Search results for: Differential amplifier
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 844

Search results for: Differential amplifier

724 FWM Aware Fuzzy Dynamic Routing and Wavelength Assignment in Transparent Optical Networks

Authors: Debajyoti Mishra, Urmila Bhanja

Abstract:

In this paper, a novel fuzzy approach is developed while solving the Dynamic Routing and Wavelength Assignment (DRWA) problem in optical networks with Wavelength Division Multiplexing (WDM). In this work, the effect of nonlinear and linear impairments such as Four Wave Mixing (FWM) and amplifier spontaneous emission (ASE) noise are incorporated respectively. The novel algorithm incorporates fuzzy logic controller (FLC) to reduce the effect of FWM noise and ASE noise on a requested lightpath referred in this work as FWM aware fuzzy dynamic routing and wavelength assignment algorithm. The FWM crosstalk products and the static FWM noise power per link are pre computed in order to reduce the set up time of a requested lightpath, and stored in an offline database. These are retrieved during the setting up of a lightpath and evaluated online taking the dynamic parameters like cost of the links into consideration.

Keywords: Amplifier spontaneous emission (ASE), Dynamic routing and wavelength assignment, Four wave mixing (FWM), Fuzzy rule based system (FRBS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1735
723 Solution of Fuzzy Differential Equation under Generalized Differentiability by Genetic Programming

Authors: N. Kumaresan, J. Kavikumar, M. Kumudthaa, Kuru Ratnavelu

Abstract:

In this paper, solution of fuzzy differential equation under general differentiability is obtained by genetic programming (GP). The obtained solution in this method is equivalent or very close to the exact solution of the problem. Accuracy of the solution to this problem is qualitatively better. An illustrative numerical example is presented for the proposed method.

Keywords: Fuzzy differential equation, Generalized differentiability, Genetic programming and H-difference.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2243
722 Fractional Masks Based On Generalized Fractional Differential Operator for Image Denoising

Authors: Hamid A. Jalab, Rabha W. Ibrahim

Abstract:

This paper introduces an image denoising algorithm based on generalized Srivastava-Owa fractional differential operator for removing Gaussian noise in digital images. The structures of nxn fractional masks are constructed by this algorithm. Experiments show that, the capability of the denoising algorithm by fractional differential-based approach appears efficient to smooth the Gaussian noisy images for different noisy levels. The denoising performance is measured by using peak signal to noise ratio (PSNR) for the denoising images. The results showed an improved performance (higher PSNR values) when compared with standard Gaussian smoothing filter.

Keywords: Fractional calculus, fractional differential operator, fractional mask, fractional filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3003
721 Third Order Current-mode Quadrature Sinusoidal Oscillator with High Output Impedances

Authors: Kritphon Phanruttanachai, Winai Jaikla

Abstract:

This article presents a current-mode quadrature oscillator using differential different current conveyor (DDCC) and voltage differencing transconductance amplifier (VDTA) as active elements. The proposed circuit is realized fro m a non-inverting lossless integrator and an inverting second order low-pass filter. The oscillation condition and oscillation frequency can be electronically/orthogonally controlled via input bias currents. The circuit description is very simple, consisting of merely 1 DDCC, 1 VDTA, 1 grounded resistor and 3 grounded capacitors. Using only grounded elements, the proposed circuit is then suitable for IC architecture. The proposed oscillator has high output impedance which is easy to cascade or dive the external load without the buffer devices. The PSPICE simulation results are depicted, and the given results agree well with the theoretical anticipation. The power consumption is approximately 1.76mW at ±1.25V supply voltages.

Keywords: Current-mode, oscillator, integrated circuit, DDCC, VDTA

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2406
720 Numerical Solution of Volterra Integro-differential Equations of Fractional Order by Laplace Decomposition Method

Authors: Changqing Yang, Jianhua Hou

Abstract:

In this paper the Laplace Decomposition method is developed to solve linear and nonlinear fractional integro- differential equations of Volterra type.The fractional derivative is described in the Caputo sense.The Laplace decomposition method is found to be fast and accurate.Illustrative examples  are included to demonstrate the validity and applicability of presented technique and comparasion is made with exacting results.

