Search results for: task based learning.
11323 Discovering Complex Regularities by Adaptive Self Organizing Classification
Authors: A. Faro, D. Giordano, F. Maiorana
Abstract:
Data mining uses a variety of techniques each of which is useful for some particular task. It is important to have a deep understanding of each technique and be able to perform sophisticated analysis. In this article we describe a tool built to simulate a variation of the Kohonen network to perform unsupervised clustering and support the entire data mining process up to results visualization. A graphical representation helps the user to find out a strategy to optmize classification by adding, moving or delete a neuron in order to change the number of classes. The tool is also able to automatically suggest a strategy for number of classes optimization.The tool is used to classify macroeconomic data that report the most developed countries? import and export. It is possible to classify the countries based on their economic behaviour and use an ad hoc tool to characterize the commercial behaviour of a country in a selected class from the analysis of positive and negative features that contribute to classes formation.
Keywords: Unsupervised classification, Kohonen networks, macroeconomics, Visual data mining, cluster interpretation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 156311322 Inferring User Preference Using Distance Dependent Chinese Restaurant Process and Weighted Distribution for a Content Based Recommender System
Authors: Bagher Rahimpour Cami, Hamid Hassanpour, Hoda Mashayekhi
Abstract:
Nowadays websites provide a vast number of resources for users. Recommender systems have been developed as an essential element of these websites to provide a personalized environment for users. They help users to retrieve interested resources from large sets of available resources. Due to the dynamic feature of user preference, constructing an appropriate model to estimate the user preference is the major task of recommender systems. Profile matching and latent factors are two main approaches to identify user preference. In this paper, we employed the latent factor and profile matching to cluster the user profile and identify user preference, respectively. The method uses the Distance Dependent Chines Restaurant Process as a Bayesian nonparametric framework to extract the latent factors from the user profile. These latent factors are mapped to user interests and a weighted distribution is used to identify user preferences. We evaluate the proposed method using a real-world data-set that contains news tweets of a news agency (BBC). The experimental results and comparisons show the superior recommendation accuracy of the proposed approach related to existing methods, and its ability to effectively evolve over time.Keywords: Content-based recommender systems, dynamic user modeling, extracting user interests, predicting user preference.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 81511321 Concept for a Multidisciplinary Design Process–An Application on High Lift Systems
Authors: P. Zamov, H. Spangenberg
Abstract:
Presents a concept for a multidisciplinary process supporting effective task transitions between different technical domains during the architectural design stage. A system configuration challenge is the multifunctional driven increased solution space. As a consequence, more iteration is needed to find a global optimum, i.e. a compromise between involved disciplines without negative impact on development time. Since state of the art standards like ISO 15288 and VDI 2206 do not provide a detailed methodology on multidisciplinary design process, higher uncertainties regarding final specifications arise. This leads to the need of more detailed and standardized concepts or processes which could mitigate risks. The performed work is based on analysis of multidisciplinary interaction, of modeling and simulation techniques. To demonstrate and prove the applicability of the presented concept, it is applied to the design of aircraft high lift systems, in the context of the engineering disciplines kinematics, actuation, monitoring, installation and structure design.Keywords: Systems engineering, multidisciplinary, architectural design, high lift system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 230411320 Effects of Human Factors on Workforce Scheduling
Authors: M. Othman, N. Bhuiyan, G. J. Gouw
Abstract:
In today-s competitive market, most companies develop manufacturing systems that can help in cost reduction and maximum quality. Human issues are an important part of manufacturing systems, yet most companies ignore their effects on production performance. This paper aims to developing an integrated workforce planning system that incorporates the human being. Therefore, a multi-objective mixed integer nonlinear programming model is developed to determine the amount of hiring, firing, training, overtime for each worker type. This paper considers a workforce planning model including human aspects such as skills, training, workers- personalities, capacity, motivation, and learning rates. This model helps to minimize the hiring, firing, training and overtime costs, and maximize the workers- performance. The results indicate that the workers- differences should be considered in workforce scheduling to generate realistic plans with minimum costs. This paper also investigates the effects of human learning rates on the performance of the production systems.Keywords: Human Factors, Learning Curves, Workers' Differences, Workforce Scheduling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 186211319 Rank-Based Chain-Mode Ensemble for Binary Classification
Authors: Chongya Song, Kang Yen, Alexander Pons, Jin Liu
Abstract:
In the field of machine learning, the ensemble has been employed as a common methodology to improve the performance upon multiple base classifiers. However, the true predictions are often canceled out by the false ones during consensus due to a phenomenon called “curse of correlation” which is represented as the strong interferences among the predictions produced by the base classifiers. In addition, the existing practices are still not able to effectively mitigate the problem of imbalanced classification. Based on the analysis on our experiment results, we conclude that the two problems are caused by some inherent deficiencies in the approach of consensus. Therefore, we create an enhanced ensemble algorithm which adopts a designed rank-based chain-mode consensus to overcome the two problems. In order to evaluate the proposed ensemble algorithm, we employ a well-known benchmark data set NSL-KDD (the improved version of dataset KDDCup99 produced by University of New Brunswick) to make comparisons between the proposed and 8 common ensemble algorithms. Particularly, each compared ensemble classifier uses the same 22 base classifiers, so that the differences in terms of the improvements toward the accuracy and reliability upon the base classifiers can be truly revealed. As a result, the proposed rank-based chain-mode consensus is proved to be a more effective ensemble solution than the traditional consensus approach, which outperforms the 8 ensemble algorithms by 20% on almost all compared metrices which include accuracy, precision, recall, F1-score and area under receiver operating characteristic curve.
