Search results for: Wear Debris Analysis
8734 Physio-mechanical Properties of Aluminium Metal Matrix Composites Reinforced with Al2O3 and SiC
Authors: D. Sujan, Z. Oo, M. E. Rahman, M. A. Maleque, C. K. Tan
Abstract:
Particulate reinforced metal matrix composites (MMCs) are potential materials for various applications due to their advantageous of physical and mechanical properties. This paper presents a study on the performance of stir cast Al2O3 SiC reinforced metal matrix composite materials. The results indicate that the composite materials exhibit improved physical and mechanical properties, such as, low coefficient of thermal expansion, high ultimate tensile strength, high impact strength, and hardness. It has been found that with the increase of weight percentage of reinforcement particles in the aluminium metal matrix, the new material exhibits lower wear rate against abrasive wearing. Being extremely lighter than the conventional gray cast iron material, the Al-Al2O3 and Al-SiC composites could be potential green materials for applications in the automobile industry, for instance, in making car disc brake rotors.Keywords: Metal Matrix Composite, Strength to Weight Ratio, Wear Rate
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 59578733 An Exhaustive Review of Die Sinking Electrical Discharge Machining Process and Scope for Future Research
Authors: M. M. Pawade, S. S. Banwait
Abstract:
Electrical Discharge Machine (EDM) is especially used for the manufacturing of 3-D complex geometry and hard material parts that are extremely difficult-to-machine by conventional machining processes. In this paper authors review the research work carried out in the development of die-sinking EDM within the past decades for the improvement of machining characteristics such as Material Removal Rate, Surface Roughness and Tool Wear Ratio. In this review various techniques reported by EDM researchers for improving the machining characteristics have been categorized as process parameters optimization, multi spark technique, powder mixed EDM, servo control system and pulse discriminating. At the end, flexible machine controller is suggested for Die Sinking EDM to enhance the machining characteristics and to achieve high-level automation. Thus, die sinking EDM can be integrated with Computer Integrated Manufacturing environment as a need of agile manufacturing systems.Keywords: Electrical Discharge Machine, Flexible Machine Controller, Material Removal Rate, Tool Wear Ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 52948732 Real Time Compensation of Machining Errors for Machine Tools NC based on Systematic Dispersion
Authors: M. Rahou, A. Cheikh, F. Sebaa
Abstract:
Manufacturing tolerancing is intended to determine the intermediate geometrical and dimensional states of the part during its manufacturing process. These manufacturing dimensions also serve to satisfy not only the functional requirements given in the definition drawing, but also the manufacturing constraints, for example geometrical defects of the machine, vibration and the wear of the cutting tool. In this paper, an experimental study on the influence of the wear of the cutting tool (systematic dispersions) is explored. This study was carried out on three stages .The first stage allows machining without elimination of dispersions (random, systematic) so the tolerances of manufacture according to total dispersions. In the second stage, the results of the first stage are filtered in such way to obtain the tolerances according to random dispersions. Finally, from the two previous stages, the systematic dispersions are generated. The objective of this study is to model by the least squares method the error of manufacture based on systematic dispersion. Finally, an approach of optimization of the manufacturing tolerances was developed for machining on a CNC machine toolKeywords: Dispersions, Compensation, modeling, manufacturing Tolerance, machine tool.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23348731 Process Optimisation for Internal Cylindrical Rough Turning of Nickel Alloy 625 Weld Overlay
Authors: Lydia Chan, Islam Shyha, Dale Dreyer, John Hamilton, Phil Hackney
Abstract:
Nickel-based superalloys are generally known to be difficult to cut due to their strength, low thermal conductivity, and high work hardening tendency. Superalloy such as alloy 625 is often used in the oil and gas industry as a surfacing material to provide wear and corrosion resistance to components. The material is typically applied onto a metallic substrate through weld overlay cladding, an arc welding technique. Cladded surfaces are always rugged and carry a tough skin; this creates further difficulties to the machining process. The present work utilised design of experiment to optimise the internal cylindrical rough turning for weld overlay surfaces. An L27 orthogonal array was used to assess effects of the four selected key process variables: cutting insert, depth of cut, feed rate, and cutting speed. The optimal cutting conditions were determined based on productivity and the level of tool wear.Keywords: Cylindrical turning, nickel superalloy, turning of overlay, weld overlay.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9268730 Dynamic Meshing for Material Point Method Computations
Authors: Wookuen Shin, Gregory R. Miller, Pedro Arduino, Peter Mackenzie-Helnwein
Abstract:
This paper presents strategies for dynamically creating, managing and removing mesh cells during computations in the context of the Material Point Method (MPM). The dynamic meshing approach has been developed to help address problems involving motion of a finite size body in unbounded domains in which the extent of material travel and deformation is unknown a priori, such as in the case of landslides and debris flows. The key idea is to efficiently instantiate and search only cells that contain material points, thereby avoiding unneeded storage and computation. Mechanisms for doing this efficiently are presented, and example problems are used to demonstrate the effectiveness of dynamic mesh management relative to alternative approaches.
