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Abstract—The evolution and integration of automated vehicles
have become more and more tangible in recent years. State-of-the-art
technological advances in the field of camera-based Artificial
Intelligence (AI) and computer vision greatly favor the performance
and reliability of Advanced Driver Assistance System (ADAS),
leading to a greater knowledge of vehicular operation and resembling
the human behaviour. However, the exclusive use of this technology
still seems insufficient to control the vehicular operation at 100%. To
reveal the degree of accuracy of the current camera-based automated
driving AI modules, this paper studies the structure and behavior
of one of the main solutions in a controlled testing environment.
The results obtained clearly outline the lack of reliability when using
exclusively the AI model in the perception stage, thereby entailing
using additional complementary sensors to improve its safety and
performance.

Keywords—Accuracy assessment, AI-Driven Mobility, Artificial
Intelligence, automated vehicles.

I. INTRODUCTION

THE automotive industry has evolved significantly

with several main car manufacturers having achieved

automated driving capabilities. It is expected that, in 2030,

up to 50% of the passenger vehicles sold will have a high

degree of autonomy (between level 3 and level 4 [1]), and

that up to 15% will be fully automated (level 5), reaching an

economic market value of $7 trillion by 2050 [2]. Meanwhile,

the reliability, security, ethics and infrastructure etc. are

still barriers for the adoption of automated vehicles on a

massive scale globally. AI-based methodologies have gained

momentum in developing the most avant-garde automated

driving solutions. However, the difficulty of data-driven

approaches is to collect a large ground truth data-set from

a real environment for training and validation. The scarcity of

ground truth in real environments prompts developers to focus

their experiments on virtual environments such as driving

simulators. In these simulators, obtaining data related to the

ground makes it possible to know the reliability and accuracy

of AI implementations.

Automated driving utilises RADARs, IMU and GPS sensors

combined with DNN (Deep Neural Networks) models to reach

a wide perception of the Ego1 environment. This methodology
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1In automated driving systems, the automated vehicle is commonly referred
to as the Ego

tries to straighten the AI model performance by fusing its

output with other sensory sources. The reason usually comes

from the lack of enough accuracy to perform the context

perception uniquely by the DNN model. Although major

progress is being made on the ability of these AI camera-based

perception modules, the adoption of this technique as the only

source of information for the Ego is still challenging for the

current AI technologies.

The lack of experiments for evaluating a camera-based

DNN as the only source of perception for an automated

driving architecture has motivated this research. Therefore,

the main aim is to conduct an analysis of a representative

AI-based automated driving solution to evaluate its accuracy

and performance in a simulated environment. This study will

explore the capabilities of the DNN model to assess its

potential to be the only source of information provided to feed

the ADAS trajectory planner module. This research focuses

on the design and generation of tailored common driving

scenarios and compare the ground truth data obtained from

the simulation with the predicted values from the AI model.

The rest of the paper is structured as follows: Section II

reviews the current open-source automated driving alternatives

and compares the associated research work. Section III

describes the AI model’s structure, input and output. Section

IV assesses the AI model’s performance and accuracy in a

simulated environment. Section V concludes the paper.

II. RELATED WORK

In the market of automated driving, only a few companies

have developed fully functional models in real products, and

even more rare are those companies that open-source their

implementations. Among the current open-source solutions,

the companies Apollo from Baidu, and OpenPilot from

Comma.ai stand out. Apollo differs from its competitors

by trying to achieve a Level 42 of automation, based on

a distributed environment in which different modules of

LiDARs, RADARs and cameras merge their computations to

achieve a virtual representation of the driving environment.

In contrast, OpenPilot addresses RADAR and camera-based

Level 2 automation, in which the driver still has to actively

involve himself to performing tasks in collaboration with the

ADAS. These two companies offer the necessary code and

resources to run their ADAS through their public repository.

2The Society of Automotive Engineers (SAE International) describes 6
levels of automation for automated vehicles. See [1].

