHz.
Keywords: Radio frequency, high power amplifier, baseband, LTE, power, emulation, homotopy, interval analysis, Tx power, register-transfer level.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1806374 A Survey on Opportunistic Routing in Mobile Ad Hoc Networks
Authors: R. Poonkuzhali, M. Y. Sanavullah, A. Sabari, T. Dhivyaa
Abstract:
Opportunistic Routing (OR) increases the transmission reliability and network throughput. Traditional routing protocols preselects one or more predetermined nodes before transmission starts and uses a predetermined neighbor to forward a packet in each hop. The opportunistic routing overcomes the drawback of unreliable wireless transmission by broadcasting one transmission can be overheard by manifold neighbors. The first cooperation-optimal protocol for Multirate OR (COMO) used to achieve social efficiency and prevent the selfish behavior of the nodes. The novel link-correlation-aware OR improves the performance by exploiting the miscellaneous low correlated forward links. Context aware Adaptive OR (CAOR) uses active suppression mechanism to reduce packet duplication. The Context-aware OR (COR) can provide efficient routing in mobile networks. By using Cooperative Opportunistic Routing in Mobile Ad hoc Networks (CORMAN), the problem of opportunistic data transfer can be tackled. While comparing to all the protocols, COMO is the best as it achieves social efficiency and prevents the selfish behavior of the nodes.Keywords: CAOR, COMO, COR, CORMAN, MANET, Opportunistic Routing, Reliability, Throughput.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1883373 Effects of Superheating on Thermodynamic Performance of Organic Rankine Cycles
Authors: Kyoung Hoon Kim
Abstract:
Recently ORC(Organic Rankine Cycle) has attracted much attention due to its potential in reducing consumption of fossil fuels and its favorable characteristics to exploit low-grade heat sources. In this work thermodynamic performance of ORC with superheating of vapor is comparatively assessed for various working fluids. Special attention is paid to the effects of system parameters such as the evaporating temperature and the turbine inlet temperature on the characteristics of the system such as maximum possible work extraction from the given source, volumetric flow rate per 1 kW of net work and quality of the working fluid at turbine exit as well as thermal and exergy efficiencies. Results show that for a given source the thermal efficiency increases with decrease of the superheating but exergy efficiency may have a maximum value with respect to the superheating of the working fluid. Results also show that in selection of working fluid it is required to consider various criteria of performance characteristics as well as thermal efficiency.Keywords: organic Rankine cycle (ORC), low-grade energysource, Patel-Teja equation, thermodynamic performance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2903372 Effect of Inhibitors on Weld Corrosion under Sweet Conditions Using Flow Channel
Authors: Khaled Alawadhi, Abdulkareem Aloraier, Suraj Joshi, Jalal Alsarraf
Abstract:
The aim of this paper is to compare the effectiveness and electrochemical behavior of typical oilfield corrosion inhibitors with previous oilfield corrosion inhibitors under the same electrochemical techniques to control preferential weld corrosion of X65 pipeline steel in artificial seawater saturated with carbon dioxide at a pressure of one bar. A secondary aim is to investigate the conditions under which current reversal takes place. A flow channel apparatus was used in the laboratory to simulate the actual condition that occurs in marine pipelines. Different samples from the parent metal, the weld metal and the heat affected zone in the pipeline steel were galvanically coupled. The galvanic currents flowing between the weld regions were recorded using zero-resistance ammeters and tested under static and flowing conditions in both inhibited and uninhibited media. The results show that a current reversal took place when 30ppm of both green oilfield inhibitors were present, resulting in accelerated weld corrosion.
