Search results for: Multimodality images
1060 Best Timing for Capturing Satellite Thermal Images, Asphalt, and Concrete Objects
Authors: Toufic Abd El-Latif Sadek
Abstract:
The asphalt object represents the asphalted areas like roads, and the concrete object represents the concrete areas like concrete buildings. The efficient extraction of asphalt and concrete objects from one satellite thermal image occurred at a specific time, by preventing the gaps in times which give the close and same brightness values between asphalt and concrete, and among other objects. So that to achieve efficient extraction and then better analysis. Seven sample objects were used un this study, asphalt, concrete, metal, rock, dry soil, vegetation, and water. It has been found that, the best timing for capturing satellite thermal images to extract the two objects asphalt and concrete from one satellite thermal image, saving time and money, occurred at a specific time in different months. A table is deduced shows the optimal timing for capturing satellite thermal images to extract effectively these two objects.
Keywords: Asphalt, concrete, satellite thermal images, timing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12931059 ROI Based Embedded Watermarking of Medical Images for Secured Communication in Telemedicine
Authors: Baisa L. Gunjal, Suresh N. Mali
Abstract:
Medical images require special safety and confidentiality because critical judgment is done on the information provided by medical images. Transmission of medical image via internet or mobile phones demands strong security and copyright protection in telemedicine applications. Here, highly secured and robust watermarking technique is proposed for transmission of image data via internet and mobile phones. The Region of Interest (ROI) and Non Region of Interest (RONI) of medical image are separated. Only RONI is used for watermark embedding. This technique results in exact recovery of watermark with standard medical database images of size 512x512, giving 'correlation factor' equals to 1. The correlation factor for different attacks like noise addition, filtering, rotation and compression ranges from 0.90 to 0.95. The PSNR with weighting factor 0.02 is up to 48.53 dBs. The presented scheme is non blind and embeds hospital logo of 64x64 size.
Keywords: Compression, DWT, ROI, Scrambling, Vertices
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32821058 A Novel Approach to Image Compression of Colour Images by Plane Reduction Technique
Authors: K.Sowmyan, A.Siddarth, D.Menaka
Abstract:
Several methods have been proposed for color image compression but the reconstructed image had very low signal to noise ratio which made it inefficient. This paper describes a lossy compression technique for color images which overcomes the drawbacks. The technique works on spatial domain where the pixel values of RGB planes of the input color image is mapped onto two dimensional planes. The proposed technique produced better results than JPEG2000, 2DPCA and a comparative study is reported based on the image quality measures such as PSNR and MSE.Experiments on real time images are shown that compare this methodology with previous ones and demonstrate its advantages.Keywords: Color Image compression, spatial domain, planereduction, root mean square, image restoration
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16331057 The Effect of Directional Search Using Iterated Functional System for Matching Range and Domain Blocks
Authors: Shimal Das, Dibyendu Ghoshal
Abstract:
The effect of directional search using iterated functional system has been studied on four images taken from databases. The images are portioned successively towards smaller dimension. Presented method provides the faster rate of convergence with respect to processing time in the flat region, but the same has been found to be slower at the border of the images and edges. It has also been revealed that the PSNR is lower at the edges and border portions of the image, and it is found to be higher in the uniform gray region, under the same external illumination and external noise environment.Keywords: Iterated functional system, fractal compression, structural similarity index measure, fractal block coding, affine transformations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9181056 Contour Estimation in Synthetic and Real Weld Defect Images based on Maximum Likelihood
Authors: M. Tridi, N. Nacereddine, N. Oucief
Abstract:
This paper describes a novel method for automatic estimation of the contours of weld defect in radiography images. Generally, the contour detection is the first operation which we apply in the visual recognition system. Our approach can be described as a region based maximum likelihood formulation of parametric deformable contours. This formulation provides robustness against the poor image quality, and allows simultaneous estimation of the contour parameters together with other parameters of the model. Implementation is performed by a deterministic iterative algorithm with minimal user intervention. Results testify for the very good performance of the approach especially in synthetic weld defect images.Keywords: Contour, gaussian, likelihood, rayleigh.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16621055 Efficient Copy-Move Forgery Detection for Digital Images