Keywords: Numerical Analysis, Material Point Method, Large Deformations, Moving Boundaries.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21468729 Effect of Cooling Coherent Nozzle Orientation on the Machinability of Ti-6Al-4V in Step Shoulder Milling
Authors: Salah Gariani, Islam Shyha, Osama Elgadi, Khaled Jegandi
Abstract:
In this work, a cooling coherent round nozzle was developed and the impact of nozzle placement (i.e. nozzle angle and stand-off/impinging distance) on the machinability of Ti-6Al-4V was evaluated. Key process measures were cutting force, workpiece temperature, tool wear, burr formation and average surface roughness (Ra). Experimental results showed that nozzle position at a 15° angle in the feed direction and 45°/60° against feed direction assisted in minimising workpiece temperature. A stand-off distance of 55 and 75 mm is also necessary to control burr formation, workpiece temperature and Ra, but coherent nozzle orientation has no statistically significant impact on the mean values of cutting force and tool wear. It can be concluded that stand-off distance is more substantially significant than nozzle angles when step shoulder milling Ti-6Al- 4V using vegetable oil-based cutting fluid.
Keywords: Coherent round nozzle, step shoulder milling, Ti-6Al-4V, vegetable oil-based cutting fluid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4358728 Influence of Ti, B, and Sr on Microstructure, Mechanical and Tribological Properties of as Cast, Cast Aged, and Forge Aged A356 Alloy – A Comparative Study
Authors: R. V. Kurahatti, D. G. Mallapur, K. Rajendra Udupa
Abstract:
In the present work, a comparative study on the microstructure and mechanical properties of as cast, cast aged and forged aged A356 alloy has been investigated. The study reveals that mechanical properties of A356 alloy are highly influenced by melt treatment and solid state processing. Cast aged alloys achieve highest strength and hardness compared to as cast and forge aged ones. Ones treated with combined addition of grain refiners and modifiers achieve maximum strength and hardness. Cast aged A356 alloy possesses higher wear resistance compared to as cast and forge aged ones. Forging improves both strength and ductility of alloys over as cast ones. However, the improvement in ductility is perceptible only for properly grain refined and modified alloys. Ones refined with 0.65% Al-3Ti shows highest improvement in ductility while ones treated with 0.20% Al-10Sr exhibits less improvement in ductility.Keywords: Forged A356 alloy, Grain refinement, Modification, Wear
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26828727 Tribological Aspects of Advanced Roll Material in Cold Rolling of Stainless Steel
Authors: Mohammed Tahir, Jonas Lagergren
Abstract:
Vancron 40, a nitrided powder metallurgical tool Steel, is used in cold work applications where the predominant failure mechanisms are adhesive wear or galling. Typical applications of Vancron 40 are among others fine blanking, cold extrusion, deep drawing and cold work rolls for cluster mills. Vancron 40 positive results for cold work rolls for cluster mills and as a tool for some severe metal forming process makes it competitive compared to other type of work rolls that require higher precision, among others in cold rolling of thin stainless steel, which required high surface finish quality. In this project, three roll materials for cold rolling of stainless steel strip was examined, Vancron 40, Narva 12B (a high-carbon, high-chromium tool steel alloyed with tungsten) and Supra 3 (a Chromium-molybdenum tungsten-vanadium alloyed high speed steel). The purpose of this project was to study the depth profiles of the ironed stainless steel strips, emergence of galling and to study the lubrication performance used by steel industries. Laboratory experiments were conducted to examine scratch of the strip, galling and surface roughness of the roll materials under severe tribological conditions. The critical sliding length for onset of galling was estimated for stainless steel with four different lubricants. Laboratory experiments result of performance evaluation of resistance capability of rolls toward adhesive wear under severe conditions for low and high reductions. Vancron 40 in combination with cold rolling lubricant gave good surface quality, prevents galling of metal surfaces and good bearing capacity.
