
  
Abstract—Martingale model diagnostic for assessing the fit of 

logistic regression model to recurrent events data are studied. One 
way of assessing the fit is by plotting the empirical standard 
deviation of the standardized martingale residual processes. Here 
we used another diagnostic plot based on martingale residual 
covariance. We investigated the plot performance under several 
types of model misspecification. Clearly the method has correctly 
picked up the wrong model. Also we present a test statistic that 
supplement the inspection of the two diagnostic. The test statistic 
power agrees with what we have seen in the plots of the estimated 
martingale covariance. 
 

Keywords—Covariance, Logistic Model, Misspecification, 
Recurrent Events 

I. INTRODUCTION 
HE paper studies a diagnostic tool based on the 
covariance between martingale residuals to assess the 

goodness of fit of the logistic regression model to recurrent 
event data. This graphical procedure and the test that 
supplement it, originally were proposed for additive 
regression model, introduced by Aalen [1], in [2]. They 
extended the idea put forwarded by Diggle et al. [3] in the 
context of the longitudinal data subject to dropout.  Diggle 
et al used a martingale random effects approach for 
continuous longitudinal data and exploited the uncorrelated 
increments property for diagnostic purposes. A similar 
approach was developed in [2] for longitudinal binary and 
recurrent event data. 

Using logistic regression model with recurrent event data 
was presented in [4]. They showed that logistic regression 
model gives reasonably similar results to that using additive 
regression model. Also martingale residuals method based 
on the standard deviation of the standardized residual 
processes that have been used to judge the goodness of fit 
for the additive model are shown to be useful for judging 
the goodness of fit of the logistic model too.  

In this work we will define the covariance diagnostic 
plot, followed by a simulation study to demonstrate its use 
with the logistic regression model. A formal test that 
presented in [2], to supplement the inspection of the 
covariance diagnostic plot and the standard deviation of the 
standardized residual processes, is used with a simulation 
study to check the performance of the test. The paper is 
concluded by applying the test to two data sets, the Blue 
Bay and Serrinha data.  

 
Entisar A. Elgmati  is with the Depatment of Statistics, Faculty of 

Science, Tripoli University, Tripoli, Libya (e-mail: eelgmati@ 
hotmail.com).  

 

II.  LOGISTIC MODEL 
At each time point standard logistic regression model is 

used. A logistic regression model is fitted for the individuals 
who are at risk at that time using the following equation 

)()()( tUtYti =λ                                          (1) 
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functions that need to be estimated, )(tX  is the 
corresponding covariate vector (including an intercept term) 
and )(tY  is an at-risk indicator which takes value 1 for 
individuals that are at risk at time t  and value 0 otherwise. 
Note that for the rest of the paper we will not rewrite the 
model (1) instead we will write the )(tU , since this is the 
part where the changes in the model are. 

Here, )(tiλ  is the probability that an individual i has an 
event at time t  conditional on all the information that is 
available up to that time, i.e. the history or filtration 
 

       )/1)(()( −==
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where )(tdNi is a variable representing the occurrence or 
non-occurrence of the event at time t  for individual i . So 
the logistic regression assumes that the logit of the 
probability of an event at time t , conditional on the history 
up to time t  (i.e. −t

F ), is a linear function of the covariates 

and a constant term specific to that time point.  
One method of assessing the fit of the model is to plot the 

empirical standard deviation of standardized martingale 
residuals defined as 

                     )()()( ttNtM iii Λ−=                        (3) 

Here )(tNi  is the counting process for the ith individual 

and )(tiΛ  its cumulative intensity function at time t  (a 
predictable and non-decreasing function). The estimated 
martingale residual can be used here with )(tiΛ  replaced 

by its estimate  )(ˆ tiΛ  

∑
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)(ˆ)()(ˆ)()(ˆ λ             (4) 

where E  is the set of times when the estimation is possible. 
Also, since )(tdNi  is a binary process, and 

)()()( tdtdNtdM Λ−=  then the variance of )(tdM  is 
equal to the variance of )(tdN .  
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Following [5] and [6], plotting the empirical standard 
deviation of standardized martingale residuals will indicate 
whether the model fits the data well. The closer these are to 
one, the better the model fits the data.  Simulation study and 
application of this diagnostic to assess the fitted logistic 
model were presented in [4]. 