Authors: Somayeh Sadeghi, Hamid A. Jalab, Sajjad Dadkhah
Abstract:
Due to availability of powerful image processing software and improvement of human computer knowledge, it becomes easy to tamper images. Manipulation of digital images in different fields like court of law and medical imaging create a serious problem nowadays. Copy-move forgery is one of the most common types of forgery which copies some part of the image and pastes it to another part of the same image to cover an important scene. In this paper, a copy-move forgery detection method proposed based on Fourier transform to detect forgeries. Firstly, image is divided to same size blocks and Fourier transform is performed on each block. Similarity in the Fourier transform between different blocks provides an indication of the copy-move operation. The experimental results prove that the proposed method works on reasonable time and works well for gray scale and colour images. Computational complexity reduced by using Fourier transform in this method.Keywords: Copy-Move forgery, Digital Forensics, Image Forgery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27861054 Neural Network based Texture Analysis of Liver Tumor from Computed Tomography Images
Authors: K.Mala, V.Sadasivam, S.Alagappan
Abstract:
Advances in clinical medical imaging have brought about the routine production of vast numbers of medical images that need to be analyzed. As a result an enormous amount of computer vision research effort has been targeted at achieving automated medical image analysis. Computed Tomography (CT) is highly accurate for diagnosing liver tumors. This study aimed to evaluate the potential role of the wavelet and the neural network in the differential diagnosis of liver tumors in CT images. The tumors considered in this study are hepatocellular carcinoma, cholangio carcinoma, hemangeoma and hepatoadenoma. Each suspicious tumor region was automatically extracted from the CT abdominal images and the textural information obtained was used to train the Probabilistic Neural Network (PNN) to classify the tumors. Results obtained were evaluated with the help of radiologists. The system differentiates the tumor with relatively high accuracy and is therefore clinically useful.
Keywords: Fuzzy c means clustering, texture analysis, probabilistic neural network, LVQ neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29881053 Artificial Visual Percepts for Image Understanding
Authors: Jeewanee Bamunusinghe, Damminda Alahakoon
Abstract:
Visual inputs are one of the key sources from which humans perceive the environment and 'understand' what is happening. Artificial systems perceive the visual inputs as digital images. The images need to be processed and analysed. Within the human brain, processing of visual inputs and subsequent development of perception is one of its major functionalities. In this paper we present part of our research project, which aims at the development of an artificial model for visual perception (or 'understanding') based on the human perceptive and cognitive systems. We propose a new model for perception from visual inputs and a way of understaning or interpreting images using the model. We demonstrate the implementation and use of the model with a real image data set.Keywords: Image understanding, percept, visual perception.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17181052 Evaluation of Edge Configuration in Medical Echo Images Using Genetic Algorithms
Authors: Ching-Fen Jiang
Abstract:
Edge detection is usually the first step in medical image processing. However, the difficulty increases when a conventional kernel-based edge detector is applied to ultrasonic images with a textural pattern and speckle noise. We designed an adaptive diffusion filter to remove speckle noise while preserving the initial edges detected by using a Sobel edge detector. We also propose a genetic algorithm for edge selection to form complete boundaries of the detected entities. We designed two fitness functions to evaluate whether a criterion with a complex edge configuration can render a better result than a simple criterion such as the strength of gradient. The edges obtained by using a complex fitness function are thicker and more fragmented than those obtained by using a simple fitness function, suggesting that a complex edge selecting scheme is not necessary for good edge detection in medical ultrasonic images; instead, a proper noise-smoothing filter is the key.Keywords: edge detection, ultrasonic images, speckle noise