Keywords: Adhesive wear, Cold rolling, Lubricant, Stainless steel, Surface finish, Vancron 40.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27598726 Evaluation of the Mechanical Behavior of a Retaining Wall Structure on a Weathered Soil through Probabilistic Methods
Authors: P. V. S. Mascarenhas, B. C. P. Albuquerque, D. J. F. Campos, L. L. Almeida, V. R. Domingues, L. C. S. M. Ozelim
Abstract:
Retaining slope structures are increasingly considered in geotechnical engineering projects due to extensive urban cities growth. These kinds of engineering constructions may present instabilities over the time and may require reinforcement or even rebuilding of the structure. In this context, statistical analysis is an important tool for decision making regarding retaining structures. This study approaches the failure probability of the construction of a retaining wall over the debris of an old and collapsed one. The new solution’s extension length will be of approximately 350 m and will be located over the margins of the Lake Paranoá, Brasilia, in the capital of Brazil. The building process must also account for the utilization of the ruins as a caisson. A series of in situ and laboratory experiments defined local soil strength parameters. A Standard Penetration Test (SPT) defined the in situ soil stratigraphy. Also, the parameters obtained were verified using soil data from a collection of masters and doctoral works from the University of Brasília, which is similar to the local soil. Initial studies show that the concrete wall is the proper solution for this case, taking into account the technical, economic and deterministic analysis. On the other hand, in order to better analyze the statistical significance of the factor-of-safety factors obtained, a Monte Carlo analysis was performed for the concrete wall and two more initial solutions. A comparison between the statistical and risk results generated for the different solutions indicated that a Gabion solution would better fit the financial and technical feasibility of the project.
Keywords: Economical analysis, probability of failure, retaining walls, statistical analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10228725 Application of Ultrasonic Assisted Machining Technique for Glass-Ceramic Milling
Authors: S. Y. Lin, C. H. Kuan, C. H. She, W. T. Wang
Abstract:
In this study, ultrasonic assisted machining (UAM) technique is applied in side-surface milling experiment for glass-ceramic workpiece material. The tungsten carbide cutting-tool with diamond coating is used in conjunction with two kinds of cooling/lubrication mediums such as water-soluble (WS) cutting fluid and minimum quantity lubricant (MQL). Full factorial process parameter combinations on the milling experiments are planned to investigate the effect of process parameters on cutting performance. From the experimental results, it tries to search for the better process parameter combination which the edge-indentation and the surface roughness are acceptable. In the machining experiments, ultrasonic oscillator was used to excite a cutting-tool along the radial direction producing a very small amplitude of vibration frequency of 20KHz to assist the machining process. After processing, toolmaker microscope was used to detect the side-surface morphology, edge-indentation and cutting tool wear under different combination of cutting parameters, and analysis and discussion were also conducted for experimental results. The results show that the main leading parameters to edge-indentation of glass ceramic are cutting depth and feed rate. In order to reduce edge-indentation, it needs to use lower cutting depth and feed rate. Water-soluble cutting fluid provides a better cooling effect in the primary cutting area; it may effectively reduce the edge-indentation and improve the surface morphology of the glass ceramic. The use of ultrasonic assisted technique can effectively enhance the surface finish cleanness and reduce cutting tool wear and edge-indentation.
Keywords: Glass-ceramic, ultrasonic assisted machining, cutting performance, edge-indentation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27998724 Simulation Studies of Solid-Particle and Liquid-Drop Erosion of NiAl Alloy
Authors: Rong Liu, Kuiying Chen, Ju Chen, Jingrong Zhao, Ming Liang
Abstract:
This article presents modeling studies of NiAl alloy under solid-particle erosion and liquid-drop erosion. In the solid-particle erosion simulation, attention is paid to the oxide scale thickness variation on the alloy in high-temperature erosion environments. The erosion damage is assumed to be deformation wear and cutting wear mechanisms, incorporating the influence of the oxide scale on the eroded surface; thus the instantaneous oxide thickness is the result of synergetic effect of erosion and oxidation. For liquid-drop erosion, special interest is in investigating the effects of drop velocity and drop size on the damage of the target surface. The models of impact stress wave, mean depth of penetration, and maximum depth of erosion rate (Max DER) are employed to develop various maps for NiAl alloy, including target thickness vs. drop size (diameter), rate of mean depth of penetration (MDRP) vs. drop impact velocity, and damage threshold velocity (DTV) vs. drop size.
