Search results for: Seismic fragility curve
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 738

Search results for: Seismic fragility curve

618 Alternative Key Exchange Algorithm Based on Elliptic Curve Digital Signature Algorithm Certificate and Usage in Applications

Authors: A. Andreasyan, C. Connors

Abstract:

The Elliptic Curve Digital Signature algorithm-based X509v3 certificates are becoming more popular due to their short public and private key sizes. Moreover, these certificates can be stored in Internet of Things (IoT) devices, with limited resources, using less memory and transmitted in network security protocols, such as Internet Key Exchange (IKE), Transport Layer Security (TLS) and Secure Shell (SSH) with less bandwidth. The proposed method gives another advantage, in that it increases the performance of the above-mentioned protocols in terms of key exchange by saving one scalar multiplication operation.

Keywords: Cryptography, elliptic curve digital signature algorithm, key exchange, network security protocols.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 532
617 Groundwater Level Prediction at a Pilot Area in Southeastern Part of the UAE using Shallow Seismic Method

Authors: Murad A, Baker H, Mahmoud S, Gabr A

Abstract:

The groundwater is one of the main sources for sustainability in the United Arab Emirates (UAE). Intensive developments in Al-Ain area lead to increase water demand, which consequently reduced the overall groundwater quantity in major aquifers. However, in certain residential areas within Al-Ain, it has been noticed that the groundwater level is rising, for example in Sha-ab Al Askher area. The reasons for the groundwater rising phenomenon are yet to be investigated. In this work, twenty four seismic refraction profiles have been carried out along the study pilot area; as well as field measurement of the groundwater level in a number of available water wells in the area. The processed seismic data indicated the deepest and shallowest groundwater levels are 15m and 2.3 meters respectively. This result is greatly consistent with the proper field measurement of the groundwater level. The minimum detected value may be referred to perched subsurface water which may be associated to the infiltration from the surrounding water bodies such as lakes, and elevated farms. The maximum values indicate the accurate groundwater level within the study area. The findings of this work may be considered as a preliminary help to the decision makers.

Keywords: groundwater, shallow seismic method, United Arab Emirates

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1460
616 Incorporation of Long-Term Redundancy in ECG Time Domain Compression Methods through Curve Simplification and Block-Sorting

Authors: Bachir Boucheham, Youcef Ferdi, Mohamed Chaouki Batouche

Abstract:

We suggest a novel method to incorporate longterm redundancy (LTR) in signal time domain compression methods. The proposition is based on block-sorting and curve simplification. The proposition is illustrated on the ECG signal as a post-processor for the FAN method. Test applications on the new so-obtained FAN+ method using the MIT-BIH database show substantial improvement of the compression ratio-distortion behavior for a higher quality reconstructed signal.

Keywords: ECG compression, Long-term redundancy, Block-sorting, Curve Simplification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1486
615 Seismic Resistant Mechanism of Two-by-four Wooden Frame with Vibration Control Device

Authors: Takumi Ito, Kurumi Kurokawa, Dong Hang Wu, Takashi Nagumo, Haruhiko Hirata

Abstract:

The structural system of wooden house by two-by-four method is widely adopted in any countries, and a various type of vibration control system for building structures has been developed on country with frequent earthquake. In this study, a vibration control device called “Scaling Frame” (SF) is suggested, and which is applied to wooden two-by-four method structures. This paper performs the experimental study to investigate the restoring force characteristics of two-by-four with SF device installed. The seismic resistant performance is estimated experimentally, and also the applicability and effectiveness are discussing.

Keywords: Two-by-four method, seismic vibration control, horizontally loading test, restoring force characteristics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1037
614 Seismic Behaviour of Steel Frames Investigation with Knee Brace Based on Pushover Analysis

Authors: Mahmoud Miri, Abdolreza Zare, Hossein Abbas zadeh

Abstract:

The knee bracing steel frame (KBF) is a new kind of energy dissipating frame, which combines excellent ductility and lateral stiffness. In this framing system, a special form of diagonal brace connected to a knee element instead of beam-column joint, is investigated. Recently, a similar system was proposed and named as chevron knee bracing system (CKB) which in comparison with the former system has a better energy absorption characteristic and at the same time retains the elastic nature of the structures. Knee bracing can provide a stiffer bracing system but reduces the ductility of the steel frame. Chevron knee bracing can be employed to provide the desired ductility level for a design. In this article, relation between seismic performance and structural parameters of the two above mentioned systems are investigated and compared. Frames with similar dimensions but various heights in both systems are designed according to Iranian code of practice for seismic resistant design of building, and then based on a non-linear push over static analysis; the seismic parameters such as behavior factor and performance levels are compared.

