Search results for: GA Based Model
15532 A Martingale Residual Diagnostic for Logistic Regression Model
Authors: Entisar A. Elgmati
Abstract:
Martingale model diagnostic for assessing the fit of logistic regression model to recurrent events data are studied. One way of assessing the fit is by plotting the empirical standard deviation of the standardized martingale residual processes. Here we used another diagnostic plot based on martingale residual covariance. We investigated the plot performance under several types of model misspecification. Clearly the method has correctly picked up the wrong model. Also we present a test statistic that supplement the inspection of the two diagnostic. The test statistic power agrees with what we have seen in the plots of the estimated martingale covariance.
Keywords: Covariance, logistic model, misspecification, recurrent events.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 188015531 2-DOF Observer Based Controller for First Order with Dead Time Systems
Authors: Ashu Ahuja, Shiv Narayan, Jagdish Kumar
Abstract:
This paper realized the 2-DOF controller structure for first order with time delay systems. The co-prime factorization is used to design observer based controller K(s), representing one degree of freedom. The problem is based on H∞ norm of mixed sensitivity and aims to achieve stability, robustness and disturbance rejection. Then, the other degree of freedom, prefilter F(s), is formulated as fixed structure polynomial controller to meet open loop processing of reference model. This model matching problem is solved by minimizing integral square error between reference model and proposed model. The feedback controller and prefilter designs are posed as optimization problem and solved using Particle Swarm Optimization (PSO). To show the efficiency of the designed approach different variety of processes are taken and compared for analysis.
Keywords: 2-DOF, integral square error, mixed sensitivity function, observer based controller, particle swarm optimization, prefilter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 243215530 Modeling and Simulation of a Serial Production Line with Constant Work-In-Process
Authors: Mehmet Savsar
Abstract:
This paper presents a model for an unreliable production line, which is operated according to demand with constant work-in-process (CONWIP). A simulation model is developed based on the discrete model and several case problems are analyzed using the model. The model is utilized to optimize storage space capacities at intermediate stages and the number of kanbans at the last stage, which is used to trigger the production at the first stage. Furthermore, effects of several line parameters on production rate are analyzed using design of experiments.Keywords: Production line simulator, Push-pull system, JIT system, Constant WIP, Machine failures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 201115529 Classification Based on Deep Neural Cellular Automata Model
Authors: Yasser F. Hassan
Abstract:
Deep learning structure is a branch of machine learning science and greet achievement in research and applications. Cellular neural networks are regarded as array of nonlinear analog processors called cells connected in a way allowing parallel computations. The paper discusses how to use deep learning structure for representing neural cellular automata model. The proposed learning technique in cellular automata model will be examined from structure of deep learning. A deep automata neural cellular system modifies each neuron based on the behavior of the individual and its decision as a result of multi-level deep structure learning. The paper will present the architecture of the model and the results of simulation of approach are given. Results from the implementation enrich deep neural cellular automata system and shed a light on concept formulation of the model and the learning in it.Keywords: Cellular automata, neural cellular automata, deep learning, classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 86615528 An Adaptive Setting of Frequency Relay with Consideration on Load and Power System Dynamics
Authors: J. Mirzaei, H. Kazemi Kargar
Abstract:
This paper presents a new approach for setting frequency relays based on the dynamic of power system. A simplified model of the power system based on the load-frequency control loop will be developed to be used instead of the complete model of the power system. The effects of the equipments and their responses on the frequency variations of the power plant will be investigated and then a method for adaptive settings of frequency relays will be explained. The proposed method will be investigated by analyzing a simplified model of a power plant by MATLAB software.Keywords: Adaptive Settings, Frequency Relay (FR), PowerSystem Dynamics, SFR model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 143615527 The Maximum Likelihood Method of Random Coefficient Dynamic Regression Model
Authors: Autcha Araveeporn
Abstract:
The Random Coefficient Dynamic Regression (RCDR) model is to developed from Random Coefficient Autoregressive (RCA) model and Autoregressive (AR) model. The RCDR model is considered by adding exogenous variables to RCA model. In this paper, the concept of the Maximum Likelihood (ML) method is used to estimate the parameter of RCDR(1,1) model. Simulation results have shown the AIC and BIC criterion to compare the performance of the the RCDR(1,1) model. The variables as the stationary and weakly stationary data are good estimates where the exogenous variables are weakly stationary. However, the model selection indicated that variables are nonstationarity data based on the stationary data of the exogenous variables.Keywords: Autoregressive, Maximum Likelihood Method, Nonstationarity, Random Coefficient Dynamic Regression, Stationary.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 164715526 Diesel Fault Prediction Based on Optimized Gray Neural Network
Authors: Han Bing, Yin Zhenjie
Abstract:
In order to analyze the status of a diesel engine, as well as conduct fault prediction, a new prediction model based on a gray system is proposed in this paper, which takes advantage of the neural network and the genetic algorithm. The proposed GBPGA prediction model builds on the GM (1.5) model and uses a neural network, which is optimized by a genetic algorithm to construct the error compensator. We verify our proposed model on the diesel faulty simulation data and the experimental results show that GBPGA has the potential to employ fault prediction on diesel.