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:16, No:6, 2022 

217International Scholarly and Scientific Research & Innovation 16(6) 2022 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
6,

 2
02

2 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
57

6.
pd

f



TABLE I
COMPARISON TABLE ON THE PREVIOUS WORK DONE ON OPEN-SOURCE FUNCTIONAL AUTOMATED DRIVING AI MODULES

Reference Target Version Assessment AI module input source
[3] Apollo 3.5 Camera & RADAR performance and robustness evaluation with noise injection Kitti dataset
[4] OpenPilot 0.4.2 Camera & RADAR-based AAC hazard identification & resilience evaluation to camera fault injection Caltech dataset
[5] OpenPilot n/a Camera & RADAR based FCW risk perception with adversarial weather conditions CARLA simulator
[6] OpenPilot 0.6.6 Camera-based ALC evaluation under road dirtiness injection LGSVL simulator
[7] OpenPilot 0.8.5 Camera & RADAR fusion-based FCW assessment on collision context CARLA simulator

Our contribution OpenPilot 0.8.2 Camera-based Ego & leading vehicle dynamics perception accuracy and performance evaluation CARLA simulator

There are several publications dedicated to investigating

how effective their perception modules based on AI and

multi-sensor data fusion are. Table I summarizes the research

target of the most recent studies on these two implementations.

As shown in Table I, the vast majority of research were

oriented towards behavior analysis and risk assessment in the

OpenPilot perception module, while only [3] used Apollo.

As the table also indicates, the difficulty of obtaining a

ground truth data-set to validate the results of the ADAS,

forces the researchers to use driving simulators. This causes

greater use of OpenPilot over Apollo, since the former option

offers a ready-to-use development suite with tools to bridge

the CARLA simulator with the automated driving system.

Similarly, the table reflects that the main object of study in

the evaluation of OpenPilot is the lane lines detection capacity,

and in some cases, the leading vehicle detection. It is noted

that [6], comparing different lane detection AI techniques, is

used over OpenPilot 0.7.0 trajectory planner. This research

work has attempted to test the accuracy of the AI model that

OpenPilot uses in its version 0.8.2 in relation to the perception

it has about the Ego dynamics, and the dynamics of potential

vehicles in front of it.

III. MODEL ANALYSIS

This section explains the components of the AI model, and

its input and output format, as shown in Fig. 1.

A. Model Structure

• Optical feature extraction: its objective is to extract the

relevant features from the camera frames by means of

a Convolutional Neural Network (CNN). It outputs a

1024-long flattened array that will be used as the head

for the following stages of the processing. Its internal

structure comprises 70 convolutional layers and 46 ELU

activations. It does not have any normalization layers.

Its structure is, in turn, based on the EfficientNet-B2

backbone [8].

• Recurrent memory feature extraction: features a

GRU-based (Gated Recurrent Unit) neural network.

It outputs a 512-long array containing information

related to the previous executions of the model. This

neural network is used as an efficient approach to either

forget or remember parameters extracted from preceding

executions of the model, which allows the perception

module to have a wider perspective about the previous

context throughout the execution process. The output

array will be reused as an input for the GRU next

iteration. At the end of this stage, the GRU output and

the CNN output are concatenated into a 1024x1536

array.

• Predicting output layers: perform the final prediction of

the model. It is, in turn divided into 2 distinguished parts:

– Frame policy: predicts information only based on

the image feature extraction carried out by the

convolutional layers.

– Temporal policy: considers the parameters that have

changed along the time from previous iterations.

Its prediction is based on the input image feature

extraction and the GRU output.

This stage is composed of 6 blocks of prediction, each

of them in charge of predicting a different output.

Fig. 1 AI model general structure
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B. Model Input

Fig. 2 Example of a RGB frame taken from the simulator. The red rectangle
represents the actual image that the neural network uses after being cropped
to give it the required size. Note how the input frame is located right over

the vehicle’s bonnet

• input imgs: It is defined as a float32[1, 12, 128,

256] array containing the information of 2 consecutive

512x256 YUV420 video frames. In this array, each

YUV420 image is represented by a float32[1, 6,

128, 256], where the 4 first sub arrays are the Y

component, and the fifth and sixth represent the U and V

component, respectively. The model benefits from having

2 consecutive images so that it can have a perception of

the motion and displacement made by the objects in its

environment between the elapsed time taken between the

frames. Fig. 2 shows an example of a 512x256 image

taken from CARLA used as input for the model.

• desire: It is defined as a float32[1, 8] array that represents

the current intention of the model to perform a lane

change. This array is modified whenever the driver

voluntarily triggers the blinkers to change the lane. All

the values remain equal to 0 except for the action to take,

which varies from staying in the lane, turning left or right,

changing either to the left or right lane, or keeping to the

left or right. Since the array is modified with a rising

edge pulse, the default value is ”Stay on the lane” when

no manual input from the driver is detected.