Keywords: Liquid-drop erosion, NiAl alloy, oxide scale thickness, solid-particle erosion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26468723 Resilient Machine Learning in the Nuclear Industry: Crack Detection as a Case Study
Authors: Anita Khadka, Gregory Epiphaniou, Carsten Maple
Abstract:
There is a dramatic surge in the adoption of Machine Learning (ML) techniques in many areas, including the nuclear industry (such as fault diagnosis and fuel management in nuclear power plants), autonomous systems (including self-driving vehicles), space systems (space debris recovery, for example), medical surgery, network intrusion detection, malware detection, to name a few. Artificial Intelligence (AI) has become a part of everyday modern human life. To date, the predominant focus has been developing underpinning ML algorithms that can improve accuracy, while factors such as resiliency and robustness of algorithms have been largely overlooked. If an adversarial attack is able to compromise the learning method or data, the consequences can be fatal, especially but not exclusively in safety-critical applications. In this paper, we present an in-depth analysis of five adversarial attacks and two defence methods on a crack detection ML model. Our analysis shows that it can be dangerous to adopt ML techniques without rigorous testing, since they may be vulnerable to adversarial attacks, especially in security-critical areas such as the nuclear industry. We observed that while the adopted defence methods can effectively defend against different attacks, none of them could protect against all five adversarial attacks entirely.
Keywords: Resilient Machine Learning, attacks, defences, nuclear industry, crack detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4998722 Enhancement of Hardness Related Properties of Grey Cast Iron Powder Reinforced AA7075 Metal Matrix Composites through T6 and T8 Heat Treatments
Authors: S. S. Sharma, P. R. Prabhu, K. Jagannath, Achutha Kini U., Gowri Shankar M. C.
Abstract:
In present global scenario, aluminum alloys are coining the attention of many innovators as competing structural materials for automotive and space applications. Comparing to other challenging alloys, especially, 7xxx series aluminum alloys have been studied seriously because of benefits such as moderate strength; better deforming characteristics and affordable cost. It is expected that substitution of aluminum alloys for steels will result in great improvements in energy economy, durability and recyclability. However, it is necessary to improve the strength and the formability levels at low temperatures in aluminum alloys for still better applications. Aluminum–Zinc–Magnesium with or without other wetting agent denoted as 7XXX series alloys are medium strength heat treatable alloys. In addition to Zn, Mg as major alloying additions, Cu, Mn and Si are the other solute elements which contribute for the improvement in mechanical properties by suitable heat treatment process. Subjecting to suitable treatments like age hardening or cold deformation assisted heat treatments; known as low temperature thermomechanical treatments (LTMT) the challenging properties might be incorporated. T6 is the age hardening or precipitation hardening process with artificial aging cycle whereas T8 comprises of LTMT treatment aged artificially with X% cold deformation. When the cold deformation is provided after solution treatment, there is increase in hardness related properties such as wear resistance, yield and ultimate strength, toughness with the expense of ductility. During precipitation hardening both hardness and strength of the samples are increasing. The hardness value may further improve when room temperature deformation is positively supported with age hardening known as thermomechanical treatment. It is intended to perform heat treatment and evaluate hardness, tensile strength, wear resistance and distribution pattern of reinforcement in the matrix. 2 to 2.5 and 3 to 3.5 times increase in hardness is reported in age hardening and LTMT treatments respectively as compared to as-cast composite. There was better distribution of reinforcements in the matrix, nearly two fold increase in strength levels and up to 5 times increase in wear resistance are also observed in the present study.Keywords: Reinforcement, precipitation, thermomechanical, dislocation, strain hardening.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22008721 Fatigue Failure Analysis in AISI 304 Stainless Wind Turbine Shafts
Authors: M. F. V. Montezuma, E. P. Deus, M. C. Carvalho
Abstract:
Wind turbines are equipment of great importance for generating clean energy in countries and regions with abundant winds. However, complex loadings fluctuations to which they are subject can cause premature failure of these equipment due to the material fatigue process. This work evaluates fatigue failures in small AISI 304 stainless steel turbine shafts. Fractographic analysis techniques, chemical analyzes using energy dispersive spectrometry (EDS), and hardness tests were used to verify the origin of the failures, characterize the properties of the components and the material. The nucleation of cracks on the shafts' surface was observed due to a combined effect of variable stresses, geometric stress concentrating details, and surface wear, leading to the crack's propagation until the catastrophic failure. Beach marks were identified in the macrographic examination, characterizing the probable failure due to fatigue. The sensitization phenomenon was also observed.