Keywords: Fault prediction, Neural network, GM (1.5), Genetic algorithm, GBPGA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 130215525 A Linear Use Case Based Software Cost Estimation Model
Authors: Hasan.O. Farahneh, Ayman A. Issa
Abstract:
Software development is moving towards agility with use cases and scenarios being used for requirements stories. Estimates of software costs are becoming even more important than before as effects of delays is much larger in successive short releases context of agile development. Thus, this paper reports on the development of new linear use case based software cost estimation model applicable in the very early stages of software development being based on simple metric. Evaluation showed that accuracy of estimates varies between 43% and 55% of actual effort of historical test projects. These results outperformed those of wellknown models when applied in the same context. Further work is being carried out to improve the performance of the proposed model when considering the effect of non-functional requirements.
Keywords: Metrics, Software Cost Estimation, Use Cases
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 201515524 Trap Assisted Tunneling Model for Gate Current in Nano Scale MOSFET with High-K Gate Dielectrics
Authors: Ashwani K. Rana, Narottam Chand, Vinod Kapoor
Abstract:
This paper presents a new compact analytical model of the gate leakage current in high-k based nano scale MOSFET by assuming a two-step inelastic trap-assisted tunneling (ITAT) process as the conduction mechanism. This model is based on an inelastic trap-assisted tunneling (ITAT) mechanism combined with a semiempirical gate leakage current formulation in the BSIM 4 model. The gate tunneling currents have been calculated as a function of gate voltage for different gate dielectrics structures such as HfO2, Al2O3 and Si3N4 with EOT (equivalent oxide thickness) of 1.0 nm. The proposed model is compared and contrasted with santaurus simulation results to verify the accuracy of the model and excellent agreement is found between the analytical and simulated data. It is observed that proposed analytical model is suitable for different highk gate dielectrics simply by adjusting two fitting parameters. It was also shown that gate leakages reduced with the introduction of high-k gate dielectric in place of SiO2.Keywords: Analytical model, High-k gate dielectrics, inelastic trap assisted tunneling, metal–oxide–semiconductor (MOS) devices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 330715523 Nonlinear Model Predictive Swing-Up and Stabilizing Sliding Mode Controllers
Authors: S. Kahvecioglu, A. Karamancioglu, A. Yazici
Abstract:
In this paper, a nonlinear model predictive swing-up and stabilizing sliding controller is proposed for an inverted pendulum-cart system. In the swing up phase, the nonlinear model predictive control is formulated as a nonlinear programming problem with energy based objective function. By solving this problem at each sampling instant, a sequence of control inputs that optimize the nonlinear objective function subject to various constraints over a finite horizon are obtained. Then, this control drives the pendulum to a predefined neighborhood of the upper equilibrium point, at where sliding mode based model predictive control is used to stabilize the systems with the specified constraints. It is shown by the simulations that, due to the way of formulating the problem, short horizon lengths are sufficient for attaining the swing up goal.Keywords: Inverted pendulum, model predictive control, swingup, stabilization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 219315522 Performance Appraisal System using Multifactorial Evaluation Model
Abstract:
Performance appraisal of employee is important in managing the human resource of an organization. With the change towards knowledge-based capitalism, maintaining talented knowledge workers is critical. However, management classification of “outstanding", “poor" and “average" performance may not be an easy decision. Besides that, superior might also tend to judge the work performance of their subordinates informally and arbitrarily especially without the existence of a system of appraisal. In this paper, we propose a performance appraisal system using multifactorial evaluation model in dealing with appraisal grades which are often express vaguely in linguistic terms. The proposed model is for evaluating staff performance based on specific performance appraisal criteria. The project was collaboration with one of the Information and Communication Technology company in Malaysia with reference to its performance appraisal process.Keywords: Multifactorial Evaluation Model, performance appraisal system, decision support system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 426815521 A Soft Error Rates Evaluation Method of Combinational Logic Circuit Based on Linear Energy Transfers
Authors: Man Li, Wanting Zhou, Lei Li
Abstract:
Communication stability is the primary concern of communication satellites. Communication satellites are easily affected by particle radiation to generate single event effects (SEE), which leads to soft errors (SE) of combinational logic circuit. The existing research on soft error rates (SER) of combined logic circuit is mostly based on the assumption that the logic gates being bombarded have the same pulse width. However, in the actual radiation environment, the pulse widths of the logic gates being bombarded are different due to different linear energy transfers (LET). In order to improve the accuracy of SER evaluation model, this paper proposes a soft error rates evaluation method based on LET. In this paper, we analyze the influence of LET on the pulse width of combinational logic and establish the pulse width model based on LET. Based on this model, the error rate of test circuit ISCAS’85 is calculated. Experimental results show that this model can be used for SER evaluation.