Keywords: Carbon dioxide, carbon steel, current reversal, inhibitor, weld corrosion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2954371 The Effect of Laser Surface Melting on the Microstructure and Mechanical Properties of Low Carbon Steel
Authors: Suleiman M. Elhamali, K. M. Etmimi, A. Usha
Abstract:
The paper presents the results of microhardness and microstructure of low carbon steel surface melted using carbon dioxide laser with a wavelength of 10.6μm and a maximum output power of 2000W. The processing parameters such as the laser power, and the scanning rate were investigated in this study. After surface melting two distinct regions formed corresponding to the melted zone MZ, and the heat affected zone HAZ. The laser melted region displayed a cellular fine structures while the HAZ displayed martensite or bainite structure. At different processing parameters, the original microstructure of this steel (Ferrite+Pearlite) has been transformed to new phases of martensitic and bainitic structures. The fine structure and the high microhardness are evidence of the high cooling rates which follow the laser melting. The melting pool and the transformed microstructure in the laser surface melted region of carbon steel showed clear dependence on laser power and scanning rate.Keywords: Carbon steel, laser surface melting, microstructure, microhardness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2559370 Literature Review on Metallurgical Properties of Ti/Al Weld Joint Using Laser Beam Welding
Authors: K. Kalaiselvan, Naresh Subramania Warrier, S. Elavarasi
Abstract:
Several situations arise in industrial practice which calls for joining of dissimilar metals. With increasing demand in the application requirements, dissimilar metal joining becomes inevitable in modern engineering industries. The metals employed are the structure for effective and utilization of the special properties of each metal. The purpose of this paper is to present the research and development status of titanium (Ti) and aluminium (Al) dissimilar alloys weldment by the researchers worldwide. The detailed analysis of problems faced during welding of dissimilar metal joint for Ti/Al metal combinations are discussed. Microstructural variations in heat affected zone (HAZ), fusion zone (FZ), Intermetallic compound (IMC) layer and surface fracture of weldments are analysed. Additionally, mechanical property variations and microstructural feature have been studied by the researchers. The paper provides a detailed literature review of Ti/Al dissimilar metal joint microchemistry and property variation across the weldment.
Keywords: Laser beam welding, titanium, aluminium, metallurgical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 449369 Vapor Bubble Dynamics in Upward Subcooled Flow Boiling During Void Evolution
Authors: Rouhollah Ahmadi, Tatsuya Ueno, Tomio Okawa
Abstract:
Bubble generation was observed using a high-speed camera in subcooled flow boiling at low void fraction. Constant heat flux was applied on one side of an upward rectangular channel to make heated test channel. Water as a working fluid from high subcooling to near saturation temperature was injected step by step to investigate bubble behavior during void development. Experiments were performed in two different pressures condition close to 2bar and 4bar. It was observed that in high subcooling when boiling was commenced, bubble after nucleation departed its origin and slid beside heated surface. In an observation window mean release frequency of bubble fb,mean, nucleation site Ns and mean bubble volume Vb,mean in each step of experiments were measured to investigate wall vaporization rate. It was found that in proximity of PNVG vaporization rate was increased significantly in compare with condensation rate which remained in low value.Keywords: Subcooled flow boiling, Bubble dynamics, Void fraction, Sliding bubble.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2045368 Knowledge Flows and Innovative Performances of NTBFs in Gauteng, South Africa: An Attempt to Explain Mixed Findings in Science Park Research
Authors: Kai-Ying A. Chan, Leon A.G. Oerlemans, Marthinus W. Pretorius
Abstract:
Science parks are often established to drive regional economic growth, especially in countries with emerging economies. However, mixed findings regarding the performances of science park firms are found in the literature. This study tries to explain these mixed findings by taking a relational approach and exploring (un)intended knowledge transfers between new technology-based firms (NTBFs) in the emerging South African economy. Moreover, the innovation outcomes of these NTBFs are examined by using a multi-dimensional construct. Results show that science park location plays a significant role in explaining innovative sales, but is insignificant when a different indicator of innovation outcomes is used. Furthermore, only for innovations that are new to the firms, both science park location and intended knowledge transfer via informal business relationships have a positive impact; whereas social relationships have a negative impact.Keywords: knowledge flows, innovative performances, science parks, new technology-based firms
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1515367 Impedance Matching of Axial Mode Helical Antennas
Authors: Hossein Mardani, Neil Buchanan, Robert Cahill, Vincent Fusco
Abstract:
In this paper, we study the input impedance characteristics of axial mode helical antennas to find an effective way for matching it to 50 Ω. The study is done on the important matching parameters such as like wire diameter and helix to the ground plane gap. It is intended that these parameters control the matching without detrimentally affecting the radiation pattern. Using transmission line theory, a simple broadband technique is proposed, which is applicable for perfect matching of antennas with similar design parameters. We provide design curves to help to choose the proper dimensions of the matching section based on the antenna’s unmatched input impedance. Finally, using the proposed technique, a 4-turn axial mode helix is designed at 2.5 GHz center frequency and the measurement results of the manufactured antenna will be included. This parametric study gives a good insight into the input impedance characteristics of axial mode helical antennas and the proposed impedance matching approach provides a simple, useful method for matching these types of antennas.