Keywords: Seismic behaviour, ordinary knee bracing frame, Chevron knee brace, behaviour factor, performance level.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4213
613 The Distance between a Point and a Bezier Curveon a Bezier Surface

Authors: Wen-Haw Chen, Sheng-Gwo Chen

Abstract:

The distance between two objects is an important problem in CAGD, CAD and CG etc. It will be presented in this paper that a simple and quick method to estimate the distance between a point and a Bezier curve on a Bezier surface.

Keywords: Geodesic-like curve, distance, projection, Bezier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2512
612 Prediction of Seismic Damage Using Scalar Intensity Measures Based On Integration of Spectral Values

Authors: Konstantinos G. Kostinakis, Asimina M. Athanatopoulou

Abstract:

A key issue in seismic risk analysis within the context of Performance-Based Earthquake Engineering is the evaluation of the expected seismic damage of structures under a specific earthquake ground motion. The assessment of the seismic performance strongly depends on the choice of the seismic Intensity Measure (IM), which quantifies the characteristics of a ground motion that are important to the nonlinear structural response. Several conventional IMs of ground motion have been used to estimate their damage potential to structures. Yet, none of them has been proved to be able to predict adequately the seismic damage. Therefore, alternative, scalar intensity measures, which take into account not only ground motion characteristics but also structural information have been proposed. Some of these IMs are based on integration of spectral values over a range of periods, in an attempt to account for the information that the shape of the acceleration, velocity or displacement spectrum provides. The adequacy of a number of these IMs in predicting the structural damage of 3D R/C buildings is investigated in the present paper. The investigated IMs, some of which are structure specific and some are non structure-specific, are defined via integration of spectral values. To achieve this purpose three symmetric in plan R/C buildings are studied. The buildings are subjected to 59 bidirectional earthquake ground motions. The two horizontal accelerograms of each ground motion are applied along the structural axes. The response is determined by nonlinear time history analysis. The structural damage is expressed in terms of the maximum interstory drift as well as the overall structural damage index. The values of the aforementioned seismic damage measures are correlated with seven scalar ground motion IMs. The comparative assessment of the results revealed that the structure-specific IMs present higher correlation with the seismic damage of the three buildings. However, the adequacy of the IMs for estimation of the structural damage depends on the response parameter adopted. Furthermore, it was confirmed that the widely used spectral acceleration at the fundamental period of the structure is a good indicator of the expected earthquake damage level.

Keywords: Damage measures, Bidirectional excitation, Spectral based IMs, R/C buildings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2340
611 The Number of Rational Points on Singular Curvesy 2 = x(x - a)2 over Finite Fields Fp

Authors: Ahmet Tekcan

Abstract:

Let p ≥ 5 be a prime number and let Fp be a finite field. In this work, we determine the number of rational points on singular curves Ea : y2 = x(x - a)2 over Fp for some specific values of a.

Keywords: Singular curve, elliptic curve, rational points.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1404
610 Artificial Neural Networks Technique for Seismic Hazard Prediction Using Seismic Bumps

Authors: Belkacem Selma, Boumediene Selma, Samira Chouraqui, Hanifi Missoum, Tourkia Guerzou

Abstract:

Natural disasters have occurred and will continue to cause human and material damage. Therefore, the idea of "preventing" natural disasters will never be possible. However, their prediction is possible with the advancement of technology. Even if natural disasters are effectively inevitable, their consequences may be partly controlled. The rapid growth and progress of artificial intelligence (AI) had a major impact on the prediction of natural disasters and risk assessment which are necessary for effective disaster reduction. Earthquake prediction to prevent the loss of human lives and even property damage is an important factor; that, is why it is crucial to develop techniques for predicting this natural disaster. This study aims to analyze the ability of artificial neural networks (ANNs) to predict earthquakes that occur in a given area. The used data describe the problem of high energy (higher than 104 J) seismic bumps forecasting in a coal mine using two long walls as an example. For this purpose, seismic bumps data obtained from mines have been analyzed. The results obtained show that the ANN is able to predict earthquake parameters with  high accuracy; the classification accuracy through neural networks is more than 94%, and the models developed are efficient and robust and depend only weakly on the initial database.

Keywords: Earthquake prediction, artificial intelligence, AI, Artificial Neural Network, ANN, seismic bumps.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1100
609 Seismic Directionality Effects on In-Structure Response Spectra in Seismic Probabilistic Risk Assessment

Authors: S. Jarernprasert, E. Bazan-Zurita, P. C. Rizzo

Abstract:

Currently, seismic probabilistic risk assessments (SPRA) for nuclear facilities use In-Structure Response Spectra (ISRS) in the calculation of fragilities for systems and components. ISRS are calculated via dynamic analyses of the host building subjected to two orthogonal components of horizontal ground motion. Each component is defined as the median motion in any horizontal direction. Structural engineers applied the components along selected X and Y Cartesian axes. The ISRS at different locations in the building are also calculated in the X and Y directions. The choice of the directions of X and Y are not specified by the ground motion model with respect to geographic coordinates, and are rather arbitrarily selected by the structural engineer. Normally, X and Y coincide with the “principal” axes of the building, in the understanding that this practice is generally conservative. For SPRA purposes, however, it is desirable to remove any conservatism in the estimates of median ISRS. This paper examines the effects of the direction of horizontal seismic motion on the ISRS on typical nuclear structure. We also evaluate the variability of ISRS calculated along different horizontal directions. Our results indicate that some central measures of the ISRS provide robust estimates that are practically independent of the selection of the directions of the horizontal Cartesian axes.

Keywords: Seismic, Directionality, In-Structure Response Spectra, Probabilistic Risk Assessment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2498
608 A New Implementation of Miura-Arita Algorithm for Miura Curves

Authors: A. Basiri, S. Rahmany, D. Khatibi

Abstract:

The aim of this paper is to review some of standard fact on Miura curves. We give some easy theorem in number theory to define Miura curves, then we present a new implementation of Arita algorithm for Miura curves.

Keywords: Miura curve, discrete logarithm problem, algebraic curve cryptography, Jacobian group.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1425
607 Comparison of Current Chinese and Japanese Design Specification for Bridge Pile in Liquefied Ground

Authors: Baydaa H. Maula, Ling Zhang, Tang Liang, Gao Xia, Xu Peng-Ju, Zhang Yong-Qiang, Kang Jie, Su Lei

Abstract:

Firstly, this study briefly presents the current situation that there exists a vast gap between current Chinese and Japanese seismic design specification for bridge pile foundation in liquefiable and liquefaction-induced lateral spreading ground; The Chinese and Japanese seismic design method and technical detail for bridge pile foundation in liquefying and lateral spreading ground are described and compared systematically and comprehensively, the methods of determining coefficient of subgrade reaction and its reduction factor as well as the computing mode of the applied force on pile foundation due to liquefaction-induced lateral spreading soil in Japanese design specification are especially introduced. Subsequently, the comparison indicates that the content of Chinese seismic design specification for bridge pile foundation in liquefiable and liquefaction-induced lateral spreading ground, just presenting some qualitative items, is too general and lacks systematicness and maneuverability. Finally, some defects of seismic design specification in China are summarized, so the improvement and revision of specification in the field turns out to be imperative for China, some key problems of current Chinese specifications are generalized and the corresponding improvement suggestions are proposed.