Keywords: Integro-differential equations, Laplace transform, fractional derivative, adomian polynomials, pade appoximants.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1666
719 Investigation of Constant Transconductance Circuit for Low Power Low-Noise Amplifier

Authors: Wei Yi Lim, M. Annamalai Arasu, M. Kumarasamy Raja, Minkyu Je

Abstract:

In this paper, the design of wide-swing constant transconductance (gm) bias circuit that generates bias voltage for low-noise amplifier (LNA) circuit design by using an off-chip resistor is demonstrated. The overall transconductance (Gm) generated by the constant gm bias circuit is important to maintain the overall gain and noise figure of the LNA circuit. Therefore, investigation is performed to study the variation in Gm with process, temperature and supply voltage (PVT).  Temperature and supply voltage are swept from -10 °C to 85 °C and 1.425 V to 1.575 V respectively, while the process conditions are also varied to the extreme and the gm variation is eventually concluded at between -3 % to 7 %. With the slight variation in the gm value, through simulation, at worst condition of state SS, we are able to attain a conversion gain (S21) variation of -3.10 % and a noise figure (NF) variation of 18.71 %. The whole constant gm circuit draws approximately 100 µA from a 1.5V supply and is designed based on 0.13 µm CMOS process. 

Keywords: Transconductance, LNA, temperature, process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4130
718 On the Efficiency of Five Step Approximation Method for the Solution of General Third Order Ordinary Differential Equations

Authors: N. M. Kamoh, M. C. Soomiyol

Abstract:

In this work, a five step continuous method for the solution of third order ordinary differential equations was developed in block form using collocation and interpolation techniques of the shifted Legendre polynomial basis function. The method was found to be zero-stable, consistent and convergent. The application of the method in solving third order initial value problem of ordinary differential equations revealed that the method compared favorably with existing methods.

Keywords: Shifted Legendre polynomials, third order block method, discrete method, convergent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 659
717 Periodic Solutions for a Higher Order Nonlinear Neutral Functional Differential Equation

Authors: Yanling Zhu

Abstract:

In this paper, a higher order nonlinear neutral functional differential equation with distributed delay is studied by using the continuation theorem of coincidence degree theory. Some new results on the existence of periodic solutions are obtained.

Keywords: Neutral functional differential equation, higher order, periodic solution, coincidence degree theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1262
716 Coupled Galerkin-DQ Approach for the Transient Analysis of Dam-Reservoir Interaction

Authors: S. A. Eftekhari

Abstract:

In this paper, a numerical algorithm using a coupled Galerkin-Differential Quadrature (DQ) method is proposed for the solution of dam-reservoir interaction problem. The governing differential equation of motion of the dam structure is discretized by the Galerkin method and the DQM is used to discretize the fluid domain. The resulting systems of ordinary differential equations are then solved by the Newmark time integration scheme. The mixed scheme combines the simplicity of the Galerkin method and high accuracy and efficiency of the DQ method. Its accuracy and efficiency are demonstrated by comparing the calculated results with those of the existing literature. It is shown that highly accurate results can be obtained using a small number of Galerkin terms and DQM sampling points. The technique presented in this investigation is general and can be used to solve various fluid-structure interaction problems.

Keywords: Dam-reservoir system, Differential quadrature method, Fluid-structure interaction, Galerkin method, Integral quadrature method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1869
715 The Global Stability Using Lyapunov Function

Authors: R. Kongnuy, E. Naowanich, T. Kruehong

Abstract:

An important technique in stability theory for differential equations is known as the direct method of Lyapunov. In this work we deal global stability properties of Leptospirosis transmission model by age group in Thailand. First we consider the data from Division of Epidemiology Ministry of Public Health, Thailand between 1997-2011. Then we construct the mathematical model for leptospirosis transmission by eight age groups. The Lyapunov functions are used for our model which takes the forms of an Ordinary Differential Equation system. The globally asymptotically for equilibrium states are analyzed.