Keywords: Consensus, curse of correlation, imbalanced classification, rank-based chain-mode ensemble.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 73411318 A Proposed Framework for Visualization to Teach Computer Science
Authors: Muhammed Yousoof, Mohd Sapiyan, Khaja Kamaluddin
Abstract:
Computer programming is considered a very difficult course by many computer science students. The reasons for the difficulties include cognitive load involved in programming, different learning styles of students, instructional methodology and the choice of the programming languages. To reduce the difficulties the following have been tried: pair programming, program visualization, different learning styles etc. However, these efforts have produced limited success. This paper reviews the problem and proposes a framework to help students overcome the difficulties involved.Keywords: Cognitive Load, Instructional Models, LearningStyles, Program Visualization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 145511317 Cloud Computing Support for Diagnosing Researches
Authors: A. Amirov, O. Gerget, V. Kochegurov
Abstract:
One of the main biomedical problem lies in detecting dependencies in semi structured data. Solution includes biomedical portal and algorithms (integral rating health criteria, multidimensional data visualization methods). Biomedical portal allows to process diagnostic and research data in parallel mode using Microsoft System Center 2012, Windows HPC Server cloud technologies. Service does not allow user to see internal calculations instead it provides practical interface. When data is sent for processing user may track status of task and will achieve results as soon as computation is completed. Service includes own algorithms and allows diagnosing and predicating medical cases. Approved methods are based on complex system entropy methods, algorithms for determining the energy patterns of development and trajectory models of biological systems and logical–probabilistic approach with the blurring of images.
Keywords: Biomedical portal, cloud computing, diagnostic and prognostic research, mathematical data analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 164411316 Accurate Positioning Method of Indoor Plastering Robot Based on Line Laser
Authors: Guanqiao Wang, Hongyang Yu
Abstract:
There is a lot of repetitive work in the traditional construction industry. These repetitive tasks can significantly improve production efficiency by replacing manual tasks with robots. Therefore, robots appear more and more frequently in the construction industry. Navigation and positioning is a very important task for construction robots, and the requirements for accuracy of positioning are very high. Traditional indoor robots mainly use radio frequency or vision methods for positioning. Compared with ordinary robots, the indoor plastering robot needs to be positioned closer to the wall for wall plastering, so the requirements for construction positioning accuracy are higher, and the traditional navigation positioning method has a large error, which will cause the robot to move. Without the exact position, the wall cannot be plastered or the error of plastering the wall is large. A positioning method is proposed, which is assisted by line lasers and uses image processing-based positioning to perform more accurate positioning on the traditional positioning work. In actual work, filter, edge detection, Hough transform and other operations are performed on the images captured by the camera. Each time the position of the laser line is found, it is compared with the standard value, and the position of the robot is moved or rotated to complete the positioning work. The experimental results show that the actual positioning error is reduced to less than 0.5 mm by this accurate positioning method.