Keywords: liquefying soil, laterally spreading ground, seismic design specification for bridge pile foundation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3605
606 On the Accuracy of Basic Modal Displacement Method Considering Various Earthquakes

Authors: Seyed Sadegh Naseralavi, Sadegh Balaghi, Ehsan Khojastehfar

Abstract:

Time history seismic analysis is supposed to be the most accurate method to predict the seismic demand of structures. On the other hand, the required computational time of this method toward achieving the result is its main deficiency. While being applied in optimization process, in which the structure must be analyzed thousands of time, reducing the required computational time of seismic analysis of structures makes the optimization algorithms more practical. Apparently, the invented approximate methods produce some amount of errors in comparison with exact time history analysis but the recently proposed method namely, Complete Quadratic Combination (CQC) and Sum Root of the Sum of Squares (SRSS) drastically reduces the computational time by combination of peak responses in each mode. In the present research, the Basic Modal Displacement (BMD) method is introduced and applied towards estimation of seismic demand of main structure. Seismic demand of sampled structure is estimated by calculation of modal displacement of basic structure (in which the modal displacement has been calculated). Shear steel sampled structures are selected as case studies. The error applying the introduced method is calculated by comparison of the estimated seismic demands with exact time history dynamic analysis. The efficiency of the proposed method is demonstrated by application of three types of earthquakes (in view of time of peak ground acceleration).

Keywords: Time history dynamic analysis, basic modal displacement, earthquake induced demands, shear steel structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1377
605 Mobile Robot Path Planning Utilizing Probability Recursive Function

Authors: Ethar H. Khalil, Bahaa I. Kazem

Abstract:

In this work a software simulation model has been proposed for two driven wheels mobile robot path planning; that can navigate in dynamic environment with static distributed obstacles. The work involves utilizing Bezier curve method in a proposed N order matrix form; for engineering the mobile robot path. The Bezier curve drawbacks in this field have been diagnosed. Two directions: Up and Right function has been proposed; Probability Recursive Function (PRF) to overcome those drawbacks. PRF functionality has been developed through a proposed; obstacle detection function, optimization function which has the capability of prediction the optimum path without comparison between all feasible paths, and N order Bezier curve function that ensures the drawing of the obtained path. The simulation results that have been taken showed; the mobile robot travels successfully from starting point and reaching its goal point. All obstacles that are located in its way have been avoided. This navigation is being done successfully using the proposed PRF techniques.

Keywords: Mobile robot, path planning, Bezier curve.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1422
604 Research of Strong-Column-Weak-Beam Criteria of Reinforced Concrete Frames Subjected to Biaxial Seismic Excitation

Authors: Chong Zhang, Mu-Xuan Tao

Abstract:

In several earthquakes, numerous reinforced concrete (RC) frames subjected to seismic excitation demonstrated a collapse pattern characterized by column hinges, though designed according to the Strong-Column-Weak-Beam (S-C-W-B) criteria. The effect of biaxial seismic excitation on the disparity between design and actual performance is carefully investigated in this article. First, a modified load contour method is proposed to derive a closed-form equation of biaxial bending moment strength, which is verified by numerical and experimental tests. Afterwards, a group of time history analyses of a simple frame modeled by fiber beam-column elements subjected to biaxial seismic excitation are conducted to verify that the current S-C-W-B criteria are not adequate to prevent the occurrence of column hinges. A biaxial over-strength factor is developed based on the proposed equation, and the reinforcement of columns is appropriately amplified with this factor to prevent the occurrence of column hinges under biaxial excitation, which is proved to be effective by another group of time history analyses.

Keywords: Biaxial bending moment strength, biaxial seismic excitation, fiber beam-column model, load contour method, strong-column-weak-beam.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 575
603 Seismic Vulnerability Mitigation of Non-Engineered Buildings

Authors: Muhammad Tariq A. Chaudhary

Abstract:

The tremendous loss of life that resulted in the aftermath of recent earthquakes in developing countries is mostly due to the collapse of non-engineered and semi-engineered building structures. Such structures are used as houses, schools, primary healthcare centers and government offices. These building are classified structurally into two categories viz. non-engineered and semi-engineered. Non-engineered structures include: adobe, unreinforced masonry (URM) and wood buildings. Semi-engineered buildings are mostly low-rise (up to 3 story) light concrete frame structures or masonry bearing walls with reinforced concrete slab. This paper presents an overview of the typical damage observed in non-engineered structures and their most likely causes in the past earthquakes with specific emphasis on the performance of such structures in the 2005 Kashmir earthquake. It is demonstrated that seismic performance of these structures can be improved from life-safety viewpoint by adopting simple low-cost modifications to the existing construction practices. Incorporation of some of these practices in the reconstruction efforts after the 2005 Kashmir earthquake are examined in the last section for mitigating seismic risk hazard.