Keywords: Age Group, Leptospirosis, Lyapunov Function, Ordinary Differential Equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2148
714 Low Voltage High Gain Linear Class AB CMOS OTA with DC Level Input Stage

Authors: Houda Bdiri Gabbouj, Néjib Hassen, Kamel Besbes

Abstract:

This paper presents a low-voltage low-power differential linear transconductor with near rail-to-rail input swing. Based on the current-mirror OTA topology, the proposed transconductor combines the Flipped Voltage Follower (FVF) technique to linearize the transconductor behavior that leads to class- AB linear operation and the virtual transistor technique to lower the effective threshold voltages of the transistors which offers an advantage in terms of low supply requirement. Design of the OTA has been discussed. It operates at supply voltages of about ±0.8V. Simulation results for 0.18μm TSMC CMOS technology show a good input range of 1Vpp with a high DC gain of 81.53dB and a total harmonic distortion of -40dB at 1MHz for an input of 1Vpp. The main aim of this paper is to present and compare new OTA design with high transconductance, which has a potential to be used in low voltage applications.

Keywords: Amplifier class AB, current mirror, flipped voltage follower, low voltage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4526
713 On a New Inverse Polynomial Numerical Scheme for the Solution of Initial Value Problems in Ordinary Differential Equations

Authors: R. B. Ogunrinde

Abstract:

This paper presents the development, analysis and implementation of an inverse polynomial numerical method which is well suitable for solving initial value problems in first order ordinary differential equations with applications to sample problems. We also present some basic concepts and fundamental theories which are vital to the analysis of the scheme. We analyzed the consistency, convergence, and stability properties of the scheme. Numerical experiments were carried out and the results compared with the theoretical or exact solution and the algorithm was later coded using MATLAB programming language.

Keywords: Differential equations, Numerical, Initial value problem, Polynomials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1772
712 Training Radial Basis Function Networks with Differential Evolution

Authors: Bing Yu , Xingshi He

Abstract:

In this paper, Differential Evolution (DE) algorithm, a new promising evolutionary algorithm, is proposed to train Radial Basis Function (RBF) network related to automatic configuration of network architecture. Classification tasks on data sets: Iris, Wine, New-thyroid, and Glass are conducted to measure the performance of neural networks. Compared with a standard RBF training algorithm in Matlab neural network toolbox, DE achieves more rational architecture for RBF networks. The resulting networks hence obtain strong generalization abilities.

Keywords: differential evolution, neural network, Rbf function

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2050
711 Numerical Algorithms for Solving a Type of Nonlinear Integro-Differential Equations

Authors: Shishen Xie

Abstract:

In this article two algorithms, one based on variation iteration method and the other on Adomian's decomposition method, are developed to find the numerical solution of an initial value problem involving the non linear integro differantial equation where R is a nonlinear operator that contains partial derivatives with respect to x. Special cases of the integro-differential equation are solved using the algorithms. The numerical solutions are compared with analytical solutions. The results show that these two methods are efficient and accurate with only two or three iterations

Keywords: variation iteration method, decomposition method, nonlinear integro-differential equations

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2125
710 Positive Solutions of Initial Value Problem for the Systems of Second Order Integro-Differential Equations in Banach Space

Authors: Lv Yuhua

Abstract:

In this paper, by establishing a new comparison result, we investigate the existence of positive solutions for initial value problems of nonlinear systems of second order integro-differential equations in Banach space.We improve and generalize some results  (see[5,6]), and the results is new even in finite dimensional spaces.