Keywords: Fatigue, sensitization phenomenon, stainless steel shafts, wind turbine failure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7068720 Mathematical Modeling of Machining Parameters in Electrical Discharge Machining of FW4 Welded Steel
Authors: M.R.Shabgard, R.M.Shotorbani
Abstract:
FW4 is a newly developed hot die material widely used in Forging Dies manufacturing. The right selection of the machining conditions is one of the most important aspects to take into consideration in the Electrical Discharge Machining (EDM) of FW4. In this paper an attempt has been made to develop mathematical models for relating the Material Removal Rate (MRR), Tool Wear Ratio (TWR) and surface roughness (Ra) to machining parameters (current, pulse-on time and voltage). Furthermore, a study was carried out to analyze the effects of machining parameters in respect of listed technological characteristics. The results of analysis of variance (ANOVA) indicate that the proposed mathematical models, can adequately describe the performance within the limits of the factors being studied.Keywords: Electrical Discharge Machining (EDM), linearregression technique, Response Surface Methodology (RSM)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19168719 Determination of Stress-Strain Characteristics of Railhead Steel using Image Analysis
Authors: Bandula-Heva, T., Dhanasekar, M.
Abstract:
True stress-strain curve of railhead steel is required to investigate the behaviour of railhead under wheel loading through elasto-plastic Finite Element (FE) analysis. To reduce the rate of wear, the railhead material is hardened through annealing and quenching. The Australian standard rail sections are not fully hardened and hence suffer from non-uniform distribution of the material property; usage of average properties in the FE modelling can potentially induce error in the predicted plastic strains. Coupons obtained at varying depths of the railhead were, therefore, tested under axial tension and the strains were measured using strain gauges as well as an image analysis technique, known as the Particle Image Velocimetry (PIV). The head hardened steel exhibit existence of three distinct zones of yield strength; the yield strength as the ratio of the average yield strength provided in the standard (σyr=780MPa) and the corresponding depth as the ratio of the head hardened zone along the axis of symmetry are as follows: (1.17 σyr, 20%), (1.06 σyr, 20%-80%) and (0.71 σyr, > 80%). The stress-strain curves exhibit limited plastic zone with fracture occurring at strain less than 0.1.Keywords: Stress-Strain Curve, Tensile Test, Particle Image Velocimetry, Railhead Metal Properties
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34428718 Improvement of Blood Detection Accuracy using Image Processing Techniques suitable for Capsule Endoscopy
Authors: Yong-Gyu Lee, Gilwon Yoon
Abstract:
Bleeding in the digestive duct is an important diagnostic parameter for patients. Blood in the endoscopic image can be determined by investigating the color tone of blood due to the degree of oxygenation, under- or over- illumination, food debris and secretions, etc. However, we found that how to pre-process raw images obtained from the capsule detectors was very important. We applied various image process methods suitable for the capsule endoscopic image in order to remove noises and unbalanced sensitivities for the image pixels. The results showed that much improvement was achieved by additional pre-processing techniques on the algorithm of determining bleeding areas.
Keywords: blood detection, capsule endoscopy, image processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18908717 Bond Strength in Thermally Sprayed Gas Turbine Shafts
Authors: M.Jalali Azizpour, S.Norouzi, D.Sajedipour, H.Mohammadi majd, S.A.Hosseini, H.Talebi, A.Ghamari
Abstract:
In this paper, the bond strength of thermal spray coatings in high speed shafts has been studied. The metallurgical and mechanical studies has been made on the coated samples and shaft using optical microscopy, scanning electron microscopy (SEM).Keywords: Thermal spray, Residual stress, Wear mechanism, HVOF, Gas compressor shafts
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17948716 An Overview of Construction and Demolition Waste as Coarse Aggregate in Concrete
Authors: S. R. Shamili, J. Karthikeyan
Abstract:
Fast development of the total populace and far and wide urbanization has surprisingly expanded the advancement of the construction industry. As a result of these activities, old structures are being demolished to make new buildings. Due to these large-scale demolitions, a huge amount of debris is generated all over the world, which results in a landfill. The use of construction and demolition waste as landfill causes groundwater contamination, which is hazardous. Using construction and demolition waste as aggregate can reduce the use of natural aggregates and the problem of mining. The objective of this study is to provide a detailed overview on how the construction and demolition waste material has been used as aggregate in structural concrete. In this study, the preparation, classification, and composition of construction and demolition wastes are also discussed.