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14831051 One-Class Support Vector Machines for Aerial Images Segmentation
Authors: Chih-Hung Wu, Chih-Chin Lai, Chun-Yen Chen, Yan-He Chen
Abstract:
Interpretation of aerial images is an important task in various applications. Image segmentation can be viewed as the essential step for extracting information from aerial images. Among many developed segmentation methods, the technique of clustering has been extensively investigated and used. However, determining the number of clusters in an image is inherently a difficult problem, especially when a priori information on the aerial image is unavailable. This study proposes a support vector machine approach for clustering aerial images. Three cluster validity indices, distance-based index, Davies-Bouldin index, and Xie-Beni index, are utilized as quantitative measures of the quality of clustering results. Comparisons on the effectiveness of these indices and various parameters settings on the proposed methods are conducted. Experimental results are provided to illustrate the feasibility of the proposed approach.Keywords: Aerial imaging, image segmentation, machine learning, support vector machine, cluster validity index
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19391050 Bayesian Online Learning of Corresponding Points of Objects with Sequential Monte Carlo
Authors: Miika Toivanen, Jouko Lampinen
Abstract:
This paper presents an online method that learns the corresponding points of an object from un-annotated grayscale images containing instances of the object. In the first image being processed, an ensemble of node points is automatically selected which is matched in the subsequent images. A Bayesian posterior distribution for the locations of the nodes in the images is formed. The likelihood is formed from Gabor responses and the prior assumes the mean shape of the node ensemble to be similar in a translation and scale free space. An association model is applied for separating the object nodes and background nodes. The posterior distribution is sampled with Sequential Monte Carlo method. The matched object nodes are inferred to be the corresponding points of the object instances. The results show that our system matches the object nodes as accurately as other methods that train the model with annotated training images.Keywords: Bayesian modeling, Gabor filters, Online learning, Sequential Monte Carlo.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15821049 Multiple Regression based Graphical Modeling for Images
Authors: Pavan S., Sridhar G., Sridhar V.
Abstract:
Super resolution is one of the commonly referred inference problems in computer vision. In the case of images, this problem is generally addressed using a graphical model framework wherein each node represents a portion of the image and the edges between the nodes represent the statistical dependencies. However, the large dimensionality of images along with the large number of possible states for a node makes the inference problem computationally intractable. In this paper, we propose a representation wherein each node can be represented as acombination of multiple regression functions. The proposed approach achieves a tradeoff between the computational complexity and inference accuracy by varying the number of regression functions for a node.
Keywords: Belief propagation, Graphical model, Regression, Super resolution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15471048 A Rigid Point Set Registration of Remote Sensing Images Based on Genetic Algorithms and Hausdorff Distance
Authors: F. Meskine, N. Taleb, M. Chikr El-Mezouar, K. Kpalma, A. Almhdie
Abstract:
Image registration is the process of establishing point by point correspondence between images obtained from a same scene. This process is very useful in remote sensing, medicine, cartography, computer vision, etc. Then, the task of registration is to place the data into a common reference frame by estimating the transformations between the data sets. In this work, we develop a rigid point registration method based on the application of genetic algorithms and Hausdorff distance. First, we extract the feature points from both images based on the algorithm of global and local curvature corner. After refining the feature points, we use Hausdorff distance as similarity measure between the two data sets and for optimizing the search space we use genetic algorithms to achieve high computation speed for its inertial parallel. The results show the efficiency of this method for registration of satellite images.Keywords: Feature extraction, Genetic algorithms, Hausdorff distance, Image registration, Point registration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19311047 An Improved Method to Watermark Images Sensitive to Blocking Artifacts
Authors: Afzel Noore
Abstract:
A new digital watermarking technique for images that are sensitive to blocking artifacts is presented. Experimental results show that the proposed MDCT based approach produces highly imperceptible watermarked images and is robust to attacks such as compression, noise, filtering and geometric transformations. The proposed MDCT watermarking technique is applied to fingerprints for ensuring security. The face image and demographic text data of an individual are used as multiple watermarks. An AFIS system was used to quantitatively evaluate the matching performance of the MDCT-based watermarked fingerprint. The high fingerprint matching scores show that the MDCT approach is resilient to blocking artifacts. The quality of the extracted face and extracted text images was computed using two human visual system metrics and the results show that the image quality was high.Keywords: Digital watermarking, data hiding, modified discretecosine transformation (MDCT).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16051046 A Study of the Variability of Very Low Resolution Characters and the Feasibility of Their Discrimination Using Geometrical Features
Authors: Farshideh Einsele, Rolf Ingold
Abstract:
Current OCR technology does not allow to accurately recognizing small text images, such as those found in web images. Our goal is to investigate new approaches to recognize very low resolution text images containing antialiased character shapes. This paper presents a preliminary study on the variability of such characters and the feasibility to discriminate them by using geometrical features. In a first stage we analyze the distribution of these features. In a second stage we present a study on the discriminative power for recognizing isolated characters, using various rendering methods and font properties. Finally we present interesting results of our evaluation tests leading to our conclusion and future focus.Keywords: World Wide Web, document analysis, pattern recognition, Optical Character Recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13711045 Implementation of RC5 Block Cipher Algorithm for Image Cryptosystems
Authors: Hossam El-din H. Ahmed, Hamdy M. Kalash, Osama S. Farag Allah
Abstract:
This paper examines the implementation of RC5 block cipher for digital images along with its detailed security analysis. A complete specification for the method of application of the RC5 block cipher to digital images is given. The security analysis of RC5 block cipher for digital images against entropy attack, bruteforce, statistical, and differential attacks is explored from strict cryptographic viewpoint. Experiments and results verify and prove that RC5 block cipher is highly secure for real-time image encryption from cryptographic viewpoint. Thorough experimental tests are carried out with detailed analysis, demonstrating the high security of RC5 block cipher algorithm.
Keywords: Image encryption, security analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36761044 Image Similarity: A Genetic Algorithm Based Approach
Authors: R. C. Joshi, Shashikala Tapaswi
Abstract:
The paper proposes an approach using genetic algorithm for computing the region based image similarity. The image is denoted using a set of segmented regions reflecting color and texture properties of an image. An image is associated with a family of image features corresponding to the regions. The resemblance of two images is then defined as the overall similarity between two families of image features, and quantified by a similarity measure, which integrates properties of all the regions in the images. A genetic algorithm is applied to decide the most plausible matching. The performance of the proposed method is illustrated using examples from an image database of general-purpose images, and is shown to produce good results.Keywords: Image Features, color descriptor, segmented classes, texture descriptors, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23261043 Automatic Detection of Proliferative Cells in Immunohistochemically Images of Meningioma Using Fuzzy C-Means Clustering and HSV Color Space
Authors: Vahid Anari, Mina Bakhshi
Abstract:
Visual search and identification of immunohistochemically stained tissue of meningioma was performed manually in pathologic laboratories to detect and diagnose the cancers type of meningioma. This task is very tedious and time-consuming. Moreover, because of cell's complex nature, it still remains a challenging task to segment cells from its background and analyze them automatically. In this paper, we develop and test a computerized scheme that can automatically identify cells in microscopic images of meningioma and classify them into positive (proliferative) and negative (normal) cells. Dataset including 150 images are used to test the scheme. The scheme uses Fuzzy C-means algorithm as a color clustering method based on perceptually uniform hue, saturation, value (HSV) color space. Since the cells are distinguishable by the human eye, the accuracy and stability of the algorithm are quantitatively compared through application to a wide variety of real images.