Keywords: Kashmir earthquake, non-engineered buildings, seismic hazard, structural details, structural strengthening.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2859
602 'Performance-Based' Seismic Methodology and Its Application in Seismic Design of Reinforced Concrete Structures

Authors: Jelena R. Pejović, Nina N. Serdar

Abstract:

This paper presents an analysis of the “Performance-Based” seismic design method, in order to overcome the perceived disadvantages and limitations of the existing seismic design approach based on force, in engineering practice. Bearing in mind, the specificity of the earthquake as a load and the fact that the seismic resistance of the structures solely depends on its behaviour in the nonlinear field, traditional seismic design approach based on force and linear analysis is not adequate. “Performance-Based” seismic design method is based on nonlinear analysis and can be used in everyday engineering practice. This paper presents the application of this method to eight-story high reinforced concrete building with combined structural system (reinforced concrete frame structural system in one direction and reinforced concrete ductile wall system in other direction). The nonlinear time-history analysis is performed on the spatial model of the structure using program Perform 3D, where the structure is exposed to forty real earthquake records. For considered building, large number of results were obtained. It was concluded that using this method we could, with a high degree of reliability, evaluate structural behavior under earthquake. It is obtained significant differences in the response of structures to various earthquake records. Also analysis showed that frame structural system had not performed well at the effect of earthquake records on soil like sand and gravel, while a ductile wall system had a satisfactory behavior on different types of soils.

Keywords: Ductile wall, frame system, nonlinear time-history analysis, performance-based methodology, RC building.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1462
601 Probabilistic Model Development for Project Performance Forecasting

Authors: Milad Eghtedari Naeini, Gholamreza Heravi

Abstract:

In this paper, based on the past project cost and time performance, a model for forecasting project cost performance is developed. This study presents a probabilistic project control concept to assure an acceptable forecast of project cost performance. In this concept project activities are classified into sub-groups entitled control accounts. Then obtain the Stochastic S-Curve (SS-Curve), for each sub-group and the project SS-Curve is obtained by summing sub-groups- SS-Curves. In this model, project cost uncertainties are considered through Beta distribution functions of the project activities costs required to complete the project at every selected time sections through project accomplishment, which are extracted from a variety of sources. Based on this model, after a percentage of the project progress, the project performance is measured via Earned Value Management to adjust the primary cost probability distribution functions. Then, accordingly the future project cost performance is predicted by using the Monte-Carlo simulation method.

Keywords: Monte Carlo method, Probabilistic model, Project forecasting, Stochastic S-curve

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2665
600 Seismic Analysis of URM Buildings in S. Africa

Authors: Trevor N. Haas, Thomas van der Kolf

Abstract:

South Africa has some regions which are susceptible to moderate seismic activity. A peak ground acceleration of between 0.1g and 0.15g can be expected in the southern parts of the Western Cape. Unreinforced Masonry (URM) is commonly used as a construction material for 2 to 5 storey buildings in underprivileged areas in and around Cape Town. URM is typically regarded as the material most vulnerable to damage when subjected to earthquake excitation. In this study, a three-storey URM building was analysed by applying seven earthquake time-histories, which can be expected to occur in South Africa using a finite element approach. Experimental data was used to calibrate the in- and out-of-plane stiffness of the URM. The results indicated that tensile cracking of the in-plane piers was the dominant failure mode. It is concluded that URM buildings of this type are at risk of failure especially if sufficient ductility is not provided. The results also showed that connection failure must be investigated further.

