Search results for: universal testing machine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2320

Search results for: universal testing machine

820 Design of Permanent Magnet Machines with Different Rotor Type

Authors: Tayfun Gundogdu, Guven Komurgoz

Abstract:

This paper presents design, analysis and comparison of the different rotor type permanent magnet machines. The presented machines are designed as having same geometrical dimensions and same materials for comparison. The main machine parameters of interior and exterior rotor type machines including eddy current effect, torque-speed characteristics and magnetic analysis are investigated using MAXWELL program. With this program, the components of the permanent magnet machines can be calculated with high accuracy. Six types of Permanent machines are compared with respect to their topology, size, magnetic field, air gap flux, voltage, torque, loss and efficiency. The analysis results demonstrate the effectiveness of the proposed machines design methodology. We believe that, this study will be a helpful resource in terms of examination and comparison of the basic structure and magnetic features of the PM (Permanent magnet) machines which have different rotor structure.

Keywords: Motor design, Permanent Magnet, Finite-Elementmethod.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6098
819 Cascaded Neural Network for Internal Temperature Forecasting in Induction Motor

Authors: Hidir S. Nogay

Abstract:

In this study, two systems were created to predict interior temperature in induction motor. One of them consisted of a simple ANN model which has two layers, ten input parameters and one output parameter. The other one consisted of eight ANN models connected each other as cascaded. Cascaded ANN system has 17 inputs. Main reason of cascaded system being used in this study is to accomplish more accurate estimation by increasing inputs in the ANN system. Cascaded ANN system is compared with simple conventional ANN model to prove mentioned advantages. Dataset was obtained from experimental applications. Small part of the dataset was used to obtain more understandable graphs. Number of data is 329. 30% of the data was used for testing and validation. Test data and validation data were determined for each ANN model separately and reliability of each model was tested. As a result of this study, it has been understood that the cascaded ANN system produced more accurate estimates than conventional ANN model.

Keywords: Cascaded neural network, internal temperature, three-phase induction motor, inverter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 872
818 Development of a Microsensor to Minimize Post Cataract Surgery Complications

Authors: M. Mottaghi, F. Ghalichi, H. Badri Ghavifekr, H. Niroomand Oskui

Abstract:

This paper presents design and characterization of a microaccelerometer designated for integration into cataract surgical probe to detect hardness of different eye tissues during cataract surgery. Soft posterior lens capsule of eye can be easily damaged in comparison with hard opaque lens since the surgeon can not see directly behind cutting needle during the surgery. Presence of microsensor helps the surgeon to avoid rupturing posterior lens capsule which if occurs leads to severe complications such as glaucoma, infection, or even blindness. The microsensor having overall dimensions of 480 μm x 395 μm is able to deliver significant capacitance variations during encountered vibration situations which makes it capable to distinguish between different types of tissue. Integration of electronic components on chip ensures high level of reliability and noise immunity while minimizes space and power requirements. Physical characteristics and results on performance testing, proves integration of microsensor as an effective tool to aid the surgeon during this procedure.

Keywords: Cataract surgery, MEMS, Microsensor, Phacoemulsification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1844
817 Optimum Design of Trusses by Cuckoo Search

Authors: M. Saravanan, J. Raja Murugadoss, V. Jayanthi

Abstract:

Optimal design of structure has a main role in reduction of material usage which leads to deduction in the final cost of construction projects. Evolutionary approaches are found to be more successful techniques for solving size and shape structural optimization problem since it uses a stochastic random search instead of a gradient search. By reviewing the recent literature works the problem found was the optimization of weight. A new meta-heuristic algorithm called as Cuckoo Search (CS) Algorithm has used for the optimization of the total weight of the truss structures. This paper has used set of 10 bars and 25 bars trusses for the testing purpose. The main objective of this work is to reduce the number of iterations, weight and the total time consumption. In order to demonstrate the effectiveness of the present method, minimum weight design of truss structures is performed and the results of the CS are compared with other algorithms.