Keywords: Systems of integro-differential equations, monotone iterative method, comparison result, cone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1499
709 Solving the Economic Dispatch Problem by Using Differential Evolution

Authors: S. Khamsawang, S. Jiriwibhakorn

Abstract:

This paper proposes an application of the differential evolution (DE) algorithm for solving the economic dispatch problem (ED). Furthermore, the regenerating population procedure added to the conventional DE in order to improve escaping the local minimum solution. To test performance of DE algorithm, three thermal generating units with valve-point loading effects is used for testing. Moreover, investigating the DE parameters is presented. The simulation results show that the DE algorithm, which had been adjusted parameters, is better convergent time than other optimization methods.

Keywords: Differential evolution, Economic dispatch problem, Valve-point loading effect, Optimization method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1690
708 Stepsize Control of the Finite Difference Method for Solving Ordinary Differential Equations

Authors: Davod Khojasteh Salkuyeh

Abstract:

An important task in solving second order linear ordinary differential equations by the finite difference is to choose a suitable stepsize h. In this paper, by using the stochastic arithmetic, the CESTAC method and the CADNA library we present a procedure to estimate the optimal stepsize hopt, the stepsize which minimizes the global error consisting of truncation and round-off error.

Keywords: Ordinary differential equations, optimal stepsize, error, stochastic arithmetic, CESTAC, CADNA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1362
707 Analytical Solution for the Zakharov-Kuznetsov Equations by Differential Transform Method

Authors: Saeideh Hesam, Alireza Nazemi, Ahmad Haghbin

Abstract:

This paper presents the approximate analytical solution of a Zakharov-Kuznetsov ZK(m, n, k) equation with the help of the differential transform method (DTM). The DTM method is a powerful and efficient technique for finding solutions of nonlinear equations without the need of a linearization process. In this approach the solution is found in the form of a rapidly convergent series with easily computed components. The two special cases, ZK(2,2,2) and ZK(3,3,3), are chosen to illustrate the concrete scheme of the DTM method in ZK(m, n, k) equations. The results demonstrate reliability and efficiency of the proposed method.

Keywords: Zakharov-Kuznetsov equation, differential transform method, closed form solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1929
706 Existence of Solution for Singular Two-point Boundary Value Problem of Second-order Differential Equation

Authors: Xiguang Li

Abstract:

In this paper, by constructing a special set and utilizing fixed point theory in coin, we study the existence of solution of singular two point’s boundary value problem for second-order differential equation, which improved and generalize the result of related paper.

Keywords: Singular differential equation, boundary value problem, coin, fixed point theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1130
705 Unique Positive Solution of Nonlinear Fractional Differential Equation Boundary Value Problem

Authors: Fengxia Zheng

Abstract:

By using two new fixed point theorems for mixed monotone operators, the positive solution of nonlinear fractional differential equation boundary value problem is studied. Its existence and uniqueness is proved, and an iterative scheme is constructed to approximate it.

Keywords: Fractional differential equation, boundary value problem, positive solution, existence and uniqueness, fixed point theorem, mixed monotone operator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1599
704 Stability Analysis and Controller Design of Further Development of MIMOS II for Space Applications with Focus on the Extended Lyapunov Method: Part I

Authors: Mohammad Beyki, Justus Pawlak, Robert Patzke, Franz Renz

Abstract:

In the context of planetary exploration, the MIMOS II (miniaturized M¨ossbauer spectrometer) serves as a proven and reliable measuring instrument. The transmission behaviour of the electronics in the M¨ossbauer spectroscopy is further developed and optimized. For this purpose, the overall electronics is split into three parts. This elaboration deals exclusively with the first part of the signal chain for the evaluation of photons in experiments with gamma radiation. Parallel to the analysis of the electronics, an additional method for analysing the stability of linear and non-linear systems is presented: The extended method of Lyapunov’s stability criteria. The design helps to weigh advantages and disadvantages against other simulated circuits in order to optimize the MIMOS II for the terestric and extraterestric measurment. Finally, after stability analysis, the controller design according to Ackermann is performed, achieving the best possible optimization of the output variable through a skillful pole assignment.