Keywords: URM, Seismic Analysis, FEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2962
599 On the Development of a Homogenized Earthquake Catalogue for Northern Algeria

Authors: I. Grigoratos, R. Monteiro

Abstract:

Regions with a significant percentage of non-seismically designed buildings and reduced urban planning are particularly vulnerable to natural hazards. In this context, the project ‘Improved Tools for Disaster Risk Mitigation in Algeria’ (ITERATE) aims at seismic risk mitigation in Algeria. Past earthquakes in North Algeria caused extensive damages, e.g. the El Asnam 1980 moment magnitude (Mw) 7.1 and Boumerdes 2003 Mw 6.8 earthquakes. This paper will address a number of proposed developments and considerations made towards a further improvement of the component of seismic hazard. In specific, an updated earthquake catalog (until year 2018) is compiled, and new conversion equations to moment magnitude are introduced. Furthermore, a network-based method for the estimation of the spatial and temporal distribution of the minimum magnitude of completeness is applied. We found relatively large values for Mc, due to the sparse network, and a nonlinear trend between Mw and body wave (mb) or local magnitude (ML), which are the most common scales reported in the region. Lastly, the resulting b-value of the Gutenberg-Richter distribution is sensitive to the declustering method.

Keywords: Conversion equation, magnitude of completeness, seismic events, seismic hazard.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 775
598 A Comparative Study on Seismic Provisions Made in UBC-1997 and Saudi Building Code for RC Buildings

Authors: S. Nazar, M. A. Ismaeil

Abstract:

This paper presents a comparative study of static analysis procedure for seismic performance based on UBC-1997 and SBC-301-2007(Saudi Arabia). These building codes define different ductility classes and corresponding response reduction factors based on material, configuration and detailing of reinforcements. Codes differ significantly in specifying the procedures to estimate base shear, drift and effective stiffness of structural members. One of the major improvements made in new SBC (based on IBC-2003) is ground motion parameters used for seismic design. In old SBC (based on UBC) maps have been based on seismic zones. However new SBC provide contour maps giving spectral response quantities. In this approach, a case study of RC frame building located in two different cities and with different ductility classes has been performed. Moreover, equivalent static method based on SBC-301 and UBC-1997 is used to explore the variation in results based on two codes, particularly design base shear, lateral loads and story drifts.

Keywords: Ductility Classes, Equivalent Static method, RC Frames, SBC-301-2007, Story drifts, UBC-1997.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4100
597 Implementing Authentication Protocol for Exchanging Encrypted Messages via an Authentication Server Based on Elliptic Curve Cryptography with the ElGamal-s Algorithm

Authors: Konstantinos Chalkias, George Filiadis, George Stephanides

Abstract:

In this paper the authors propose a protocol, which uses Elliptic Curve Cryptography (ECC) based on the ElGamal-s algorithm, for sending small amounts of data via an authentication server. The innovation of this approach is that there is no need for a symmetric algorithm or a safe communication channel such as SSL. The reason that ECC has been chosen instead of RSA is that it provides a methodology for obtaining high-speed implementations of authentication protocols and encrypted mail techniques while using fewer bits for the keys. This means that ECC systems require smaller chip size and less power consumption. The proposed protocol has been implemented in Java to analyse its features and vulnerabilities in the real world.

Keywords: Elliptic Curve Cryptography, ElGamal, authentication protocol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1992
596 Numerical Study of Developing Laminar Forced Convection Flow of Water/CuO Nanofluid in a Circular Tube with a 180 Degrees Curve

Authors: Hamed K. Arzani, Hamid K. Arzani, S.N. Kazi, A. Badarudin

Abstract:

Numerical investigation into convective heat transfer of CuO-Water based nanofluid in a pipe with return bend under laminar flow conditions has been done. The impacts of Reynolds number and the volume concentration of nanoparticles on the flow and the convective heat transfer behaviour are investigated. The results indicate that the increase in Reynolds number leads to the enhancement of average Nusselt number, and the increase in specific heat in the presence of the nanofluid results in improvement in heat transfer. Also, the presence of the secondary flow in the curve plays a key role in increasing the average Nusselt number and it appears higher than the inlet and outlet tubes. However, the pressure drop curve increases significantly in the tubes with the increase in nanoparticles concentration.