Keywords: Cuckoo search algorithm, levy’s flight, meta-heuristic, optimal weight.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2105
816 Features for Measuring Credibility on Facebook Information

Authors: Kanda Runapongsa Saikaew, Chaluemwut Noyunsan

Abstract:

Nowadays social media information, such as news, links, images, or VDOs, is shared extensively. However, the effectiveness of disseminating information through social media lacks in quality: less fact checking, more biases, and several rumors. Many researchers have investigated about credibility on Twitter, but there is no the research report about credibility information on Facebook. This paper proposes features for measuring credibility on Facebook information. We developed the system for credibility on Facebook. First, we have developed FB credibility evaluator for measuring credibility of each post by manual human’s labelling. We then collected the training data for creating a model using Support Vector Machine (SVM). Secondly, we developed a chrome extension of FB credibility for Facebook users to evaluate the credibility of each post. Based on the usage analysis of our FB credibility chrome extension, about 81% of users’ responses agree with suggested credibility automatically computed by the proposed system.

Keywords: Facebook, social media, credibility measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3669
815 Financial Literacy Testing: Results of Conducted Research and Introduction of a Project

Authors: J. Nesleha, H. Florianova

Abstract:

The goal of the study is to provide results of a conducted study devoted to financial literacy in the Czech Republic and to introduce a project related to financial education in the Czech Republic. Financial education has become an important part of education in the country, yet it is still neglected on the lowest level of formal education–primary schools. The project is based on investigation of financial literacy on primary schools in the Czech Republic. Consequently, the authors aim to formulate possible amendments related to this type of education. The gained dataset is intended to be used for analysis concerning financial education in the Czech Republic. With regard to used methods, the most important one is regression analysis for disclosure of predictors causing different levels of financial literacy. Furthermore, comparison of different groups is planned, for which t-tests are intended to be used. The study also employs descriptive statistics to introduce basic relationship in the data file.

Keywords: Czech Republic, financial education, financial literacy, primary school, regression analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 855
814 Q-Test of Undergraduate Epistemology and Scientific Thought: Development and Testing of an Assessment of Scientific Epistemology

Authors: Matthew J. Zagumny

Abstract:

The QUEST is an assessment of scientific epistemic beliefs and was developed to measure students’ intellectual development in regards to beliefs about knowledge and knowing. The QUEST utilizes Q-sort methodology, which requires participants to rate the degree to which statements describe them personally. As a measure of personal theories of knowledge, the QUEST instrument is described with the Q-sort distribution and scoring explained. A preliminary demonstration of the QUEST assessment is described with two samples of undergraduate students (novice/lower division compared to advanced/upper division students) being assessed and their average QUEST scores compared. The usefulness of an assessment of epistemology is discussed in terms of the principle that assessment tends to drive educational practice and university mission. The critical need for university and academic programs to focus on development of students’ scientific epistemology is briefly discussed.

Keywords: Scientific epistemology, critical thinking, Q-sort method, STEM undergraduates.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1532
813 Hardware Error Analysis and Severity Characterization in Linux-Based Server Systems

Authors: N. Georgoulopoulos, A. Hatzopoulos, K. Karamitsios, K. Kotrotsios, A. I. Metsai

Abstract:

Current server systems are responsible for critical applications that run in different infrastructures, such as the cloud, physical machines, and virtual machines. A common challenge that these systems face are the various hardware faults that may occur due to the high load, among other reasons, which translates to errors resulting in malfunctions or even server downtime. The most important hardware parts, that are causing most of the errors, are the CPU, RAM, and the hard drive - HDD. In this work, we investigate selected CPU, RAM, and HDD errors, observed or simulated in kernel ring buffer log files from GNU/Linux servers. Moreover, a severity characterization is given for each error type. Understanding these errors is crucial for the efficient analysis of kernel logs that are usually utilized for monitoring servers and diagnosing faults. In addition, to support the previous analysis, we present possible ways of simulating hardware errors in RAM and HDD, aiming to facilitate the testing of methods for detecting and tackling the above issues in a server running on GNU/Linux.

Keywords: hardware errors, Kernel logs, GNU/Linux servers, RAM, HDD, CPU

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 682
812 Cognition Technique for Developing a World Music

Authors: Haider Javed Uppal, Javed Yunas Uppal

Abstract:

In today's globalized world, it is necessary to develop a form of music that is able to evoke equal emotional responses among people from diverse cultural backgrounds. Indigenous cultures throughout history have developed their own music cognition, specifically in terms of the connections between music and mood. With the advancements in artificial intelligence technologies, it has become possible to analyze and categorize music features such as timbre, harmony, melody, and rhythm, and relate them to the resulting mood effects experienced by listeners. This paper presents a model that utilizes a screenshot translator to convert music from different origins into waveforms, which are then analyzed using machine learning and information retrieval techniques. By connecting these waveforms with Thayer's matrix of moods, a mood classifier has been developed using fuzzy logic algorithms to determine the emotional impact of different types of music on listeners from various cultures.