III.  COVARIANCE DIAGNOSTIC PLOT 
Another diagnostic tool that fits into the martingale 

assumption is the covariance diagnostic plot. This 
diagnostic is based on the idea that, since the martingales 
have uncorrelated increments then 

tttMVartMtMCov iii <≤= 000 1,)]([)](),([    (5) 

For any fixed time 0t [3] where )()()( ttNtM Λ−= . 
Therefore by evaluating the left hand side of (5) at each 
time point and then plotting these values against t , the plot 
should be flat if the fitted model is correct.  Any departures 
from a flat line indicate the non suitability of the model 
being fitted. So when the right model is fitted we expect to 
get a straight line with zero slop. 
More formally, let 
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Where ))(.....)(()( 1
1 tMtMntM n++= − , be the 

sample covariance of the true martingale residuals for the 
sampled data and let )(ˆ tC  be the corresponding quantity 

based on estimated martingale residuals )(ˆ tM i . We assume 

0t  is held fixed and have not explicitly incorporated that 

into the notation. Then for any utt <<0 , 

)1()(ˆ)(ˆ
n

OtCuC =−  

provided the fitted model is correctly specified and 
estimators are n -consistent. 

Next a simulation study will be given to investigate the 
plot behaviour from fitting different models. 

IV. SIMULATION STUDY 
To demonstrate the use of the covariance plot as a 

diagnostic tool, a simulation study is carried out. First we 
looked at the performance of the covariance diagnostic 
when the true model is correct, i.e. we generate data from a 
specific model and fit that model only. For example, assume 
that the true model is of the form (1) with )(tU being 

21 05.005.01.0)(:1 xxtUK ++=  

where 1x and 2x are two time constant covariates. The data 
were generated with 100=τ  and a sample size of 250. 
Then the following model is fitted 

22110 )()()()(:2 xtxtttUK βββ ++=  
Figure 1 shows an average over 100 simulations for the 

covariance diagnostic plot (dark line) and 10 samples to 
show sample to sample variability (light lines). From the 
figure one can notice that the model seems to fit the data 
very well: the covariances stay constant in time. In addition 
to this model, we also simulated from other models and 
fitted the true ones to them. For instance, we simulated from 
a model with fixed covariates but different covariate 
structures to Model 1K  and fitted a fixed covariate model 
with same number of covariates and same structure.  

 
Fig. 1 The average of 100  covariance diagnostic plots for fitting 

Model 2K to simulated data from Model 1K  (dark line) and 
10 samples to show sample to sample variability (light lines). 

 
And we simulated from a model with different dynamic 

covariates and fitted the true ones. In all of these models, 
we tried different sample sizes and different parameter 
values. The covariance and the standard deviation 
diagnostics for the fitted models behaved very well, with 
both exhibiting evidence of a good fit (not shown here).  

After looking at the performance of the covariance 
diagnostic when the fitted model is correct, we looked at 
other situations where the fitted models are not the models 
that were used to generate the data.  For instance assume 
that the true model is of the frailty form  
 

]05.005.01.0[)(:3 21 xxZtUK ++=  
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Here 1x and 2x again are two time constant covariates 
and Z , is a frailty random variable, with gamma 
distribution with mean and standard deviation equal to one. 
The data were generated with 100=τ and a sample size 
of 250 . Then the following models were fitted and the 
whole simulation process was repeated 100  times. 

 

22110 )()()()(: xtxtttUA βββ ++=     
)()()()()()(: 1322110 tRtxtxtttUB D ββββ +++=

∞

)()()()()()(: 232211030
tRtxtxtttUC D ββββ +++=

)()()()()()(: 332211020
tRtxtxtttUD D ββββ +++=

  
Here )(1 tR , )(2 tR  and )(3 tR are the residuals from 

regressing different dynamic covariates ( )(1 tD , )(2 tD  

and )(3 tD ) on the other covariates to avoid the distortion in 
the estimates of the effects of the fixed covariates when a 
dynamic covariate is included ([5] and [6]). These 
covariates are 

⎭
⎬
⎫

⎩
⎨
⎧

<
≥−−

=
utttN
utuutNtN

tDu /)(
/)()({

)(  

We make the obvious definition that ttNtD /)()( =∞ for 
all t . 

Figure 2 (dark lines) shows the average of 
100 covariance diagnostic plots from fitting the above 
models respectively ( DA − ) to the simulated data. The 
light lines represent a sample of 10 individual simulations 
to illustrate any sample to sample variability. We used 

100 =t in these plots. 