Keywords: Laminar forced convection, nanofluid, curve, return bend, CFD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1258
595 A Study on Method for Identifying Capacity Factor Declination of Wind Turbines

Authors: Dongheon Shin, Kyungnam Ko, Jongchul Huh

Abstract:

The investigation on wind turbine degradation was carried out using the nacelle wind data. The three Vestas V80-2MW wind turbines of Sungsan wind farm in Jeju Island, South Korea were selected for this work. The SCADA data of the wind farm for five years were analyzed to draw power curve of the turbines. It is assumed that the wind distribution is the Rayleigh distribution to calculate the normalized capacity factor based on the drawn power curve of the three wind turbines for each year. The result showed that the reduction of power output from the three wind turbines occurred every year and the normalized capacity factor decreased to 0.12%/year on average.

Keywords: Wind energy, Power curve, Capacity factor, Annual energy production.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2917
594 Seismic Behaviour of Romanian Ortodox Churches, Modeling of Failure Modes by Rigid Blocks

Authors: Marius Mosoarca, Victor Gioncu, Ovidiu Cosma

Abstract:

Historic religious buildings located in seismic areas have developed different failure mechanisms. Simulation of failure modes is done with computer programs through a nonlinear dynamic analysis or simplified using the method of failure blocks. Currently there are simulation methodologies of failure modes based on the failure rigid blocks method only for Roman Catholic churches type. Due to differences of shape in plan, elevation and construction systems between Orthodox churches and Catholic churches, for the first time there were initiated researches in the development of this simulation methodology for Orthodox churches. In this article are presented the first results from the researches. The theoretical results were compared with real failure modes recorded at an Orthodox church from Banat region, severely damaged by earthquakes in 1991. Simulated seismic response, using a computer program based on finite element method was confirmed by cracks after earthquakes. The consolidation of the church was made according to these theoretical results, realizing a rigid floor connecting all the failure blocks.

Keywords: Dinamic analysis, failure mechanism, rigid blocks seismic simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1606
593 A Case Study on Performance of Isolated Bridges under Near-Fault Ground Motion

Authors: Daniele Losanno, H. A. Hadad, Giorgio Serino

Abstract:

This paper presents a numerical investigation on the seismic performance of a benchmark bridge with different optimal isolation systems under near fault ground motion. Usually, very large displacements make seismic isolation an unfeasible solution due to boundary conditions, especially in case of existing bridges or high risk seismic regions. Hence, near-fault ground motions are most likely to affect either structures with long natural period range like isolated structures or structures sensitive to velocity content such as viscously damped structures. The work is aimed at analyzing the seismic performance of a three-span continuous bridge designed with different isolation systems having different levels of damping. The case study was analyzed in different configurations including: (a) simply supported, (b) isolated with lead rubber bearings (LRBs), (c) isolated with rubber isolators and 10% classical damping (HDLRBs), and (d) isolated with rubber isolators and 70% supplemental damping ratio. Case (d) represents an alternative control strategy that combines the effect of seismic isolation with additional supplemental damping trying to take advantages from both solutions. The bridge is modeled in SAP2000 and solved by time history direct-integration analyses under a set of six recorded near-fault ground motions. In addition to this, a set of analysis under Italian code provided seismic action is also conducted, in order to evaluate the effectiveness of the suggested optimal control strategies under far field seismic action. Results of the analysis demonstrated that an isolated bridge equipped with HDLRBs and a total equivalent damping ratio of 70% represents a very effective design solution for both mitigation of displacement demand at the isolation level and base shear reduction in the piers also in case of near fault ground motion.