Keywords: Aggregate, construction and demolition waste, landfill, large scale demolition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6398715 Friction Behavior of Wood-Plastic Composites against Uncoated Cemented Carbide
Authors: A. Vilutis, V. Jankauskas
Abstract:
The paper presents the results of the investigation of the dry sliding friction of wood-plastic composites (WPCs) against tungsten carbide-cobalt (WC-Co) hard alloy. The dependence of the dynamic coefficient of friction on the main influencing factors (vertical load, temperature, and sliding distance) was investigated by evaluating their mutual interaction. Multiple regression analysis showed a high polynomial dependence (adjusted R2 > 0.98). The resistance of the composite to thermo-mechanical effects determines how temperature and force factors affect the magnitude of the coefficient of friction. WPC-B composite has the lowest friction and highest resistance compared to WPC-A, while composite and cemented carbide materials wear the least. Energy Dispersive Spectroscopy (EDS), based on elemental composition, provided important insights into the friction process.
Keywords: Friction, composite, carbide, temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 728714 Application of Metakaolin from Northeast of Thailand Used as Binder in Casting Process of Rice Polishing Cylinder
Authors: T. Boonkang, C. Santhaweesuk, N. Pianthong, P. Neeramon, A. Phimhlo, S. Bangphan
Abstract:
The objective of this research was to apply metakaolin from northeast of Thailand as a binder in the casting process of rice polishing cylinder in replacement of the imported calcined magnesite cement and to reduce the production cost of the cylinder. Metakaolin was obtained from three different regions (Udon Thani, Nakhon Phanom, and Ubon Ratchathani). The design of experiment analysis using the MINITAB Release 14 based on the compressive strength and tensile strength testing was conducted. According to the analysis results, it was found that the optimal proportions were calcined magnesite cement: metakaolin from Udon Thani, Nakhon Phanom and Ubon Ratchathani equal to 63:37, 71:29, and 100:0, respectively. When used this formula to cast the cylinder and test the rice milling, it was found that the average broken rice percent was 32.52 and 38.29 for the cylinder contained the metakaolin from Udon Thani and Nakhon Phanom, respectively, which implied that the cylinder which contained the metakaolin from Udon Thani has higher efficiency than the cylinder which contained the metakaolin from Nakhon Phanom at 0.05 level of statistical significance. Whereas, the average wear rate of cylinder from both resources were 7.27 and 6.53 g/h, respectively.Keywords: Binder, casting, metakaolin, rice polishing cylinder.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11548713 Identification of Seat Belt Wearing Compliance Associate Factors in Malaysia: Evidence-based Approach
Authors: L. Fauziana, M. F. Siti Atiqah, Z. A. Ahmad Noor Syukri
Abstract:
The aim of the study was to identify seat belt wearing factor among road users in Malaysia. Evidence-based approach through in-depth crash investigation was utilised to determine the intended objectives. The objective was scoped into crashes investigated by Malaysian Institute of Road Safety Research (MIROS) involving passenger vehicles within 2007 and 2010. Crash information of a total of 99 crash cases involving 240 vehicles and 864 occupants were obtained during the study period. Statistical test and logistic regression analysis have been performed. Results of the analysis revealed that gender, seat position and age were associated with seat belt wearing compliance in Malaysia. Males are 97.6% more likely to wear seat belt compared to females (95% CI 1.317 to 2.964). By seat position, the finding indicates that frontal occupants were 82 times more likely to be wearing seat belt (95% CI 30.199 to 225.342) as compared to rear occupants. It is also important to note that the odds of seat belt wearing increased by about 2.64% (95% CI 1.0176 to 1.0353) for every one year increase in age. This study is essential in understanding the Malaysian tendency in belting up while being occupied in a vehicle. The factors highlighted in this study should be emphasized in road safety education in order to increase seat belt wearing rate in this country and ultimately in preventing deaths due to road crashes.Keywords: crash investigation, risk compensation, road safety, seat belt wearing, statistical analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19598712 Advanced Deployable/Retractable Solar Panel System for Satellite Applications
Authors: Zane Brough, Claudio Paoloni
Abstract:
Modern low earth orbit (LEO) satellites that require multi-mission flexibility are highly likely to be repositioned between different operational orbits. While executing this process the satellite may experience high levels of vibration and environmental hazards, exposing the deployed solar panel to dangerous stress levels, fatigue and space debris, hence it is desirable to retract the solar array before satellite repositioning to avoid damage or failure.