Keywords: Cognition, world music, artificial intelligence, Thayer’s matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 154
811 Rock Thickness Measurement by Using Self-Excited Acoustical System

Authors: JanuszKwaśniewski, IreneuszDominik, KrzysztofLalik

Abstract:

The knowledge about rock layers thickness,especially above drilled mining pavements is crucial for workers safety. The measuring systems used nowadays are generally imperfect and there is a strong demand for improvement. The application of a new type of a measurement system called Self-excited Acoustical System is presentedin the paper. The system was applied until now to monitor stress changes in metal and concrete constructions. The change in measurement methodology resulted in possibility of measuring the thickness of the rocks above the tunnels as well as thickness of a singular rocklayer. The idea is to find two resonance frequencies of the self-exited system,which consists of a vibration exciter and vibration receiver placed at a distance, which are coupled with a proper power amplifier, and which operate in a closed loop with a positive feedback. The resonance with the higher amplitude determines thickness of the whole rock, whereas the lower amplitude resonance indicates thickness of a singular layer. The results of the laboratory tests conducted on a group of different rock materials are also presented.

Keywords: Autooscillator, non-destructive testing, rock thickness measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2070
810 Contact Temperature of Sliding Surfaces in AISI 316 Austenitic Stainless Steel during Pin on Disk Dry Wear Testing

Authors: Dler Abdullah Ahmed, Zozan Ahmed Mohammed

Abstract:

This study looked into contact surface temperature during a pin-on-disk test. Friction and wear between sliding surfaces raised the temperature differential between contact surface and ambient temperatures Tdiff. Tdiff was significantly influenced by wear test variables. Tdiff rose with the increase of sliding speed and applied load, while dropped with the increase in ambient temperature. The highest Tdiff was 289 °C during the tests at room temperature and 2.5 m/s sliding speed, while the minimum was only 24 °C during the tests at 400 °C and 0.5 m/s. However, the maximum contact temperature Tmax was found during tests conducted at high ambient temperatures. The Tmax was estimated based on the theoretical equation. The comparison of experimental and theoretical Tmax data was revealed good agreement.

Keywords: Pin-on-disk test, contact temperature, wear, sliding surface, friction, ambient temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 67
809 An Investigation into the Role of Market Beta in Asset Pricing: Evidence from the Romanian Stock Market

Authors: Ioan Popa, Radu Lupu, Cristiana Tudor

Abstract:

In this paper, we apply the FM methodology to the cross-section of Romanian-listed common stocks and investigate the explanatory power of market beta on the cross-section of commons stock returns from Bucharest Stock Exchange. Various assumptions are empirically tested, such us linearity, market efficiency, the “no systematic effect of non-beta risk" hypothesis or the positive expected risk-return trade-off hypothesis. We find that the Romanian stock market shows the same properties as the other emerging markets in terms of efficiency and significance of the linear riskreturn models. Our analysis included weekly returns from January 2002 until May 2010 and the portfolio formation, estimation and testing was performed in a rolling manner using 51 observations (one year) for each stage of the analysis.

Keywords: Bucharest Stock Exchange, Fama-Macbeth methodology, systematic risk, non-linear risk-return dependence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1905
808 Evolutionary Eigenspace Learning using CCIPCA and IPCA for Face Recognition

Authors: Ghazy M.R. Assassa, Mona F. M. Mursi, Hatim A. Aboalsamh

Abstract:

Traditional principal components analysis (PCA) techniques for face recognition are based on batch-mode training using a pre-available image set. Real world applications require that the training set be dynamic of evolving nature where within the framework of continuous learning, new training images are continuously added to the original set; this would trigger a costly continuous re-computation of the eigen space representation via repeating an entire batch-based training that includes the old and new images. Incremental PCA methods allow adding new images and updating the PCA representation. In this paper, two incremental PCA approaches, CCIPCA and IPCA, are examined and compared. Besides, different learning and testing strategies are proposed and applied to the two algorithms. The results suggest that batch PCA is inferior to both incremental approaches, and that all CCIPCAs are practically equivalent.