Keywords: Communication satellite, pulse width, soft error rates, linear energy transfer, LET.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38515520 Documents Emotions Classification Model Based on TF-IDF Weighting Measure
Authors: Amr Mansour Mohsen, Hesham Ahmed Hassan, Amira M. Idrees
Abstract:
Emotions classification of text documents is applied to reveal if the document expresses a determined emotion from its writer. As different supervised methods are previously used for emotion documents’ classification, in this research we present a novel model that supports the classification algorithms for more accurate results by the support of TF-IDF measure. Different experiments have been applied to reveal the applicability of the proposed model, the model succeeds in raising the accuracy percentage according to the determined metrics (precision, recall, and f-measure) based on applying the refinement of the lexicon, integration of lexicons using different perspectives, and applying the TF-IDF weighting measure over the classifying features. The proposed model has also been compared with other research to prove its competence in raising the results’ accuracy.
Keywords: Emotion detection, TF-IDF, WEKA tool, classification algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 172415519 An Anatomically-Based Model of the Nerves in the Human Foot
Authors: Muhammad Zeeshan UlHaque, Peng Du, Leo K. Cheng, Marc D. Jacobs
Abstract:
Sensory nerves in the foot play an important part in the diagnosis of various neuropathydisorders, especially in diabetes mellitus.However, a detailed description of the anatomical distribution of the nerves is currently lacking. A computationalmodel of the afferent nerves inthe foot may bea useful tool for the study of diabetic neuropathy. In this study, we present the development of an anatomically-based model of various major sensory nerves of the sole and dorsal sidesof the foot. In addition, we presentan algorithm for generating synthetic somatosensory nerve networks in the big-toe region of a right foot model. The algorithm was based on a modified version of the Monte Carlo algorithm, with the capability of being able to vary the intra-epidermal nerve fiber density in differentregionsof the foot model. Preliminary results from the combinedmodel show the realistic anatomical structure of the major nerves as well as the smaller somatosensory nerves of the foot. The model may now be developed to investigate the functional outcomes of structural neuropathyindiabetic patients.
Keywords: Diabetic neuropathy, Finite element modeling, Monte Carlo Algorithm, Somatosensory nerve networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 233515518 A Novel Adaptive E-Learning Model Based on Developed Learner's Styles
Authors: Hazem M. El-Bakry, Ahmed A. Saleh, Taghreed T. Asfour
Abstract:
Adaptive e-learning today gives the student a central role in his own learning process. It allows learners to try things out, participate in courses like never before, and get more out of learning than before. In this paper, an adaptive e-learning model for logic design, simplification of Boolean functions and related fields is presented. Such model presents suitable courses for each student in a dynamic and adaptive manner using existing database and workflow technologies. The main objective of this research work is to provide an adaptive e-learning model based learners' personality using explicit and implicit feedback. To recognize the learner-s, we develop dimensions to decide each individual learning style in order to accommodate different abilities of the users and to develop vital skills. Thus, the proposed model becomes more powerful, user friendly and easy to use and interpret. Finally, it suggests a learning strategy and appropriate electronic media that match the learner-s preference.Keywords: Adaptive learning, Learning styles, Teaching strategies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 202415517 An Improved Model for Prediction of the Effective Thermal Conductivity of Nanofluids
Authors: K. Abbaspoursani, M. Allahyari, M. Rahmani
Abstract:
Thermal conductivity is an important characteristic of a nanofluid in laminar flow heat transfer. This paper presents an improved model for the prediction of the effective thermal conductivity of nanofluids based on dimensionless groups. The model expresses the thermal conductivity of a nanofluid as a function of the thermal conductivity of the solid and liquid, their volume fractions and particle size. The proposed model includes a parameter which accounts for the interfacial shell, brownian motion, and aggregation of particle. The validation of the model is verified by applying the results obtained by the experiments of Tio2-water and Al2o3-water nanofluids.Keywords: Critical particle size, nanofluid, model, and thermal conductivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 204915516 The Gasoil Hydrofining Kinetics Constants Identification
Authors: C. Patrascioiu, V. Matei, N. Nicolae
Abstract:
The paper describes the experiments and the kinetic parameters calculus of the gasoil hydrofining. They are presented experimental results of gasoil hidrofining using Mo and promoted with Ni on aluminum support catalyst. The authors have adapted a kinetic model gasoil hydrofining. Using this proposed kinetic model and the experimental data they have calculated the parameters of the model. The numerical calculus is based on minimizing the difference between the experimental sulf concentration and kinetic model estimation.