Keywords: Positive cell, color segmentation, HSV color space, immunohistochemistry, meningioma, thresholding, fuzzy c-means.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6941042 Automatic Method for Exudates and Hemorrhages Detection from Fundus Retinal Images
Authors: A. Biran, P. Sobhe Bidari, K. Raahemifar
Abstract:
Diabetic Retinopathy (DR) is an eye disease that leads to blindness. The earliest signs of DR are the appearance of red and yellow lesions on the retina called hemorrhages and exudates. Early diagnosis of DR prevents from blindness; hence, many automated algorithms have been proposed to extract hemorrhages and exudates. In this paper, an automated algorithm is presented to extract hemorrhages and exudates separately from retinal fundus images using different image processing techniques including Circular Hough Transform (CHT), Contrast Limited Adaptive Histogram Equalization (CLAHE), Gabor filter and thresholding. Since Optic Disc is the same color as the exudates, it is first localized and detected. The presented method has been tested on fundus images from Structured Analysis of the Retina (STARE) and Digital Retinal Images for Vessel Extraction (DRIVE) databases by using MATLAB codes. The results show that this method is perfectly capable of detecting hard exudates and the highly probable soft exudates. It is also capable of detecting the hemorrhages and distinguishing them from blood vessels.Keywords: Diabetic retinopathy, fundus, CHT, exudates, hemorrhages.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26441041 Neuro-fuzzy Classification System for Wireless-Capsule Endoscopic Images
Authors: Vassilis S. Kodogiannis, John N. Lygouras
Abstract:
In this research study, an intelligent detection system to support medical diagnosis and detection of abnormal lesions by processing endoscopic images is presented. The images used in this study have been obtained using the M2A Swallowable Imaging Capsule - a patented, video color-imaging disposable capsule. Schemes have been developed to extract texture features from the fuzzy texture spectra in the chromatic and achromatic domains for a selected region of interest from each color component histogram of endoscopic images. The implementation of an advanced fuzzy inference neural network which combines fuzzy systems and artificial neural networks and the concept of fusion of multiple classifiers dedicated to specific feature parameters have been also adopted in this paper. The achieved high detection accuracy of the proposed system has provided thus an indication that such intelligent schemes could be used as a supplementary diagnostic tool in endoscopy.Keywords: Medical imaging, Computer aided diagnosis, Endoscopy, Neuro-fuzzy networks, Fuzzy integral.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17521040 Segmentation of Ascending and Descending Aorta in CTA Images
Authors: H. Özkan
Abstract:
In this study, a new and fast algorithm for Ascending Aorta (AscA) and Descending Aorta (DesA) segmentation is presented using Computed Tomography Angiography images. This process is quite important especially at the detection of aortic plaques, aneurysms, calcification or stenosis. The applied method has been carried out at four steps. At first step, lung segmentation is achieved. At the second one, Mediastinum Region (MR) is detected to use in the segmentation. At the third one, images have been applied optimal threshold and components which are outside of the MR were removed. Lastly, identifying and segmentation of AscA and DesA have been carried out. The performance of the applied method is found quite well for radiologists and it gives enough results to the surgeries medically.Keywords: Ascending aorta (AscA), Descending aorta (DesA), Computed tomography angiography (CTA), Computer aided detection (CAD), Segmentation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18331039 Application Methodology for the Generation of 3D Thermal Models Using UAV Photogrammety and Dual Sensors for Mining/Industrial Facilities Inspection
Authors: Javier Sedano-Cibrián, Julio Manuel de Luis-Ruiz, Rubén Pérez-Álvarez, Raúl Pereda-García, Beatriz Malagón-Picón
Abstract:
Structural inspection activities are necessary to ensure the correct functioning of infrastructures. UAV techniques have become more popular than traditional techniques. Specifically, UAV Photogrammetry allows time and cost savings. The development of this technology has permitted the use of low-cost thermal sensors in UAVs. The representation of 3D thermal models with this type of equipment is in continuous evolution. The direct processing of thermal images usually leads to errors and inaccurate results. In this paper, a methodology is proposed for the generation of 3D thermal models using dual sensors, which involves the application of RGB and thermal images in parallel. Hence, the RGB images are used as the basis for the generation of the model geometry, and the thermal images are the source of the surface temperature information that is projected onto the model. Mining/industrial facilities representations that are obtained can be used for inspection activities.