A novel concept of deployable/retractable hybrid solar array systemcomposed of both rigid and flexible solar panels arranged within a petal formation, aimed to provide a greater power to volume ratio while dramatically reducing mass and cost is proposed.
Keywords: Deployable Solar Panel, Satellite, Retractable Solar Panel, Hybrid Solar Panel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 46738711 Power and Wear Reduction Using Composite Links of Crank-Rocker Mechanism with Optimum Transmission Angle
Authors: Khaled M. Khader, Mamdouh I. Elimy
Abstract:
Reducing energy consumption became the major concern for all countries of the world during the recent decades. In general, power saving is currently the nominal goal of most industrial countries. It is well known that fossil fuels are the main pillar of development of world countries. Unfortunately, the increased rate of fossil fuel consumption will lead to serious problems caused by an expected depletion of fuels. Moreover, dangerous gases and vapors emission lead to severe environmental problems during fuel burning. Consequently, most engineering sectors especially the mechanical sectors are looking for improving any machine accompanied by reducing its energy consumption. Crank-Rocker planar mechanism is the most applied in mechanical systems. Besides, it is one of the most significant parts of the machines for obtaining the oscillatory motion. The transmission angle of this mechanism can be considered as an optimum value when its extreme values are equally varied around 90°. In addition, the transmission angle plays an important role in decreasing the required driving power and improving the dynamic properties of the mechanism. Hence, appropriate selection of mechanism links lengthens, which assures optimum transmission angle leads to decreasing the driving power. Moreover, mechanism's links manufactured from composite materials afford link's lightweight, which decreases the required driving torque. Furthermore, wear and corrosion problems can be treated through using composite links instead of using metal ones. This paper is dealing with improving the performance of crank-rocker mechanism using composite links due to their flexural elastic modulus values and stiffness in addition to high damping of composite materials.
Keywords: Composite material, crank-rocker mechanism, transmission angle, design techniques, power saving.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10668710 Studies on the Characterization and Machinability of Duplex Stainless Steel 2205 during Dry Turning
Authors: Gaurav D. Sonawane, Vikas G. Sargade
Abstract:
The present investigation is a study of the effect of advanced Physical Vapor Deposition (PVD) coatings on cutting temperature residual stresses and surface roughness during Duplex Stainless Steel (DSS) 2205 turning. Austenite stabilizers like nickel, manganese, and molybdenum reduced the cost of DSS. Surface Integrity (SI) plays an important role in determining corrosion resistance and fatigue life. Resistance to various types of corrosion makes DSS suitable for applications with critical environments like Heat exchangers, Desalination plants, Seawater pipes and Marine components. However, lower thermal conductivity, poor chip control and non-uniform tool wear make DSS very difficult to machine. Cemented carbide tools (M grade) were used to turn DSS in a dry environment. AlTiN and AlTiCrN coatings were deposited using advanced PVD High Pulse Impulse Magnetron Sputtering (HiPIMS) technique. Experiments were conducted with cutting speed of 100 m/min, 140 m/min and 180 m/min. A constant feed and depth of cut of 0.18 mm/rev and 0.8 mm were used, respectively. AlTiCrN coated tools followed by AlTiN coated tools outperformed uncoated tools due to properties like lower thermal conductivity, higher adhesion strength and hardness. Residual stresses were found to be compressive for all the tools used for dry turning, increasing the fatigue life of the machined component. Higher cutting temperatures were observed for coated tools due to its lower thermal conductivity, which results in very less tool wear than uncoated tools. Surface roughness with uncoated tools was found to be three times higher than coated tools due to lower coefficient of friction of coating used.Keywords: Cutting temperatures, DSS2205, dry turning, HiPIMS, surface integrity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8858709 Solid Particle Erosion of Heat Treated TNB-V4 at Ambient and Elevated Temperatures
Authors: Muhammad Naveed, Richard Stechow, Sebastian Bolz, Katharina Hobusch, Sabine Weiß
Abstract:
Solid particle erosion has been identified as a critical wear phenomenon which takes place during operation of aeroengines in dusty environment. The present work discusses the erosion behavior of Ti-44.5Al-6.25Nb-0.8Mo-0.1B alloy (TNB-V4) which finds its application in low pressure gas turbines and can be used for high pressure compressors too. Prior to the erosion tests, the alloy was heat treated to improve the mechanical properties. Afterwards, specimens were eroded at impact angles of 30° and 90° at room and high temperatures (100 °C-400 °C). Volume loss and erosion behavior are studied through gravimetric analysis, whereas erosion mechanisms are characterized through scanning electron microscopy. The results indicate a clear difference in the erosion mechanism for different impact angles. The influence of the test temperature on the erosion behavior of the alloy is also discussed in the present contribution.