 
Fig. 2 Blue lines: the average of 100  covariance diagnostic plots 

for fitting Models CBA ,, and D to simulated frailty data 

( 3K ). Grey lines show a sample of 10 simulations 

 
From the figure one can see that, Models CA,  and D , 

the fixed and dynamic models with )(2 tD and )(3 tD as 

covariates, did not fit the data well. For Model A  the 
covariance increases linearly as t  increases away from 0t . 

For Models C and D the covariance increases after an 
initial flat phase. Note that the initial flat phase in Models 
C and D last up to times 40 and 30 respectively, i.e. 30 and 
20 later than 100 =t . This is because up to this length we 
have looked all the way back in history so the dynamic 
model could capture all the frailty and hence provide a good 
fit to the data. However, Model B  the first dynamic model, 
which always looks all the way back, seems to fit the data 
very well. Also one can notice that the same conclusions 
would be drawn from single samples, not just the average.  

V. TESTING 
In this section a simple test statistic that supplements the 

inspection of plots is presented. Since, when the right model 
is fitted we expect to have the standard deviation of the 
standardized residual processes close to one at all times and 
to get straight line with zero slope for the covariance 
diagnostic, thus we used a simple Z -test to test whether the 
successive lag one differences in both plots are zero. For the 
covariance method ( cov ) using the first differences is valid 
because they are nearly independent (see [2] for the 
justification of the test). Note that the proof outlined in [2] 
does not assume the differences have equal variances but 
does make use of their asymptotic independence. However, 
this is not the case for the standard deviation method ( sdt ), 
where the test did not work. This is because lag one 
differences are correlated. However, a bigger lag were 
experimented and found that if lag-5 differences for the 
sdt procedure was taken, then the test seems to work well. 
This is of course empirical. The following section describes 
a simulation study to check the performance and the power 
of the test in several situations. 

TABLE I 
TEST POWER FOR FITTING MODEL D TO MODEL A, B AND C FOR DIFFERENT 

SAMPLE SIZES N=250 AND N=500, BASED ON 1000 SIMULATIONS 

                                       
Model D                 

n             250 500 

            sdt           cov                    sdt           cov 

Model A            93%       33%                   100%        61% 
Model B            100%     99%                   100%         100%
Model C                 100%   100%                100%         100%                     
   

TABLE II 
TEST POWER FOR FITTING MODEL D TO MODEL A, B AND C FOR DIFFERENT 

SAMPLE SIZES N=250 AND N=500, BASED ON 1000 SIMULATIONS 

N=500                                 

                     B0=0.1                       B0=0.05                            B0=0.025           
               B1=B2=0.05         B1=B2=0.0125      
B1=B2=0.00833 

xi     sdt           cov           sdt           cov                sdt           cov 

1     100%       33%       100%        100%             100%       100% 
0.25     100%      100%      100%        100%             100%       100%
0.09           100%      100%      100%        79%               90%         35%         
0.05 
0.009     
0.0         

    100%      90%         87% 
    55%        16%         12%       
   5%           5%           5%        

  30%               60%         15% 
  7%                 6%            5% 
  5%                 5%            5%
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A. Simulation Study 
In this simulation study all our results are based on 1000 

simulations in each case. We simulate and fit the correct 
model first to check the performance of the test. Then 
different simulation studies are performed. Checking the 
method for the correct model was done by simulating and 
fitting different models with different covariate sets. 
Assume that the true models are  

 

21 05.005.01.0)(: xxtUA ++=  

11 05.005.01.0)(: yxtUB ++=  
2
11 05.005.01.0)(: yxtUC ++=  

Where 1x  and 2x  are binary covariates, and 1y is standard 
normal covariate. Then the following models are fitted 

22110 )()()()(:1 xtxtttUA βββ ++=  

12110 )()()()(:1 ytxtttUB βββ ++=  
2
12110 )()()()(:1 ytxtttUC βββ ++=  

             110 )()()(: xtttUD ββ +=  
The test performed  well for the two diagnostic tools (the 

standard deviation of the standardized residual processes 
and the covariance) with empirical test size close to the 
nominal %5  when the models 1,1 BA  and 1C  were fitted 
to data generated from BA, and C  models respectively for 
different sample sizes ( 250=n and 500=n ). Table I 
gives the test power when Model D  (missing covariate) is 
fitted to data generated from BA,  and C  models. Note 
that the test power increases when the sample size increases. 
For instance, we found %33  power using the covariance 
test ( cov ) and up to %93  in the standard deviation test 
( sdt ) for sample size 250 which increased to %100  for 
the sdt  test and %61  for the cov test for sample of size 
500. Furthermore, we checked the test size when the 
covariates are not independent, fitting Model D to Model 
A  with 1x  and 2x  are two binary dependent variables. We 

