Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31106
The Number of Rational Points on Singular Curvesy 2 = x(x - a)2 over Finite Fields Fp

Authors: Ahmet Tekcan


Let p ≥ 5 be a prime number and let Fp be a finite field. In this work, we determine the number of rational points on singular curves Ea : y2 = x(x - a)2 over Fp for some specific values of a.

Keywords: elliptic curve, Singular curve, rational points

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1077


[1] A.O.L. Atkin and F. Moralin. Eliptic Curves and Primality Proving. Math. Comp. 61 (1993), 29-68.
[2] B. Gezer, H. O¨ zden, A. Tekcan and O. Bizim. The Number of Rational Points on Elliptic Curves y2 = x3+b2 over Finite Fields. International Journal of Computational and Mathematics Sciences 1(3)(2007), 178- 184.
[3] S. Goldwasser and J. Kilian. Almost all Primes can be Quickly Certified. In Proc. 18th STOC, Berkeley, May 28-30, 1986, ACM, New York (1986), 316-329.
[4] N. Koblitz. A Course in Number Theory and Cryptography. Springer- Verlag, 1994.
[5] F. Lemmermeyer. Reciprocity Laws. From Euler to Eisenstein. Springer- Verlag Heidelberg, 2000.
[6] H.W.Jr. Lenstra. Factoring Integers with Elliptic Curves. Annals of Maths. 126(3) (1987), 649-673.
[7] V.S. Miller. Use of Elliptic Curves in Cryptography, in Advances in Cryptology-CRYPTO-85. Lect. Notes in Comp. Sci. 218, Springer- Verlag, Berlin (1986), 417-426.
[8] R.A. Mollin. An Introduction to Cryptography. Chapman&Hall/CRC, 2001.
[9] L.J. Mordell. On the Rational Solutions of the Indeterminate Eqnarrays of the Third and Fourth Degrees. Proc. Cambridge Philos. Soc. 21(1922), 179-192.
[10] R. Schoof. Counting Points on Elliptic Curves Over Finite Fields. Journal de Theorie des Nombres de Bordeaux 7(1995), 219-254.
[11] J.H. Silverman. The Arithmetic of Elliptic Curves. Springer-Verlag, 1986.
[12] A. Tekcan. Elliptic Curves y2 = x3−t2x over Fp. Int. Jour. of Comp. and Math. Sci. 1(3) (2007), 165-171.
[13] A. Tekcan. The Cubic Congruence x2+ax2+bx+c ≡ 0(mod p) and Binary Quadratic Forms F(x, y) = ax2+bxy+cy2. Ars Combinatoria 85(2007), 257-269.
[14] A. Tekcan. The Elliptic Curves y2 = x(x − 1)(x − λ). Accepted for publication to Ars Combinatoria.
[15] A. Tekcan. The Cubic Congruence x3+ax2+bx+c ≡ 0(mod p) and Binary Quadratic Forms F(x, y) = ax2 + bxy + cy2 II. To appear in Bulletin of Malesian Math. Soc.
[16] L.C. Washington. Elliptic Curves, Number Theory and Cryptography. Chapman&Hall /CRC, Boca London, New York, Washington DC, 2003.
[17] A. Wiles. Modular Elliptic Curves and Fermat-s Last Theorem. Annals of Maths. 141(3) (1995), 443-551.