Keywords: Isolated bridges, optimal design, near-fault motion, supplemental damping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1225
592 Design and Performance Evaluation of Hybrid Corrugated-GFRP Infill Panels

Authors: WooYoung Jung, HoYoung Son

Abstract:

This study presented to reduce earthquake damage and emergency rehabilitation of critical structures such as schools, hightech factories, and hospitals due to strong ground motions associated with climate changes. Regarding recent trend, a strong earthquake causes serious damage to critical structures and then the critical structure might be influenced by sequence aftershocks (or tsunami) due to fault plane adjustments. Therefore, in order to improve seismic performance of critical structures, retrofitted or strengthening study of the structures under aftershocks sequence after emergency rehabilitation of the structures subjected to strong earthquakes is widely carried out. Consequently, this study used composite material for emergency rehabilitation of the structure rather than concrete and steel materials because of high strength and stiffness, lightweight, rapid manufacturing, and dynamic performance. Also, this study was to develop or improve the seismic performance or seismic retrofit of critical structures subjected to strong ground motions and earthquake aftershocks, by utilizing GFRP-Corrugated Infill Panels (GCIP).

Keywords: Composite material, GFRP, Infill Panel, Aftershock, Seismic Retrofitting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2243
591 An Advanced Exponential Model for Seismic Isolators Having Hardening or Softening Behavior at Large Displacements

Authors: Nicolò Vaiana, Giorgio Serino

Abstract:

In this paper, an advanced Nonlinear Exponential Model (NEM), able to simulate the uniaxial dynamic behavior of seismic isolators having a continuously decreasing tangent stiffness with increasing displacement in the relatively large displacements range and a hardening or softening behavior at large displacements, is presented. The mathematical model is validated by comparing the experimental force-displacement hysteresis loops obtained during cyclic tests, conducted on a helical wire rope isolator and a recycled rubber-fiber reinforced bearing, with those predicted analytically. Good agreement between the experimental and simulated results shows that the proposed model can be an effective numerical tool to predict the force-displacement relationship of seismic isolation devices within the large displacements range. Compared to the widely used Bouc-Wen model, unable to simulate the response of seismic isolators at large displacements, the proposed one allows to avoid the numerical solution of a first order nonlinear ordinary differential equation for each time step of a nonlinear time history analysis, thus reducing the computation effort. Furthermore, the proposed model can simulate the smooth transition of the hysteresis loops from small to large displacements by adopting only one set of five parameters determined from the experimental hysteresis loops having the largest amplitude.

Keywords: Base isolation, hardening behavior, nonlinear exponential model, seismic isolators, softening behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 842
590 Effect of Horizontal Joint Reinforcement on Shear Behaviour of RC Knee Connections

Authors: N. Zhang, J. S. Kuang, S. Mogili

Abstract:

To investigate seismic performance of beam-column knee joints, four full-scale reinforced concrete beam-column knee joints, which were fabricated to simulate those in as-built RC frame buildings designed to ACI 318-14 and ACI-ASCE 352R-02, were tested under reversed cyclic loading. In the experimental programme, particular emphasis was given to the effect of horizontal reinforcement (in format of inverted U-shape bars) on the shear strength and ductility capacity of knee joints. Test results are compared with those predicted by four seismic design codes, including ACI 318-14, EC8, NZS3101 and GB50010. It is seen that the current design codes of practice cannot accurately predict the shear strength of seismically designed knee joints.

Keywords: Large-scale tests, RC beam-column knee joints, seismic performance, shear strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1155
589 Effects of Using Gusset Plate Stiffeners on the Seismic Performance of Concentrically Braced Frame

Authors: B. Mohebi, N. Asadi, F. Kazemi

Abstract:

Inelastic deformation of the brace in Special Concentrically Braced Frame (SCBF) creates inelastic damages on gusset plate connections such as buckling at edges. In this study, to improve the seismic performance of SCBFs connections, an analytical study was undertaken. To improve the gusset plate connection, this study proposes using ‎edge’s stiffeners in both sides of gusset plate.‎ For this purpose, in order to examine edge’s stiffeners effect on gusset plate connections, two groups of modeling with and without considering edge’s stiffener and different types of braces were modeled using ABAQUS software. The results show that considering the edge’s stiffener reduces the equivalent plastic strain values at a connection region of gusset plate with beam and column, which can improve the seismic performance of gusset plate. Furthermore, considering the edge’s stiffeners significantly decreases the strain concentration at regions where gusset plates have been connected to beam and column. Moreover, considering 2tpl distance causes reduction in the plastic strain.

Keywords: Special concentrically braced frame, gusset plate, edge’s stiffener, seismic performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 687