found that power goes down to %30  for the sdt  test and 
to %11  for the cov test for a sample of size 250 and 
increases up to %54  for sdt and up to %15  for a sample 
of size 500.    
  Next we simulated from a logistic model with a frailty 
variable that has gamma distribution with mean one and 
varianceξ , a sample of size 500 , 100=τ time points and 
two time constant binary covariates 
with ][)( 22110 xxZtU βββ ++= . Table II shows the 

test power for different values of ξ and different number of 

events determined by 10 , ββ and 2β .   

From the table one can see that both tests have a good 
power to detect the wrong model even for a small value of 
ξ , with the test based on the standard deviation of the 
standardized processes ( sdt ) being more powerful. Power 
is very high for even very small amounts of frailty for these 
recurrent event data. As expected the number of events per 
person affects the test power. When the number of events is 
decreased the test power dropped. To check the effect of the 
sample size n , the above simulation study was repeated at 
sample size 250 (not shown here). Both tests still have very 
good power to detect the wrong model. However, the power 
of the two tests is lower at the smaller sample size, as 
expected. Again the sdt  test in particular has very high 
power to detect even small amounts of ignored frailty. Also 
decreasing the number of events per individual, decreases 
the power of the test dramatically and vice versa.  

B. Application 
In [2] the diagnostic plots for the two real data sets 

,Serrinha and Blue Bay data (details of the two data sets are 
available [7], [8], and [9]), from fitting additive model were 
given. Using logistic model to fit the data gave similar plots 
( sdt and cov plots) for both data sets. Here we use our 
proposed test to assess whether various fitted logistic 
models are consistent with the data. Table III shows the P-
values for the tests. From the table one can see that for both 
data sets, Serrinha and Blue Bay data, both tests were highly 
significant for the fixed effects only models: there is strong 
evidence against the models which ignore previous events. 
This supports the conclusions from inspection of diagnostic 
plots (not shown here). There is no such evidence of 
misspecification once the dynamic covariates are included 
in the cov test; the result has high P-value for both data 
sets and for prevalence and incidence. But this is not the 
case with the sdt test where one can notice that the test is 
highly significant when we fit a dynamic model to the 
prevalence data for both data sets. It is also significant for 
the incidence model in the Serrinha data. Recall, however 
that our choice of lag-5 differences is based on simulations 
and the test is not fully theoretically justified. Hence we 
need to be cautious in interpretation.  

TABLE III 
P-VALUES FOR TESTING BOTH DIAGNOSTIC  FOR THE TWO DATA SETS (BLUE 

BAY AND SERRINHA DATA). 

                                                        Prevalence                    Incidence 

Data     Model                sdt          cov                sdt           cov 

Blue bay     Fixed               0.000 
    dynamic          0.000      
                                         

  0.000           0.000      0.000 
  0.452           0.228      0.661 

Serrinha     Fixed               0.000 
    dynamic          0.000      

  0.000           0.000      0.000    
  0.721           0.035      0.922 
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VI. CONCLUSION 
One way of assessing the fit of logistic regression model 

to recurrent event data is by plotting the empirical standard 
deviation of the standardized residual processes. In this 
paper we used another graphical diagnostic plot based on 
martingale residual covariances. Also A formal test to 
supplement the inspection of the two diagnostic plots 
(standard deviation of the standardized residual processes 
and the covariance) for checking the model adequacy was 
also presented.  Furthermore we looked at the expected 
covariance behaviour under several misspecified models, 
increasing with t  when the wrong model is fitted and being 
flat with zero slope for the right model. These results were 
also supported by the test. Also we tested our fitted models, 
i.e. fixed and dynamic models, for the Blue Bay and 
Serrinha data and found using the cov test that the dynamic 
models cannot rejected. 

The standard deviation of standardized residual 
procedure has the advantage that we know the estimates 
should be close to one under the model, whereas all we 
know for the covariance diagnostic is that there should be 
no trends with time.  On the other hand the covariance 
diagnostic also has the advantage of asymptotically 
independent increments and hence the availability of the test 
statistic. One should keep in mind that the test has been 
justified for the additive intensity model where the 
martingale theory is well founded.  However, the diagnostic 
plot and the test seem to work well with logistic regression 
model. 
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