Keywords: Aerial thermography, data processing, drone, low-cost, point cloud.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3411038 Automatic Segmentation of Lung Areas in Magnetic Resonance Images
Authors: Alireza Osareh, Bita Shadgar
Abstract:
Segmenting the lungs in medical images is a challenging and important task for many applications. In particular, automatic segmentation of lung cavities from multiple magnetic resonance (MR) images is very useful for oncological applications such as radiotherapy treatment planning. However, distinguishing of the lung areas is not trivial due to largely changing lung shapes, low contrast and poorly defined boundaries. In this paper, we address lung segmentation problem from pulmonary magnetic resonance images and propose an automated method based on a robust regionaided geometric snake with a modified diffused region force into the standard geometric model definition. The extra region force gives the snake a global complementary view of the lung boundary information within the image which along with the local gradient flow, helps detect fuzzy boundaries. The proposed method has been successful in segmenting the lungs in every slice of 30 magnetic resonance images with 80 consecutive slices in each image. We present results by comparing our automatic method to manually segmented lung cavities provided by an expert radiologist and with those of previous works, showing encouraging results and high robustness of our approach.Keywords: Active contours, breast cancer, fuzzy c-means segmentation, treatment planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20571037 A Study on Fantasy Images Represented on the Films: Focused on Mise-en-Scène Element
Authors: Somi Nah
Abstract:
The genre of fantasy depicts a world of imagine that triggers popular interest from a created view of world, and a fantasy is defined as a story that illustrates a world of imagine where scientific or horror elements are stand in its center. This study is not focused on the narrative of the fantasy, i.e. not on the adventurous story, but is concentrated on the image of the fantasy to work on its relationship with intended themes and differences among cultures due to meanings of materials. As for films, we have selected some films in the 2000's that are internationally recognized as expressing unique images of fantasy containing the theme of love in them. The selected films are 5 pieces including two European films, Amelie from Montmartre (2001) and The Science of Sleep (2005) and three Asian films, Citizen Dog from Thailand (2004), Memories of Matsuko from Japan (2006), and I'm a Cyborg, but That's OK from Korea (2006). These films share some common characteristics to the effect that they give tiny lessons and feelings for life with expressions of fantasy images as if they were fairy tales for adults and that they lead the audience to reflect on their days and revive forgotten dreams of childhood. We analyze the images of fantasy in each of the films on the basis of the elements of Mise-en-Scène (setting and props, costume, hair and make-up, facial expressions and body language, lighting and color, positioning of characters, and objects within a frame).
Keywords: Mise-en-scène, fantasy images, films, visualization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 49531036 Medical Imaging Fusion: A Teaching-Learning Simulation Environment
Authors: Cristina M. R. Caridade, Ana Rita F. Morais
Abstract:
The use of computational tools has become essential in the context of interactive learning, especially in engineering education. In the medical industry, teaching medical image processing techniques is a crucial part of training biomedical engineers, as it has integrated applications with health care facilities and hospitals. The aim of this article is to present a teaching-learning simulation tool, developed in MATLAB using Graphical User Interface, for medical image fusion that explores different image fusion methodologies and processes in combination with image pre-processing techniques. The application uses different algorithms and medical fusion techniques in real time, allowing to view original images and fusion images, compare processed and original images, adjust parameters and save images. The tool proposed in an innovative teaching and learning environment, consists of a dynamic and motivating teaching simulation for biomedical engineering students to acquire knowledge about medical image fusion techniques, necessary skills for the training of biomedical engineers. In conclusion, the developed simulation tool provides a real-time visualization of the original and fusion images and the possibility to test, evaluate and progress the student’s knowledge about the fusion of medical images. It also facilitates the exploration of medical imaging applications, specifically image fusion, which is critical in the medical industry. Teachers and students can make adjustments and/or create new functions, making the simulation environment adaptable to new techniques and methodologies.
Keywords: Image fusion, image processing, teaching-learning simulation tool, biomedical engineering education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 211035 Information Fusion for Identity Verification
Authors: Girija Chetty, Monica Singh
Abstract:
In this paper we propose a novel approach for ascertaining human identity based on fusion of profile face and gait biometric cues The identification approach based on feature learning in PCA-LDA subspace, and classification using multivariate Bayesian classifiers allows significant improvement in recognition accuracy for low resolution surveillance video scenarios. The experimental evaluation of the proposed identification scheme on a publicly available database [2] showed that the fusion of face and gait cues in joint PCA-LDA space turns out to be a powerful method for capturing the inherent multimodality in walking gait patterns, and at the same time discriminating the person identity..