Keywords: Hydrofining, kinetic, modeling, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 202215515 Building an e-Learning System Model with Implications for Research and Instructional Use
Authors: Kuan-Chou Chen, Keh-Wen “Carin” Chuang
Abstract:
This paper demonstrates a model of an e-Learning system based on nowadays learning theory and distant education practice. The relationships in the model are designed to be simple and functional and do not necessarily represent any particular e- Learning environments. It is meant to be a generic e-Learning system model with implications for any distant education course instructional design. It allows online instructors to move away from the discrepancy between the courses and body of knowledge. The interrelationships of four primary sectors that are at the e-Learning system are presented in this paper. This integrated model includes [1] pedagogy, [2] technology, [3] teaching, and [4] learning. There are interactions within each of these sectors depicted by system loop map.Keywords: e-Learning system, online courses instructionaldesign, integrated model, interrelationships.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 151715514 Miller’s Model for Developing Critical Thinking Skill of Pre-Service Teachers at Suan Sunandha Rajabhat University
Authors: Suttipong Boonphadung, Thassanant Unnanantn
Abstract:
This research focused on comparing the critical thinking of the teacher students before and after using Miller’s Model learning activities and investigating their opinions. The sampling groups were (1) fourth year 33 student teachers majoring in Early Childhood Education and enrolling in semester 1 of academic year 2013 (2) third year 28 student teachers majoring in English and enrolling in semester 2 of academic year 2013 and (3) third year 22 student teachers majoring in Thai and enrolling in semester 2 of academic year 2013. The research instruments were (1) lesson plans where the learning activities were settled based on Miller’s Model (2) critical thinking assessment criteria and (3) a questionnaire on opinions towards Miller’s Model based learning activities. The statistical treatment was mean, deviation, different scores and T-test. The result unfolded that (1) the critical thinking of the students after the assigned activities was better than before and (2) the students’ opinions towards the critical thinking improvement activities based on Miller’s Model ranged from the level of high to highest.