Keywords: Antenna, helix, helical, axial mode, wireless power transfer, impedance matching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 897366 Structural Behaviour of Concrete Energy Piles in Thermal Loadings
Authors: E. H. N. Gashti, M. Malaska, K. Kujala
Abstract:
The thermo-mechanical behaviour of concrete energy pile foundations with different single and double U-tube shapes incorporated was analysed using the Comsol Multi-physics package. For the analysis, a 3D numerical model in real scale of the concrete pile and surrounding soil was simulated regarding actual operation of ground heat exchangers (GHE) and the surrounding ambient temperature. Based on initial ground temperature profile measured in situ, tube inlet temperature was considered to range from 6oC to 0oC (during the contraction process) over a 30-day period. Extra thermal stresses and deformations were calculated during the simulations and differences arising from the use of two different systems (single-tube and double-tube) were analysed. The results revealed no significant difference for extra thermal stresses at the centre of the pile in either system. However, displacements over the pile length were found to be up to 1.5-fold higher in the double-tube system than the singletube system.
Keywords: Concrete Energy Piles, Stresses, Displacements, Thermo-mechanical behaviour, Soil-structure interactions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3254365 Modeling And Analysis of Simple Open Cycle Gas Turbine Using Graph Networks
Authors: Naresh Yadav, I.A. Khan, Sandeep Grover
Abstract:
This paper presents a unified approach based graph theory and system theory postulates for the modeling and analysis of Simple open cycle Gas turbine system. In the present paper, the simple open cycle gas turbine system has been modeled up to its subsystem level and system variables have been identified to develop the process subgraphs. The theorems and algorithms of the graph theory have been used to represent behavioural properties of the system like rate of heat and work transfers rates, pressure drops and temperature drops in the involved processes of the system. The processes have been represented as edges of the process subgraphs and their limits as the vertices of the process subgraphs. The system across variables and through variables has been used to develop terminal equations of the process subgraphs of the system. The set of equations developed for vertices and edges of network graph are used to solve the system for its process variables.Keywords: Simple open cycle gas turbine, Graph theoretic approach, process subgraphs, gas turbines system modeling, systemtheory
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2644364 Variation of Spot Price and Profits of Andhra Pradesh State Grid in Deregulated Environment
Authors: Chava Sunil Kumar, P.S. Subrahmanyan, J. Amarnath
Abstract:
In this paper variation of spot price and total profits of the generating companies- through wholesale electricity trading are discussed with and without Central Generating Stations (CGS) share and seasonal variations are also considered. It demonstrates how proper analysis of generators- efficiencies and capabilities, types of generators owned, fuel costs, transmission losses and settling price variation using the solutions of Optimal Power Flow (OPF), can allow companies to maximize overall revenue. It illustrates how solutions of OPF can be used to maximize companies- revenue under different scenarios. And is also extended to computation of Available Transfer Capability (ATC) is very important to the transmission system security and market forecasting. From these results it is observed that how crucial it is for companies to plan their daily operations and is certainly useful in an online environment of deregulated power system. In this paper above tasks are demonstrated on 124 bus real-life Indian utility power system of Andhra Pradesh State Grid and results have been presented and analyzed.Keywords: OPF, ATC, Electricity Market, Bid, Spot Price
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1815363 Simulation of a Multi-Component Transport Model for the Chemical Reaction of a CVD-Process
Abstract:
In this paper we present discretization and decomposition methods for a multi-component transport model of a chemical vapor deposition (CVD) process. CVD processes are used to manufacture deposition layers or bulk materials. In our transport model we simulate the deposition of thin layers. The microscopic model is based on the heavy particles, which are derived by approximately solving a linearized multicomponent Boltzmann equation. For the drift-process of the particles we propose diffusionreaction equations as well as for the effects of heat conduction. We concentrate on solving the diffusion-reaction equation with analytical and numerical methods. For the chemical processes, modelled with reaction equations, we propose decomposition methods and decouple the multi-component models to simpler systems of differential equations. In the numerical experiments we present the computational results of our proposed models.