Keywords: Biometrics, gait recognition, PCA, LDA, Eigenface, Fisherface, Multivariate Gaussian Classifier
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17791034 Implementation of Sprite Animation for Multimedia Application
Authors: Ms. Yi Mon Thant
Abstract:
Animation is simply defined as the sequencing of a series of static images to generate the illusion of movement. Most people believe that actual drawings or creation of the individual images is the animation, when in actuality it is the arrangement of those static images that conveys the motion. To become an animator, it is often assumed that needed the ability to quickly design masterpiece after masterpiece. Although some semblance of artistic skill is a necessity for the job, the real key to becoming a great animator is in the comprehension of timing. This paper will use a combination of sprite animation, frame animation, and some other techniques to cause a group of multi-colored static images to slither around in the bounded area. In addition to slithering, the images will also change the color of different parts of their body, much like the real world creatures that have this amazing ability to change the colors on their bodies do. This paper was implemented by using Java 2 Standard Edition (J2SE). It is both time-consuming and expensive to create animations, regardless if they are created by hand or by using motion-capture equipment. If the animators could reuse old animations and even blend different animations together, a lot of work would be saved in the process. The main objective of this paper is to examine a method for blending several animations together in real time. This paper presents and analyses a solution using Weighted Skeleton Animation (WSA) resulting in limited CPU time and memory waste as well as saving time for the animators. The idea presented is described in detail and implemented. In this paper, text animation, vertex animation, sprite part animation and whole sprite animation were tested. In this research paper, the resolution, smoothness and movement of animated images will be carried out from the parameters, which will be obtained from the experimental research of implementing this paper.Keywords: Weighted Skeleton Animation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18321033 A Convolutional Deep Neural Network Approach for Skin Cancer Detection Using Skin Lesion Images
Authors: Firas Gerges, Frank Y. Shih
Abstract:
Malignant Melanoma, known simply as Melanoma, is a type of skin cancer that appears as a mole on the skin. It is critical to detect this cancer at an early stage because it can spread across the body and may lead to the patient death. When detected early, Melanoma is curable. In this paper we propose a deep learning model (Convolutional Neural Networks) in order to automatically classify skin lesion images as Malignant or Benign. Images underwent certain pre-processing steps to diminish the effect of the normal skin region on the model. The result of the proposed model showed a significant improvement over previous work, achieving an accuracy of 97%.
Keywords: Deep learning, skin cancer, image processing, melanoma.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15401032 An Evaluation on Fixed Wing and Multi-Rotor UAV Images Using Photogrammetric Image Processing
Authors: Khairul Nizam Tahar, Anuar Ahmad
Abstract:
This paper has introduced a slope photogrammetric mapping using unmanned aerial vehicle. There are two units of UAV has been used in this study; namely; fixed wing and multi-rotor. Both UAVs were used to capture images at the study area. A consumer digital camera was mounted vertically at the bottom of UAV and captured the images at an altitude. The objectives of this study are to obtain three dimensional coordinates of slope area and to determine the accuracy of photogrammetric product produced from both UAVs. Several control points and checkpoints were established Real Time Kinematic Global Positioning System (RTK-GPS) in the study area. All acquired images from both UAVs went through all photogrammetric processes such as interior orientation, exterior orientation, aerial triangulation and bundle adjustment using photogrammetric software. Two primary results were produced in this study; namely; digital elevation model and digital orthophoto. Based on results, UAV system can be used to mapping slope area especially for limited budget and time constraints project.
Keywords: Slope mapping, 3D, DEM, UAV, Photogrammetry, image processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 60871031 Edge Segmentation of Satellite Image using Phase Congruency Model
Authors: Ahmed Zaafouri, Mounir Sayadi, Farhat Fnaiech
Abstract:
In this paper, we present a method for edge segmentation of satellite images based on 2-D Phase Congruency (PC) model. The proposed approach is composed by two steps: The contextual non linear smoothing algorithm (CNLS) is used to smooth the input images. Then, the 2D stretched Gabor filter (S-G filter) based on proposed angular variation is developed in order to avoid the multiple responses in the previous work. An assessment of our proposed method performance is provided in terms of accuracy of satellite image edge segmentation. The proposed method is compared with others known approaches.Keywords: Edge segmentation, Phase congruency model, Satellite images, Stretched Gabor filter
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2667