Keywords: Candid covariance-free incremental principal components analysis (CCIPCA), face recognition, incremental principal components analysis (IPCA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1822
807 Paradigms Shift in Sport Sciences: Body's focus

Authors: Michele V. Carbinatto, Wagner Wey Moreira, Myrian Nunomura; Mariana H. C. Tsukamoto, VilmaLeni Nista-Piccolo

Abstract:

Sports Sciences has been historically supported by the positivism idea of science, especially by the mechanistic/reductionist and becomes a field that views experimentation and measurement as the mayor research domains. The disposition to simplify nature and the world by parts has fragmented and reduced the idea of bodyathletes as machine. In this paper we intent to re-think this perception lined by Complexity Theory. We come with the idea of athletes as a reflexive and active being (corporeity-body). Therefore, the construction of a training that considers the cultural, biological, psychological elements regarding the experience of the human corporal movements in a circumspect and responsible way could bring better chances of accomplishment. In the end, we hope to help coaches understand the intrinsic complexity of the body they are training, how better deal with it, and, in the field of a deep globalization among the different types of knowledge, to respect and accepted the peculiarities of knowledge that comprise this area.

Keywords: Sport science, body, complexity theory, corporeity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2137
806 Maximum Wind Power Extraction Strategy and Decoupled Control of DFIG Operating in Variable Speed Wind Generation Systems

Authors: Abdellatif Kasbi, Abderrafii Rahali

Abstract:

This paper appraises the performances of two control scenarios, for doubly fed induction generator (DFIG) operating in wind generation system (WGS), which are the direct decoupled control (DDC) and indirect decoupled control (IDC). Both control scenarios studied combines vector control and Maximum Power Point Tracking (MPPT) control theory so as to maximize the captured power through wind turbine. Modeling of DFIG based WGS and details of both control scenarios have been presented, a proportional integral controller is employed in the active and reactive power control loops for both control methods. The performance of the both control scenarios in terms of power reference tracking and robustness against machine parameters inconstancy has been shown, analyzed and compared, which can afford a reference to the operators and engineers of a wind farm. All simulations have been implemented via MATLAB/Simulink.

Keywords: DFIG, WGS, DDC, IDC, vector control, MPPT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 708
805 Design, Implementation and Testing of Mobile Agent Protection Mechanism for MANETS

Authors: Khaled E. A. Negm

Abstract:

In the current research, we present an operation framework and protection mechanism to facilitate secure environment to protect mobile agents against tampering. The system depends on the presence of an authentication authority. The advantage of the proposed system is that security measures is an integral part of the design, thus common security retrofitting problems do not arise. This is due to the presence of AlGamal encryption mechanism to protect its confidential content and any collected data by the agent from the visited host . So that eavesdropping on information from the agent is no longer possible to reveal any confidential information. Also the inherent security constraints within the framework allow the system to operate as an intrusion detection system for any mobile agent environment. The mechanism is tested for most of the well known severe attacks against agents and networked systems. The scheme proved a promising performance that makes it very much recommended for the types of transactions that needs highly secure environments, e. g., business to business.

Keywords: Mobile agent security, mobile accesses, agent encryption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2038
804 Risk Assessment for Aerial Package Delivery

Authors: Haluk Eren, Ümit Çelik

Abstract:

Recent developments in unmanned aerial vehicles (UAVs) have begun to attract intense interest. UAVs started to use for many different applications from military to civilian use. Some online retailer and logistics companies are testing the UAV delivery. UAVs have great potentials to reduce cost and time of deliveries and responding to emergencies in a short time. Despite these great positive sides, just a few works have been done for routing of UAVs for package deliveries. As known, transportation of goods from one place to another may have many hazards on delivery route due to falling hazards that can be exemplified as ground objects or air obstacles. This situation refers to wide-range insurance concept. For this reason, deliveries that are made with drones get into the scope of shipping insurance. On the other hand, air traffic was taken into account in the absence of unmanned aerial vehicle. But now, it has been a reality for aerial fields. In this study, the main goal is to conduct risk analysis of package delivery services using drone, based on delivery routes.