• traffic convention: It is defined as a float32[1, 2]

array containing the two possible traffic conventions:

left-handed driving or right-handed driving.

• initial state: It is defined as a float32[1, 512] array

containing information related to the previous iteration

of the model. Its value is calculated by the GRU, which

decides what information is useful to keep for further

iterations and what to forget.

C. Model Output

The model outputs a concatenated float32[1, 11327] array,

containing a 10815-long main prediction block array extracted

from the combination of each individual prediction block, as

well as a 512-long array obtained from the GRU. The main

prediction blocks whose accuracy and performance have been

assessed in this research (marked in Fig. 1 with a star) are

described below.

• Output 1: Trajectory. Represents the most complex

output, following a Multiple Hypothesis Prediction [9]

(MHP) technique that provides 5 different possible

solutions describing the trajectory to carry out by the

Ego. Each of the 5 solutions comprises 1981 values,

where the last one represents the categorical cross-entropy

loss of each solution, indicating how much they match

the driving policy that the model has been trained with,

and therefore, how likely it is to be the best among

the predictions. This categorical cross-entropy loss value

is the criterion by which the prediction is chosen. The

rest of the values are divided into two groups with the

same number of values (990), indicating the value and its

standard deviation of the speed, acceleration, orientation

rate and location of the Ego for X metres ahead. The

value of X will depend on how confident the model is

about the context layout (i.e., road, lane lines, Ego speed,

etc.).

• Output 2: Vehicle detection. Represents the information

about the leading vehicle in front of the Ego. This output

benefits from a MHP technique, where again, only 1 of

the 5 solutions will be chosen to determine the location

and dynamics of one potential leading vehicle. The output

predicts the leading vehicle’s relative speed, acceleration

and relative position to the Ego, as well as the standard

deviation of each of those values. This data field also

determines the probability that there is a leading vehicle

in the exact same moment that the input frame shows,

and also 2 and 4 seconds after.

D. Model Training

The model was trained with real driving video footage

that represent the ideal human behaviour (ground truth) in

combination with simulated data from data-augmented images.

A small part of the training data set is publicly available at

[10].

IV. OUR EVALUATION

A. Testbed Description

All the tests in this research were conducted in a computer

with the following specifications: Intel(R) Xeon(R) CPU, 32

GiB DDR4 RAM, and a Nvidia Quadro M4000 GPU. The

simulator used for creating the testing environments, including

collecting the ground truth, is CARLA version 9.11 using

Python 3.8.10. The AI model used belongs to version 8.2.

Nvidia drivers used are version 460, along with CuDNN

version 8.0.4 and CUDA version 11.0.

In both testing scenarios, first a 1164x874 video at 20Hz

was generated from the vehicle’s perspective in CARLA. To

maximize the degree of realism, the position and orientation

of the dashboard camera were manually modified so that it

resembled the perspective that the model usually has when

installed in a vehicle. For this purpose, the dimensions of a

Toyota Prius were used. The generated video was later cropped
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Fig. 3 Testing scenario 1: The red line expresses the trajectory followed by
the vehicle in the circuit

and converted into a set of 512x256 YUV420 images to be

used as the input input imgs to recreate the model prediction.

The input desire is configured so the model considers that

no desire to perform a lane change is present, and therefore,

to stay constantly on its lane. The input traffic convention
is configured so the model considers that the traffic is

left-handed, i.e., the European convention. Lastly, the input

initial state is always represented by the initial state output

obtained from the model’s last iteration. This means that the

prediction series’s length is always N-1, being N the number of

steps carried out by the simulation. It is important to mention

that the average elapsed time taken by the model to perform

a single iteration of the prediction loop in both scenarios was

9.0682 ms.

B. Testing Scenario 1: Ego Dynamics Perception

In this scenario, the objective is to assess the accuracy of

the Ego trajectory output described in Section III-C - Output
1 when the model is exposed to a common real scenario. Fig.

3 depicts the trajectory. The vehicle travelled alone in a road

with some curves, increasing progressively its speed until it

reaches a predefined limit of 22 m/s (marked with the label

A in Fig. 3). After this threshold is reached, the vehicle starts

progressively decelerating. The different curves present in the

circuit were chosen on purpose to check the capabilities of

the model when it comes to measure the current travel speed

and acceleration of the Ego, and its orientation rate when it

performs such turns. Fig. 4 shows an analysis of the prediction

results against the real values tested in scenario 1.