Keywords: Indoor plastering robot, navigation, precise positioning, line laser, image processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 54011315 Teachers- Perceptions on the Use of E-Books as Textbooks in the Classroom
Authors: Abd Mutalib Embong, Azelin M Noor, Razol Mahari M Ali, Zulqarnain Abu Bakar, Abdur- Rahman Mohamed Amin
Abstract:
At the time where electronic books, or e-Books, offer students a fun way of learning , teachers who are used to the paper text books may find it as a new challenge to use it as a part of learning process. Precisely, there are various types of e-Books available to suit students- knowledge, characteristics, abilities, and interests. The paper discusses teachers- perceptions on the use of ebooks as a paper text book in the classroom. A survey was conducted on 72 teachers who use e-books as textbooks. It was discovered that a majority of these teachers had good perceptions on the use of ebooks. However, they had little problems using the devices. It can be overcome with some strategies and a suggested framework.Keywords: Classroom, E-books, perception, teacher.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 574911314 Sustainability Assessment of Agriculture and Biodiversity Issues through an Innovative Knowledge Mediation System Using Deliberation Support Tools and INTEGRAAL Method Based on Stakeholder Involvement
Authors: Ashiquer Rahman
Abstract:
The cutting edge knowledge mediation system called ‘ePLANETe’ provides a framework for building knowledge, tools, and methods for education, research, and sustainable practices, as well as the deliberative assessment support for Higher Education, Research Institutions, and elsewhere e.g., the collaborative learning and research on sustainability and biodiversity issues of territorial development sectors. The paper is to present the analytical perspective of the ‘ePLANETe’ concept and functionalities as an experimental platform for contributing to sustainability assessment. Now the ‘ePLANETe’ can be seen as experimentation of the challenges of “ICT for Green”. The digital technologies of ‘ePLANETe’ are exploited (i) to facilitate collaborative research, learning tools, and knowledge for sustainability challenges, and (ii) as deliberation support tools in pursuing of sustainability performance and practices in territorial governance, public policy, and business strategy, as well as in the higher education sectors itself. The paper investigates the dealing capacity of qualitative and quantitative assessment of agriculture sustainability through the stakeholder-based integrated assessment. Specifically, this paper focuses on integrating system methodologies with Deliberation Support Tools (DST) and INTEGRAAL method for collective assessment and decision-making in implementing regional plans. The report aims to identify the effective knowledge and tools to enable deliberations methodologies regarding practices on the sustainability of agriculture and biodiversity issues, societal responsibilities, and regional planning, concentrating on the question: “How to effectively mobilize resources (knowledge, tools, and methods) from different sources and at different scales regarding on agriculture and biodiversity issues to address sustainability challenges” that will create the scope for qualitative and quantitative assessments of sustainability as a new landmark of the agriculture sector.
Keywords: Biodiversity, Deliberation Support Tools, INTEGRAAL, stakeholder.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27111313 Automatic Classification of Lung Diseases from CT Images
Authors: Abobaker Mohammed Qasem Farhan, Shangming Yang, Mohammed Al-Nehari
Abstract:
Pneumonia is a kind of lung disease that creates congestion in the chest. Such pneumonic conditions lead to loss of life due to the severity of high congestion. Pneumonic lung disease is caused by viral pneumonia, bacterial pneumonia, or COVID-19 induced pneumonia. The early prediction and classification of such lung diseases help reduce the mortality rate. We propose the automatic Computer-Aided Diagnosis (CAD) system in this paper using the deep learning approach. The proposed CAD system takes input from raw computerized tomography (CT) scans of the patient's chest and automatically predicts disease classification. We designed the Hybrid Deep Learning Algorithm (HDLA) to improve accuracy and reduce processing requirements. The raw CT scans are pre-processed first to enhance their quality for further analysis. We then applied a hybrid model that consists of automatic feature extraction and classification. We propose the robust 2D Convolutional Neural Network (CNN) model to extract the automatic features from the pre-processed CT image. This CNN model assures feature learning with extremely effective 1D feature extraction for each input CT image. The outcome of the 2D CNN model is then normalized using the Min-Max technique. The second step of the proposed hybrid model is related to training and classification using different classifiers. The simulation outcomes using the publicly available dataset prove the robustness and efficiency of the proposed model compared to state-of-art algorithms.
Keywords: CT scans, COVID-19, deep learning, image processing, pneumonia, lung disease.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 61011312 Evaluation of the MCFLIRT Correction Algorithm in Head Motion from Resting State fMRI Data
Authors: V. Sacca, A. Sarica, F. Novellino, S. Barone, T. Tallarico, E. Filippelli, A. Granata, P. Valentino, A. Quattrone
Abstract:
In the last few years, resting-state functional MRI (rs-fMRI) was widely used to investigate the architecture of brain networks by investigating the Blood Oxygenation Level Dependent response. This technique represented an interesting, robust and reliable approach to compare pathologic and healthy subjects in order to investigate neurodegenerative diseases evolution. On the other hand, the elaboration of rs-fMRI data resulted to be very prone to noise due to confounding factors especially the head motion. Head motion has long been known to be a source of artefacts in task-based functional MRI studies, but it has become a particularly challenging problem in recent studies using rs-fMRI. The aim of this work was to evaluate in MS patients a well-known motion correction algorithm from the FMRIB's Software Library - MCFLIRT - that could be applied to minimize the head motion distortions, allowing to correctly interpret rs-fMRI results.