Keywords: Drone risk assessment, drone package delivery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1952
803 Investments Attractiveness via Combinatorial Optimization Ranking

Authors: Ivan C. Mustakerov, Daniela I. Borissova

Abstract:

The paper proposes an approach to ranking a set of potential countries to invest taking into account the investor point of view about importance of different economic indicators. For the goal, a ranking algorithm that contributes to rational decision making is proposed. The described algorithm is based on combinatorial optimization modeling and repeated multi-criteria tasks solution. The final result is list of countries ranked in respect of investor preferences about importance of economic indicators for investment attractiveness. Different scenarios are simulated conforming to different investors preferences. A numerical example with real dataset of indicators is solved. The numerical testing shows the applicability of the described algorithm. The proposed approach can be used with any sets of indicators as ranking criteria reflecting different points of view of investors. 

Keywords: Combinatorial optimization modeling, economics investment attractiveness, economics ranking algorithm, multi-criteria problems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2107
802 Real-Time Testing of Steel Strip Welds based on Bayesian Decision Theory

Authors: Julio Molleda, Daniel F. García, Juan C. Granda, Francisco J. Suárez

Abstract:

One of the main trouble in a steel strip manufacturing line is the breakage of whatever weld carried out between steel coils, that are used to produce the continuous strip to be processed. A weld breakage results in a several hours stop of the manufacturing line. In this process the damages caused by the breakage must be repaired. After the reparation and in order to go on with the production it will be necessary a restarting process of the line. For minimizing this problem, a human operator must inspect visually and manually each weld in order to avoid its breakage during the manufacturing process. The work presented in this paper is based on the Bayesian decision theory and it presents an approach to detect, on real-time, steel strip defective welds. This approach is based on quantifying the tradeoffs between various classification decisions using probability and the costs that accompany such decisions.

Keywords: Classification, Pattern Recognition, ProbabilisticReasoning, Statistical Data Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1410
801 Automated Driving Deep Neural Network Model Accuracy and Performance Assessment in a Simulated Environment

Authors: David Tena-Gago, Jose M. Alcaraz Calero, Qi Wang

Abstract:

The evolution and integration of automated vehicles have become more and more tangible in recent years. State-of-the-art technological advances in the field of camera-based Artificial Intelligence (AI) and computer vision greatly favor the performance and reliability of Advanced Driver Assistance System (ADAS), leading to a greater knowledge of vehicular operation and resembling the human behaviour. However, the exclusive use of this technology still seems insufficient to control the vehicular operation at 100%. To reveal the degree of accuracy of the current camera-based automated driving AI modules, this paper studies the structure and behavior of one of the main solutions in a controlled testing environment. The results obtained clearly outline the lack of reliability when using exclusively the AI model in the perception stage, thereby entailing using additional complementary sensors to improve its safety and performance.

Keywords: Accuracy assessment, AI-Driven Mobility, Artificial Intelligence, automated vehicles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 436
800 Computational Study of Improving the Efficiency of Photovoltaic Panels in the UAE

Authors: Ben Richard Hughes, Ng Ping Sze Cherisa, Osman Beg

Abstract:

Various solar energy technologies exist and they have different application techniques in the generation of electrical power. The widespread use of photovoltaic (PV) modules in such technologies has been limited by relatively high costs and low efficiencies. The efficiency of PV panels decreases as the operating temperatures increase. This is due to the affect of solar intensity and ambient temperature. In this work, Computational Fluid Dynamics (CFD) was used to model the heat transfer from a standard PV panel and thus determine the rate of dissipation of heat. To accurately model the specific climatic conditions of the United Arab Emirates (UAE), a case study of a new build green building in Dubai was used. A finned heat pipe arrangement is proposed and analyzed to determine the improved heat dissipation and thus improved performance efficiency of the PV panel. A prototype of the arrangement is built for experimental testing to validate the CFD modeling and proof of concept.

Keywords: Computational Fluid Dynamics, Improving Efficiency, Photovoltaic (PV) Panels, Heat-pipe

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3491
799 Multimachine Power System Stabilizers Design Using PSO Algorithm

Authors: H. Shayeghi, A. Safari, H. A. Shayanfar

Abstract:

In this paper, multiobjective design of multi-machine Power System Stabilizers (PSSs) using Particle Swarm Optimization (PSO) is presented. The stabilizers are tuned to simultaneously shift the lightly damped and undamped electro-mechanical modes of all machines to a prescribed zone in the s-plane. A multiobjective problem is formulated to optimize a composite set of objective functions comprising the damping factor, and the damping ratio of the lightly damped electromechanical modes. The PSSs parameters tuning problem is converted to an optimization problem which is solved by PSO with the eigenvalue-based multiobjective function. The proposed PSO based PSSs is tested on a multimachine power system under different operating conditions and disturbances through eigenvalue analysis and some performance indices to illustrate its robust performance.