Keywords: Controller design for MIMOS II, stability analysis, M¨ossbauer spectroscopy, electronic signal amplifier, light processing technology, photocurrent, transimpedance amplifier, extended Lyapunov method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 49
703 On the Determination of a Time-like Dual Curve in Dual Lorentzian Space

Authors: Emin Özyılmaz

Abstract:

In this work, position vector of a time-like dual curve according to standard frame of D31 is investigated. First, it is proven that position vector of a time-like dual curve satisfies a dual vector differential equation of fourth order. The general solution of this dual vector differential equation has not yet been found. Due to this, in terms of special solutions, position vectors of some special time-like dual curves with respect to standard frame of D31 are presented.

Keywords: Classical Differential Geometry, Dual Numbers, DualFrenet Equations, Time-like Dual Curve, Position Vector, DualLorentzian Space.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1467
702 Bernstein-Galerkin Approach for Perturbed Constant-Coefficient Differential Equations, One-Dimensional Analysis

Authors: Diego Garijo

Abstract:

A numerical approach for solving constant-coefficient differential equations whose solutions exhibit boundary layer structure is built by inserting Bernstein Partition of Unity into Galerkin variational weak form. Due to the reproduction capability of Bernstein basis, such implementation shows excellent accuracy at boundaries and is able to capture sharp gradients of the field variable by p-refinement using regular distributions of equi-spaced evaluation points. The approximation is subjected to convergence experimentation and a procedure to assemble the discrete equations without a background integration mesh is proposed.

Keywords: Bernstein polynomials, Galerkin, differential equation, boundary layer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1842
701 Variational Iteration Method for Solving Systems of Linear Delay Differential Equations

Authors: Sara Barati, Karim Ivaz

Abstract:

In this paper, using a model transformation approach a system of linear delay differential equations (DDEs) with multiple delays is converted to a non-delayed initial value problem. The variational iteration method (VIM) is then applied to obtain the approximate analytical solutions. Numerical results are given for several examples involving scalar and second order systems. Comparisons with the classical fourth-order Runge-Kutta method (RK4) verify that this method is very effective and convenient.

Keywords: Variational iteration method, delay differential equations, multiple delays, Runge-Kutta method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2477
700 Analysis of Nonlinear Pulse Propagation Characteristics in Semiconductor Optical Amplifier for Different Input Pulse Shapes

Authors: Suchi Barua, Narottam Das, Sven Nordholm, Mohammad Razaghi

Abstract:

This paper presents nonlinear pulse propagation characteristics for different input optical pulse shapes with various input pulse energy levels in semiconductor optical amplifiers. For simulation of nonlinear pulse propagation, finite-difference beam propagation method is used to solve the nonlinear Schrödinger equation. In this equation, gain spectrum dynamics, gain saturation are taken into account which depends on carrier depletion, carrier heating, spectral-hole burning, group velocity dispersion, self-phase modulation and two photon absorption. From this analysis, we obtained the output waveforms and spectra for different input pulse shapes as well as for different input energies. It shows clearly that the peak position of the output waveforms are shifted toward the leading edge which due to the gain saturation of the SOA for higher input pulse energies. We also analyzed and compared the normalized difference of full-width at half maximum for different input pulse shapes in the SOA.

Keywords: Finite-difference beam propagation method, pulse shape, pulse propagation, semiconductor optical amplifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2370
699 Effect of Rollers Differential Speed and Paddy Moisture Content on Performance of Rubber Roll Husker

Authors: S. Firouzi, M.R. Alizadeh, S. Minaei

Abstract:

A study was carried out at the Rice Research Institute of Iran (RRII) to investigate the effect of rollers differential peripheral speed of commercial rubber roll husker and paddy moisture content on the husking index and percentage of broken rice. The experiment was conducted at six levels of rollers differential speed (1.5, 2.2, 2.9, 3.6, 4.3 and 5 m/s) and three levels of paddy moisture content (8-9, 10-11 and 12-13% w.b.). Two common paddy varieties namely, Binam and Khazer, were selected for this study. Results revealed that the effect of rollers differential speed and moisture content significantly (P<0.01) affected percentage of broken brown rice and paddy husking index. Average broken kernel percentage increased from 13 to 14.61% while husking index decreased from 71.64 to 61.81%, as paddy moisture content increased from 8-9 to 12-13%. It was observed that amount of broken rice decreased from 18.83 to 9.97%, when rollers differential speed varied from 1.5 to 5 m/s, while the husking index initially increased and then started to decrease. The mean value of husking index for Khazar variety (64.71%) was significantly lower than that for Binam variety (69.2%). It was concluded that rollers differential speed of 2.9 m/s and moisture content of 8-9% was the most appropriate combination for paddy husking of Binam and Khazar varieties in rubber roll husker.

Keywords: husking index, moisture content, paddy, rubber roll husker.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3287
698 Round Addition Differential Fault Analysis on Lightweight Block Ciphers with On-the-Fly Key Scheduling

Authors: Hideki Yoshikawa, Masahiro Kaminaga, Arimitsu Shikoda, Toshinori Suzuki

Abstract:

Round addition differential fault analysis using operation skipping for lightweight block ciphers with on-the-fly key scheduling is presented. For 64-bit KLEIN, it is shown that only a pair of correct and faulty ciphertexts can be used to derive the secret master key. For PRESENT, one correct ciphertext and two faulty ciphertexts are required to reconstruct the secret key. Furthermore, secret key extraction is demonstrated for the LBlock Feistel-type lightweight block cipher.

Keywords: Differential Fault Analysis (DFA), round addition, block cipher, on-the-fly key schedule.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2017
697 Development Partitioning Intervalwise Block Method for Solving Ordinary Differential Equations

Authors: K.H.Khairul Anuar, K.I.Othman, F.Ishak, Z.B.Ibrahim, Z.Majid

Abstract:

Solving Ordinary Differential Equations (ODEs) by using Partitioning Block Intervalwise (PBI) technique is our aim in this paper. The PBI technique is based on Block Adams Method and Backward Differentiation Formula (BDF). Block Adams Method only use the simple iteration for solving while BDF requires Newtonlike iteration involving Jacobian matrix of ODEs which consumes a considerable amount of computational effort. Therefore, PBI is developed in order to reduce the cost of iteration within acceptable maximum error

Keywords: Adam Block Method, BDF, Ordinary Differential Equations, Partitioning Block Intervalwise

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1669
696 A Sum Operator Method for Unique Positive Solution to a Class of Boundary Value Problem of Nonlinear Fractional Differential Equation

Authors: Fengxia Zheng, Chuanyun Gu

Abstract:

By using a fixed point theorem of a sum operator, the existence and uniqueness of positive solution for a class of boundary value problem of nonlinear fractional differential equation is studied. An iterative scheme is constructed to approximate it. Finally, an example is given to illustrate the main result.

Keywords: Fractional differential equation, Boundary value problem, Positive solution, Existence and uniqueness, Fixed point theorem of a sum operator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1483
695 Numerical Solution of Riccati Differential Equations by Using Hybrid Functions and Tau Method

Authors: Changqing Yang, Jianhua Hou, Beibo Qin

Abstract:

A numerical method for Riccati equation is presented in this work. The method is based on the replacement of unknown functions through a truncated series of hybrid of block-pulse functions and Chebyshev polynomials. The operational matrices of derivative and product of hybrid functions are presented. These matrices together with the tau method are then utilized to transform the differential equation into a system of algebraic equations. Corresponding numerical examples are presented to demonstrate the accuracy of the proposed method.

Keywords: Hybrid functions, Riccati differential equation, Blockpulse, Chebyshev polynomials, Tau method, operational matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2588