Keywords: Critical thinking, Miller’s model, Opinions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 207115513 On Internet Access Technology Specification Model
Authors: Samson Okwakol Ariko, Venansius Baryamureeba
Abstract:
Internet Access Technologies (IAT) provide a means through which Internet can be accessed. The choice of a suitable Internet technology is increasingly becoming an important issue to ISP clients. Currently, the choice of IAT is based on discretion and intuition of the concerned managers and the reliance on ISPs. In this paper we propose a model and designs algorithms that are used in the Internet access technology specification. In the proposed model, three ranking approaches are introduced; concurrent ranking, stepwise ranking and weighted ranking. The model ranks the IAT based on distance measures computed in ascending order while the global ranking system assigns weights to each IAT according to the position held in each ranking technique, determines the total weight of a particular IAT and ranks them in descending order. The final output is an objective ranking of IAT in descending order.Keywords: Internet Access Technology (IAT).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 145215512 A Type-2 Fuzzy Model for Link Prediction in Social Network
Authors: Mansoureh Naderipour, Susan Bastani, Mohammad Fazel Zarandi
Abstract:
Predicting links that may occur in the future and missing links in social networks is an attractive problem in social network analysis. Granular computing can help us to model the relationships between human-based system and social sciences in this field. In this paper, we present a model based on granular computing approach and Type-2 fuzzy logic to predict links regarding nodes’ activity and the relationship between two nodes. Our model is tested on collaboration networks. It is found that the accuracy of prediction is significantly higher than the Type-1 fuzzy and crisp approach.Keywords: Social Network, link prediction, granular computing, Type-2 fuzzy sets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 157015511 Navigation Patterns Mining Approach based on Expectation Maximization Algorithm
Authors: Norwati Mustapha, Manijeh Jalali, Abolghasem Bozorgniya, Mehrdad Jalali
Abstract:
Web usage mining algorithms have been widely utilized for modeling user web navigation behavior. In this study we advance a model for mining of user-s navigation pattern. The model makes user model based on expectation-maximization (EM) algorithm.An EM algorithm is used in statistics for finding maximum likelihood estimates of parameters in probabilistic models, where the model depends on unobserved latent variables. The experimental results represent that by decreasing the number of clusters, the log likelihood converges toward lower values and probability of the largest cluster will be decreased while the number of the clusters increases in each treatment.Keywords: Web Usage Mining, Expectation maximization, navigation pattern mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 157915510 SiC Merged PiN and Schottky (MPS) Power Diodes Electrothermal Modeling in SPICE
Abstract:
This paper sets out a behavioral macro-model of a Merged PiN and Schottky (MPS) diode based on silicon carbide (SiC). This model holds good for both static and dynamic electrothermal simulations for industrial applications. Its parameters have been worked out from datasheets curves by drawing on the optimization method: Simulated Annealing (SA) for the SiC MPS diodes made available in the industry. The model also adopts the Analog Behavioral Model (ABM) of PSPICE in which it has been implemented. The thermal behavior of the devices was also taken into consideration by making use of Foster’ canonical network as figured out from electro-thermal measurement provided by the manufacturer of the device.Keywords: SiC MPS Diode, electro-thermal, SPICE Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 196015509 Genetic-based Anomaly Detection in Logs of Process Aware Systems
Authors: Hanieh Jalali, Ahmad Baraani
Abstract:
Nowaday-s, many organizations use systems that support business process as a whole or partially. However, in some application domains, like software development and health care processes, a normative Process Aware System (PAS) is not suitable, because a flexible support is needed to respond rapidly to new process models. On the other hand, a flexible Process Aware System may be vulnerable to undesirable and fraudulent executions, which imposes a tradeoff between flexibility and security. In order to make this tradeoff available, a genetic-based anomaly detection model for logs of Process Aware Systems is presented in this paper. The detection of an anomalous trace is based on discovering an appropriate process model by using genetic process mining and detecting traces that do not fit the appropriate model as anomalous trace; therefore, when used in PAS, this model is an automated solution that can support coexistence of flexibility and security.Keywords: Anomaly Detection, Genetic Algorithm, ProcessAware Systems, Process Mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 192515508 Determining Optimal Demand Rate and Production Decisions: A Geometric Programming Approach
Authors: Farnaz G. Nezami, Mir B. Aryanezhad, Seyed J. Sadjadi
Abstract:
In this paper a nonlinear model is presented to demonstrate the relation between production and marketing departments. By introducing some functions such as pricing cost and market share loss functions it will be tried to show some aspects of market modelling which has not been regarded before. The proposed model will be a constrained signomial geometric programming model. For model solving, after variables- modifications an iterative technique based on the concept of geometric mean will be introduced to solve the resulting non-standard posynomial model which can be applied to a wide variety of models in non-standard posynomial geometric programming form. At the end a numerical analysis will be presented to accredit the validity of the mentioned model.Keywords: Geometric programming, marketing, nonlinear optimization, production.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 143515507 Image Adaptive Watermarking with Visual Model in Orthogonal Polynomials based Transformation Domain
Authors: Krishnamoorthi R., Sheba Kezia Malarchelvi P. D.