Keywords: PSS Design, Particle Swarm Optimization, Dynamic Stability, Multiobjective Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2646
798 3D CAD Models and its Feature Similarity

Authors: Elmi Abu Bakar, Tetsuo Miyake, Zhong Zhang, Takashi Imamura

Abstract:

Knowing the geometrical object pose of products in manufacturing line before robot manipulation is required and less time consuming for overall shape measurement. In order to perform it, the information of shape representation and matching of objects is become required. Objects are compared with its descriptor that conceptually subtracted from each other to form scalar metric. When the metric value is smaller, the object is considered closed to each other. Rotating the object from static pose in some direction introduce the change of value in scalar metric value of boundary information after feature extraction of related object. In this paper, a proposal method for indexing technique for retrieval of 3D geometrical models based on similarity between boundaries shapes in order to measure 3D CAD object pose using object shape feature matching for Computer Aided Testing (CAT) system in production line is proposed. In experimental results shows the effectiveness of proposed method.

Keywords: CAD, rendering, feature extraction, feature classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1979
797 Autonomously Determining the Parameters for SVDD with RBF Kernel from a One-Class Training Set

Authors: Andreas Theissler, Ian Dear

Abstract:

The one-class support vector machine “support vector data description” (SVDD) is an ideal approach for anomaly or outlier detection. However, for the applicability of SVDD in real-world applications, the ease of use is crucial. The results of SVDD are massively determined by the choice of the regularisation parameter C and the kernel parameter  of the widely used RBF kernel. While for two-class SVMs the parameters can be tuned using cross-validation based on the confusion matrix, for a one-class SVM this is not possible, because only true positives and false negatives can occur during training. This paper proposes an approach to find the optimal set of parameters for SVDD solely based on a training set from one class and without any user parameterisation. Results on artificial and real data sets are presented, underpinning the usefulness of the approach.

Keywords: Support vector data description, anomaly detection, one-class classification, parameter tuning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2935
796 Action Recognition in Video Sequences using a Mealy Machine

Authors: L. Rodriguez-Benitez, J. Moreno-Garcia, J.J. Castro-Schez, C. Solana, L. Jimenez

Abstract:

In this paper the use of sequential machines for recognizing actions taken by the objects detected by a general tracking algorithm is proposed. The system may deal with the uncertainty inherent in medium-level vision data. For this purpose, fuzzification of input data is performed. Besides, this transformation allows to manage data independently of the tracking application selected and enables adding characteristics of the analyzed scenario. The representation of actions by means of an automaton and the generation of the input symbols for finite automaton depending on the object and action compared are described. The output of the comparison process between an object and an action is a numerical value that represents the membership of the object to the action. This value is computed depending on how similar the object and the action are. The work concludes with the application of the proposed technique to identify the behavior of vehicles in road traffic scenes.

Keywords: Approximate reasoning, finite state machines, video analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1686
795 Optical Road Monitoring of the Future Smart Roads – Preliminary Results

Authors: Maria Jokela, Matti Kutila, Jukka Laitinen, Florian Ahlers, Nicolas Hautière, TobiasSchendzielorz

Abstract:

It has been shown that in most accidents the driver is responsible due to being distracted or misjudging the situation. In order to solve such problems research has been dedicated to developing driver assistance systems that are able to monitor the traffic situation around the vehicle. This paper presents methods for recognizing several circumstances on a road. The methods use both the in-vehicle warning systems and the roadside infrastructure. Preliminary evaluation results for fog and ice-on-road detection are presented. The ice detection results are based on data recorded in a test track dedicated to tyre friction testing. The achieved results anticipate that ice detection could work at a performance of 70% detection with the right setup, which is a good foundation for implementation. However, the full benefit of the presented cooperative system is achieved by fusing the outputs of multiple data sources, which is the key point of discussion behind this publication.