Keywords: Chemical reactions, chemical vapor deposition, convection-diffusion-reaction equations, decomposition methods, multi-component transport.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1413362 Micromechanics of Stress Transfer across the Interface Fiber-Matrix Bonding
Authors: Fatiha Teklal, Bachir Kacimi, Arezki Djebbar
Abstract:
The study and application of composite materials are a truly interdisciplinary endeavor that has been enriched by contributions from chemistry, physics, materials science, mechanics and manufacturing engineering. The understanding of the interface (or interphase) in composites is the central point of this interdisciplinary effort. From the early development of composite materials of various nature, the optimization of the interface has been of major importance. Even more important, the ideas linking the properties of composites to the interface structure are still emerging. In our study, we need a direct characterization of the interface; the micromechanical tests we are addressing seem to meet this objective and we chose to use two complementary tests simultaneously. The microindentation test that can be applied to real composites and the drop test, preferred to the pull-out because of the theoretical possibility of studying systems with high adhesion (which is a priori the case with our systems). These two tests are complementary because of the principle of the model specimen used for both the first "compression indentation" and the second whose fiber is subjected to tensile stress called the drop test. Comparing the results obtained by the two methods can therefore be rewarding.Keywords: Interface, micromechanics, pull-out, composite, fiber, matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 619361 Modeling of Knowledge-Intensive Business Processes
Authors: Eckhard M. Ammann
Abstract:
Knowledge development in companies relies on knowledge-intensive business processes, which are characterized by a high complexity in their execution, weak structuring, communication-oriented tasks and high decision autonomy, and often the need for creativity and innovation. A foundation of knowledge development is provided, which is based on a new conception of knowledge and knowledge dynamics. This conception consists of a three-dimensional model of knowledge with types, kinds and qualities. Built on this knowledge conception, knowledge dynamics is modeled with the help of general knowledge conversions between knowledge assets. Here knowledge dynamics is understood to cover all of acquisition, conversion, transfer, development and usage of knowledge. Through this conception we gain a sound basis for knowledge management and development in an enterprise. Especially the type dimension of knowledge, which categorizes it according to its internality and externality with respect to the human being, is crucial for enterprise knowledge management and development, because knowledge should be made available by converting it to more external types. Built on this conception, a modeling approach for knowledgeintensive business processes is introduced, be it human-driven,e-driven or task-driven processes. As an example for this approach, a model of the creative activity for the renewal planning of a product is given.Keywords: Conception of knowledge, knowledge dynamics, modeling notation, knowledge-intensive business processes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1839360 Thermo-Mechanical Processing of Armor Steel Plates
Authors: Taher El-Bitar, Maha El-Meligy, Eman El-Shenawy, Almosilhy Almosilhy, Nader Dawood
Abstract:
The steel contains 0.3% C and 0.004% B, beside Mn, Cr, Mo, and Ni. The alloy was processed by using 20-ton capacity electric arc furnace (EAF), and then refined by ladle furnace (LF). Liquid steel was cast as rectangular ingots. Dilatation test showed the critical transformation temperatures Ac1, Ac3, Ms and Mf as 716, 835, 356, and 218 °C. The ingots were austenitized and soaked and then rough rolled to thin slabs with 80 mm thickness. The thin slabs were then reheated and soaked for finish rolling to 6.0 mm thickness plates. During the rough rolling, the roll force increases as a result of rolling at temperatures less than recrystallization temperature. However, during finish rolling, the steel reflects initially continuous static recrystallization after which it shows strain hardening due to fall of temperature. It was concluded that, the steel plates were successfully heat treated by quenching-tempering at 250 ºC for 20 min.
Keywords: Armor steel, austenitizing, critical transformation temperatures, dilatation curve, martensite, quenching, rough and finish rolling processes, soaking, tempering, thermo-mechanical processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1298359 Thermal Hydraulic Analysis of the IAEA 10MW Benchmark Reactor under Normal Operating Condition
Authors: Hamed Djalal
Abstract:
The aim of this paper is to perform a thermal-hydraulic analysis of the IAEA 10 MW benchmark reactor solving analytically and numerically, by mean of the finite volume method, respectively the steady state and transient forced convection in rectangular narrow channel between two parallel MTR-type fuel plates, imposed under a cosine shape heat flux. A comparison between both solutions is presented to determine the minimal coolant velocity which can ensure a safe reactor core cooling, where the cladding temperature should not reach a specific safety limit 90 °C. For this purpose, a computer program is developed to determine the principal parameter related to the nuclear core safety, such as the temperature distribution in the fuel plate and in the coolant (light water) as a function of the inlet coolant velocity. Finally, a good agreement is noticed between the both analytical and numerical solutions, where the obtained results are displayed graphically.
Keywords: Forced convection, friction factor pressure drop thermal hydraulic analysis, vertical heated rectangular channel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 870