Abstract:
In this paper, an image adaptive, invisible digital watermarking algorithm with Orthogonal Polynomials based Transformation (OPT) is proposed, for copyright protection of digital images. The proposed algorithm utilizes a visual model to determine the watermarking strength necessary to invisibly embed the watermark in the mid frequency AC coefficients of the cover image, chosen with a secret key. The visual model is designed to generate a Just Noticeable Distortion mask (JND) by analyzing the low level image characteristics such as textures, edges and luminance of the cover image in the orthogonal polynomials based transformation domain. Since the secret key is required for both embedding and extraction of watermark, it is not possible for an unauthorized user to extract the embedded watermark. The proposed scheme is robust to common image processing distortions like filtering, JPEG compression and additive noise. Experimental results show that the quality of OPT domain watermarked images is better than its DCT counterpart.Keywords: Orthogonal Polynomials based Transformation, Digital Watermarking, Copyright Protection, Visual model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 169715506 Density Estimation using Generalized Linear Model and a Linear Combination of Gaussians
Authors: Aly Farag, Ayman El-Baz, Refaat Mohamed
Abstract:
In this paper we present a novel approach for density estimation. The proposed approach is based on using the logistic regression model to get initial density estimation for the given empirical density. The empirical data does not exactly follow the logistic regression model, so, there will be a deviation between the empirical density and the density estimated using logistic regression model. This deviation may be positive and/or negative. In this paper we use a linear combination of Gaussian (LCG) with positive and negative components as a model for this deviation. Also, we will use the expectation maximization (EM) algorithm to estimate the parameters of LCG. Experiments on real images demonstrate the accuracy of our approach.
Keywords: Logistic regression model, Expectationmaximization, Segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 173515505 Surrogate based Evolutionary Algorithm for Design Optimization
Authors: Maumita Bhattacharya
Abstract:
Optimization is often a critical issue for most system design problems. Evolutionary Algorithms are population-based, stochastic search techniques, widely used as efficient global optimizers. However, finding optimal solution to complex high dimensional, multimodal problems often require highly computationally expensive function evaluations and hence are practically prohibitive. The Dynamic Approximate Fitness based Hybrid EA (DAFHEA) model presented in our earlier work [14] reduced computation time by controlled use of meta-models to partially replace the actual function evaluation by approximate function evaluation. However, the underlying assumption in DAFHEA is that the training samples for the meta-model are generated from a single uniform model. Situations like model formation involving variable input dimensions and noisy data certainly can not be covered by this assumption. In this paper we present an enhanced version of DAFHEA that incorporates a multiple-model based learning approach for the SVM approximator. DAFHEA-II (the enhanced version of the DAFHEA framework) also overcomes the high computational expense involved with additional clustering requirements of the original DAFHEA framework. The proposed framework has been tested on several benchmark functions and the empirical results illustrate the advantages of the proposed technique.Keywords: Evolutionary algorithm, Fitness function, Optimization, Meta-model, Stochastic method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 157715504 Investigation of Buoyant Parameters of k-ε Turbulence Model in Gravity Stratified Flows
Authors: A. Majid Bahari, Kourosh Hejazi
Abstract:
Different variants for buoyancy-affected terms in k-ε turbulence model have been utilized to predict the flow parameters more accurately, and investigate applicability of alternative k-ε turbulence buoyant closures in numerical simulation of a horizontal gravity current. The additional non-isotropic turbulent stress due to buoyancy has been considered in production term, based on Algebraic Stress Model (ASM). In order to account for turbulent scalar fluxes, general gradient diffusion hypothesis has been used along with Boussinesq gradient diffusion hypothesis with a variable turbulent Schmidt number and additional empirical constant c3ε.To simulate buoyant flow domain a 2D vertical numerical model (WISE, Width Integrated Stratified Environments), based on Reynolds- Averaged Navier-Stokes (RANS) equations, has been deployed and the model has been further developed for different k-ε turbulence closures. Results are compared against measured laboratory values of a saline gravity current to explore the efficient turbulence model.
Keywords: Buoyant flows, Buoyant k-ε turbulence model, saline gravity current.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 390915503 A Novel Hybrid Mobile Agent Based Distributed Intrusion Detection System
Authors: Amir Vahid Dastjerdi, Kamalrulnizam Abu Bakar
Abstract:
The first generation of Mobile Agents based Intrusion Detection System just had two components namely data collection and single centralized analyzer. The disadvantage of this type of intrusion detection is if connection to the analyzer fails, the entire system will become useless. In this work, we propose novel hybrid model for Mobile Agent based Distributed Intrusion Detection System to overcome the current problem. The proposed model has new features such as robustness, capability of detecting intrusion against the IDS itself and capability of updating itself to detect new pattern of intrusions. In addition, our proposed model is also capable of tackling some of the weaknesses of centralized Intrusion Detection System models.Keywords: Distributed Intrusion Detection System, Mobile Agents, Network Security.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1781