Keywords: Smart roads, traffic monitoring, traffic scenedetection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1627
794 SWARM: A Meta-Scheduler to Minimize Job Queuing Times on Computational Grids

Authors: Jean-Alain Grunchec, Jules Hernández-Sánchez, Sara Knott

Abstract:

Some meta-schedulers query the information system of individual supercomputers in order to submit jobs to the least busy supercomputer on a computational Grid. However, this information can become outdated by the time a job starts due to changes in scheduling priorities. The MSR scheme is based on Multiple Simultaneous Requests and can take advantage of opportunities resulting from these priorities changes. This paper presents the SWARM meta-scheduler, which can speed up the execution of large sets of tasks by minimizing the job queuing time through the submission of multiple requests. Performance tests have shown that this new meta-scheduler is faster than an implementation of the MSR scheme and the gLite meta-scheduler. SWARM has been used through the GridQTL project beta-testing portal during the past year. Statistics are provided for this usage and demonstrate its capacity to achieve reliably a substantial reduction of the execution time in production conditions.

Keywords: Grid computing, multiple simultaneous requests, fault tolerance, GridQTL.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1910
793 Linear Quadratic Gaussian/Loop Transfer Recover Control Flight Control on a Nonlinear Model

Authors: T. Sanches, K. Bousson

Abstract:

As part of the development of a 4D autopilot system for unmanned aerial vehicles (UAVs), i.e. a time-dependent robust trajectory generation and control algorithm, this work addresses the problem of optimal path control based on the flight sensors data output that may be unreliable due to noise on data acquisition and/or transmission under certain circumstances. Although several filtering methods, such as the Kalman-Bucy filter or the Linear Quadratic Gaussian/Loop Transfer Recover Control (LQG/LTR), are available, the utter complexity of the control system, together with the robustness and reliability required of such a system on a UAV for airworthiness certifiable autonomous flight, required the development of a proper robust filter for a nonlinear system, as a way of further mitigate errors propagation to the control system and improve its ,performance. As such, a nonlinear algorithm based upon the LQG/LTR, is validated through computational simulation testing, is proposed on this paper.

Keywords: Autonomous flight, LQG/LTR, nonlinear state estimator, robust flight control and stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 695
792 Effect of Chemical Modifier on the Properties of Polypropylene (PP) / Coconut Fiber (CF) in Automotive Application

Authors: K. Shahril, A. Nizam, M. Sabri, A. Siti Rohana, H. Salmah

Abstract:

Chemical modifier (Acrylic Acid) is used as filler treatment to improve mechanical properties and swelling behavior of polypropylene/coconut fiber (PP/CF) composites by creating more adherent bonding between CF filler and PP Matrix. Treated (with chemical modifier) and untreated (without chemical modifier) composites were prepared in the formulation of 10 wt%, 20 wt%, 30 wt%, and 40 wt%. The mechanical testing indicates that composite with 10 wt% of untreated composite has the optimum value of tensile strength, and the composite with chemical modifier shows the tensile strength was increased. By increasing of filler loading, elastic modulus was increased while the elongation at brake was decreased. Meanwhile, the swelling test discerned that the increase of filler loading increased the water absorption of composites and the presence of chemical modifier reduced the equilibrium water absorption percentage.

Keywords: Coconut fiber, polypropylene, acid acrylic, ethanol, chemical modifier, composites.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1280
791 A Review: Comparative Study of Diverse Collection of Data Mining Tools

Authors: S. Sarumathi, N. Shanthi, S. Vidhya, M. Sharmila

Abstract:

There have been a lot of efforts and researches undertaken in developing efficient tools for performing several tasks in data mining. Due to the massive amount of information embedded in huge data warehouses maintained in several domains, the extraction of meaningful pattern is no longer feasible. This issue turns to be more obligatory for developing several tools in data mining. Furthermore the major aspire of data mining software is to build a resourceful predictive or descriptive model for handling large amount of information more efficiently and user friendly. Data mining mainly contracts with excessive collection of data that inflicts huge rigorous computational constraints. These out coming challenges lead to the emergence of powerful data mining technologies. In this survey a diverse collection of data mining tools are exemplified and also contrasted with the salient features and performance behavior of each tool.

Keywords: Business Analytics, Data Mining, Data Analysis, Machine Learning, Text Mining, Predictive Analytics, Visualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3364