Keywords: Solid particle erosion, gamma TiAl, TNB-V4, high temperature erosion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15168708 Gender Dimension of Migrations Influenced by Genocide and Feminicides around the Globe
Authors: Lejla Mušić
Abstract:
Gender dimension of migration analyzes the intersection in between the world statistics on male and female migrations, around the world, involving the questions of youth migrations. Comparative analyses of world migration statistics as methodology offer the insight into the position of women in labor market around world. There are different forms of youth debris in contemporary world. The main problems are illegal migration, feminization of poverty, kidnapping the girls in Nigeria, femicides in Juarez and Mexico. Illegal migrations involve forced labor, rape and prostitution. Transgender youth share ideas through the online media (anti-bullying videos) and develop their own styles such as anarcho-punk, rave, or rock. Therefore, the stronger gender equality laws and laws for protection of women on work should be enforced.
Keywords: Hyper feminization, rape, gangs of girls, rent boys masculinities, Varoç in Istanbul.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8068707 Effect of the Workpiece Position on the Manufacturing Tolerances
Authors: M. Rahou, F. Sebaa, A. Cheikh
Abstract:
Manufacturing tolerancing is intended to determine the intermediate geometrical and dimensional states of the part during its manufacturing process. These manufacturing dimensions also serve to satisfy not only the functional requirements given in the definition drawing, but also the manufacturing constraints, for example geometrical defects of the machine, vibration and the wear of the cutting tool. The choice of positioning has an important influence on the cost and quality of manufacture. To avoid this problem, a two-step approach has been developed. The first step is dedicated to the determination of the optimum position. As for the second step, a study was carried out for the tightening effect on the tolerance interval.Keywords: Dispersion, tolerance, manufacturing, position.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20978706 Residual Stresses in Thermally Sprayed Gas Turbine Components
Authors: M.Jalali Azizpour, S.Norouzi, D.Sajedipour, H.Mohammadi Majd
Abstract:
In this paper, the residual stress of thermal spray coatings in gas turbine component by curvature method has been studied. The samples and shaft were coated by hard WC-12Co cermets using high velocity oxy fuel (HVOF) after preparation in same conditions. The curvature of coated samples was measured by using of coordinate measurement machine (CMM). The metallurgical and Tribological studies has been made on the coated shaft using optical microscopy and scanning electron microscopy (SEM)Keywords: Thermal spray, Residual stress, Wear mechanism, HVOF, Gas compressor shafts
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16908705 Multi-Objective Optimization of Electric Discharge Machining for Inconel 718
Authors: Pushpendra S. Bharti, S. Maheshwari
Abstract:
Electric discharge machining (EDM) is one of the most widely used non-conventional manufacturing process to shape difficult-to-cut materials. The process yield, in terms of material removal rate, surface roughness and tool wear rate, of EDM may considerably be improved by selecting the optimal combination(s) of process parameters. This paper employs Multi-response signal-to-noise (MRSN) ratio technique to find the optimal combination(s) of the process parameters during EDM of Inconel 718. Three cases v.i.z. high cutting efficiency, high surface finish, and normal machining have been taken and the optimal combinations of input parameters have been obtained for each case. Analysis of variance (ANOVA) has been employed to find the dominant parameter(s) in all three cases. The experimental verification of the obtained results has also been made. MRSN ratio technique found to be a simple and effective multi-objective optimization technique.
Keywords: EDM, material removal rate, multi-response signal-to-noise ratio, optimization, surface roughness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1196