As shown in graph A, the model could predict well (>95%

of accuracy) the speed of the Ego throughout the simulation,

even when the vehicle started decelerating. However, at

iteration 985, when the car performed a very sharp turn (visible

in Fig. 3 with the label B), the accuracy was reduced up to a

80%. Then, after 20 measurements, the model re-adapts to the

context. The series achieved a Mean Square Error (MSE) of

2.0304. Since both CARLA and the AI model predict the Ego
speed in a 3D coordinate array, the calculation of the speed has

been done following this equation 1, where variables x, y and

z represent the 3D coordinates in the simulated environment:

speed =
√
x2 + y2 + z2 (1)

In graph B, the model closely matched the prediction,

achieving 0.0057 MSE. The biggest inaccuracy happened

again at iteration 985, where the vehicle achieved an angular

speed of -1 rad/s in the z axis (yaw), and the model could

only predict -0.45 rad/s. This was likely to be caused by the

model not being properly trained to perform sharp turns.

Graph C shows a comparison the vehicle’s lateral and

longitudinal acceleration. Similarly to graph B, the prediction

of the lateral acceleration is done with a high percentage

Fig. 4 Testing scenario 1 results. Note that in all the sub-graphs, the x axis represents the iteration number of the simulation and the model execution when
the measurement was done. In the simulation, the desired speed was reached at iteration 815
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of accuracy throughout the entire measurement, achieving a

MSE of 1.6972, although this value is spoiled by the same

phenomena mentioned in graph B. Clearly, the model cannot

notice a lower acceleration of -4.5 m/s2 nor a lower orientation

speed of -0.45 rad/s. As for the longitudinal acceleration, a

higher error rate can be observed with a MSE of 0.3886. In

this case, the model could not predict as good as with the

lateral acceleration, even at the early stage of the simulation,

where the vehicle mainly drove straight. In addition, when the

vehicle reached the desired speed at iteration 815, the model

also noticed a deceleration, although much less accurately.

Please note that the graph’s Y axis has been limited to improve

its readability, since the ground truth for the lateral acceleration

reached a value of -15.3 ms2.

Lastly, graph D depicts the accuracy rate of the

measurements throughout the simulation. The four

measurements explained have a lower accuracy rate around

iteration 985, which corresponds to the sharp turn seen in Fig.

3 B. The model performs noticeably worse at sharp turns, but

has a good accuracy rate when is exposed to more common

scenarios, such as straight roads or slightly sharp curves,

especially for the speed, lateral acceleration and orientation

speed. All the measurements, except the lateral acceleration,

have a much lower accuracy rate at the very first iterations,

for instance, as clearly seen in graph A, where the initial

ground truth value was 1 m/s2, but the model predicted 24

m/s2 (86.4 Km/h), which means that the model is initially

biased to this speed. This phenomena happened in the rest

of the measurements approximately from iteration 1 to 21.

Since both the model and the simulation worked at 20 Hz,

this means that the model takes 1 s to adapt to the context

from when the prediction loop starts. The results outline that

there is no correlation between the vehicle’s speed and the

model accuracy, but rather the sharpness of the turn taken.

C. Testing Scenario 2: Leading Vehicle Dynamics
Perception

Scenario 2 assesses the accuracy of the prediction of the

Vehicle detection output described in Section III-C - Output 2,

with 2 vehicles travelling on a straight road following the same

trajectory. The first vehicle simulates the automated vehicle,

whereas the second is to be detected to know the distance

between them, its acceleration and its relative speed compared

with the first one. Both vehicles start 173.42 metres far apart

travelling at 2 m/s (Fig. 5 A), and accelerate progressively.

The first vehicle constantly increases its speed at a 0.29%

rate in each iteration, and so the second does at a 0.16% rate.

This scenario evaluates the ability of the model to measure the

dynamics of the leading vehicle. Fig. 6 shows the prediction

results. Note that the distance between vehicles has been

measured from the front end of the first vehicle to the rear

end of the second one.

Graph A shows the correlation between the predicted

distance and the ground truth. The graph clearly showcases the

bad prediction of the model from iteration no. 0 to 625. From

this moment, the model drastically improves the prediction,

coinciding with a 75% of confidence about the presence of a

Fig. 5 Testing scenario 2. Label A indicates the initial layout and
configuration of both vehicles at the beginning of the simulation; label B

indicates the moment when the model starts being confident about the
present of a leading vehicle

leading vehicle, visible in Graph D. This can possibly mean

that the model starts being aware of the presence of a leading

vehicle when it is no further than 100 m ahead. This condition

of both vehicles located at 100 meters away is depicted in Fig.

5 B. This lack of accuracy in longer distances led to achieving

a MSE of 9945.3215. Although this value is mostly spoiled by

the big inaccuracy of the previous iterations, where the vehicle

was not certain about the presence of a leading car.

In graph B, even when the model had a confidence higher

than 75% (from iteration 625), the prediction was not accurate.

The best prediction happened at iteration 664, achieving 94%

accuracy. But this peak was not followed by the next iterations,

when the accuracy fell to 48% at iteration 741. Although

the prediction tends to have a downwards slope similar to

the ground truth, the values are not close, with a MSE of

27.7193. Thus, there is a significant room for improvement in

the prediction of the relative speed between vehicles.

Graph C depicts the evolution of the leading vehicle’s

acceleration in the longitudinal axis. The leading vehicle

is slower than the Ego despite of both being accelerating.

Although the prediction shows that the leading vehicle has

an increasingly positive acceleration, the values are not

very accurate after the 75% confidence barrier is passed.

Nevertheless, the acceleration prediction achieved the lowest

MSE of 0.0983. Similarly as happened in scenario 1, the model

seems to be biased in the first iterations towards a specific

result for each prediction value. The prediction did not yield

useful information unless the confidence of the presence of

a leading vehicle was above 75%. In fact, this can be also

seen in OpenPilot radarState source code, where a minimum

lead confidence of 50% is needed to consider the prediction as

valid. Hence, the prediction are much better when the leading

vehicle is at least located 100 metres ahead. Again, the results

indicate no clear correlation between the Ego speed and the

model accuracy.

Seemly as in the previous scenario, graph D showcases the

accuracy of the predictions carried out by the AI model. It also

includes the confidence of the model when the prediction was

made, associated to every prediction iteration. As mentioned

above, there is an slight improvement in the speed and even

more noticeable in the distance prediction accuracy as the

model prediction confidence increases.

V. CONCLUSIONS

This research has assessed the accuracy and performance

of a mainstream automated driving AI model in a simulated

environment using CARLA. The tests have been useful to
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Fig. 6 Testing scenario 2 results. The x-axis of the sub-graphs represent the simulation iteration number and the model execution

determine the degree of accuracy of the model, evaluating the

its perception of the Ego dynamics, and the leading vehicle’s

dynamics. The first test has showed that the model could

predict very accurately the values for the speed, the orientation

rate and the acceleration in the lateral axis when exposed to a

common driving condition. However, longitudinal acceleration

did not seem to be so accurate. In general, the model provided

accurate results (summarized in Table II) in common scenarios

such as straight and not too sharp curves (label A), and a worse

accuracy and adaptation time in very sharp curves (label B).

The second scenario proved that the model can potentially

have an accurate perception of the dynamics of the leading

vehicle when it is closer than 100 metres ahead (label B).

However, the acceleration and the relative speed of the leading

vehicle were not so accurate. A very revealing conclusion is

that the model is initially biased towards the values that the

model was trained with, and that it takes 20 iterations (1 s)

to adapt to the context. Although the model can perform with

very satisfying execution times (<10ms), it is not totally safe,

according to a simple interpretation of MSE scores obtained,

to be as a single source of information when planning the

behavior of an automated vehicle. Therefore, the inclusion

of other sensors such as RADARs or IMUs to enhance its

reliability should be complementary to have a more accurate

perception the of the Ego context.

TABLE II
RESULTS SUMMARY

T
es

ti
n
g

sc
en

ar
io

1

Output
Average accuracy (%)

Label A
(iters. 790 to 810)

Label B
(iters. 975 to 995)

Speed 94.81 88.04
Orientation rate 95.11 30.08

Lateral acceleration 92.02 28.00
Longitudinal acceleration 76.70 80.31

T
es

ti
n
g

sc
en

ar
io

2

Output
Average accuracy (%)

Label A
(iters. 1 to 20)

Label B
(iters. 615 to 635)

Relative speed 52.67 70.96
Longitudinal acceleration 82.50 84.33

Distance 7.56 99.62
Model confidence* 5.52 77.67

The results of the model confidence do not refer to accuracy rate but rather
the confidence about the presence of a leading vehicle.
The table is separated by scenarios, assessment parameters, and simulation
moments. The labels refer to a specific relevant moment in each testing
scenario, and both are defined in Figs. 3 and 5.
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