Keywords: Head motion correction, MCFLIRT algorithm, multiple sclerosis, resting state fMRI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 118611311 Complex-Valued Neural Network in Signal Processing: A Study on the Effectiveness of Complex Valued Generalized Mean Neuron Model
Authors: Anupama Pande, Ashok Kumar Thakur, Swapnoneel Roy
Abstract:
A complex valued neural network is a neural network which consists of complex valued input and/or weights and/or thresholds and/or activation functions. Complex-valued neural networks have been widening the scope of applications not only in electronics and informatics, but also in social systems. One of the most important applications of the complex valued neural network is in signal processing. In Neural networks, generalized mean neuron model (GMN) is often discussed and studied. The GMN includes a new aggregation function based on the concept of generalized mean of all the inputs to the neuron. This paper aims to present exhaustive results of using Generalized Mean Neuron model in a complex-valued neural network model that uses the back-propagation algorithm (called -Complex-BP-) for learning. Our experiments results demonstrate the effectiveness of a Generalized Mean Neuron Model in a complex plane for signal processing over a real valued neural network. We have studied and stated various observations like effect of learning rates, ranges of the initial weights randomly selected, error functions used and number of iterations for the convergence of error required on a Generalized Mean neural network model. Some inherent properties of this complex back propagation algorithm are also studied and discussed.Keywords: Complex valued neural network, Generalized Meanneuron model, Signal processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 173011310 A Robust Method for Hand Tracking Using Mean-shift Algorithm and Kalman Filter in Stereo Color Image Sequences
Authors: Mahmoud Elmezain, Ayoub Al-Hamadi, Robert Niese, Bernd Michaelis
Abstract:
Real-time hand tracking is a challenging task in many computer vision applications such as gesture recognition. This paper proposes a robust method for hand tracking in a complex environment using Mean-shift analysis and Kalman filter in conjunction with 3D depth map. The depth information solve the overlapping problem between hands and face, which is obtained by passive stereo measuring based on cross correlation and the known calibration data of the cameras. Mean-shift analysis uses the gradient of Bhattacharyya coefficient as a similarity function to derive the candidate of the hand that is most similar to a given hand target model. And then, Kalman filter is used to estimate the position of the hand target. The results of hand tracking, tested on various video sequences, are robust to changes in shape as well as partial occlusion.Keywords: Computer Vision and Image Analysis, Object Tracking, Gesture Recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 291911309 Review of Studies on Agility in Knowledge Management
Authors: Ferdi Sönmez, Başak Buluz
Abstract:
Agility in Knowledge Management (AKM) tries to capture agility requirements and their respective answers within the framework of knowledge and learning for organizations. Since it is rather a new construct, it is difficult to claim that it has been sufficiently discussed and analyzed in practical and theoretical realms. Like the term ‘agile learning’, it is also commonly addressed in the software development and information technology fields and across the related areas where those technologies can be applied. The organizational perspective towards AKM, seems to need some more time to become scholarly mature. Nevertheless, in the literature one can come across some implicit usages of this term occasionally. This research is aimed to explore the conceptual background of agility in KM, re-conceptualize it and extend it to business applications with a special focus on e-business.
Keywords: Knowledge management, agility requirements, agility in knowledge management, knowledge.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 125711308 Automated Fact-Checking By Incorporating Contextual Knowledge and Multi-Faceted Search
Authors: Wenbo Wang, Yi-fang Brook Wu
Abstract:
The spread of misinformation and disinformation has become a major concern, particularly with the rise of social media as a primary source of information for many people. As a means to address this phenomenon, automated fact-checking has emerged as a safeguard against the spread of misinformation and disinformation. Existing fact-checking approaches aim to determine whether a news claim is true or false, and they have achieved decent veracity prediction accuracy. However, the state of the art methods rely on manually verified external information to assist the checking model in making judgments, which requires significant human resources. This study presents a framework, SAC, which focuses on 1) augmenting the representation of a claim by incorporating additional context using general-purpose, comprehensive and authoritative data; 2) developing a search function to automatically select relevant, new and credible references; 3) focusing on the important parts of the representations of a claim and its reference that are most relevant to the fact-checking task. The experimental results demonstrate that: 1) Augmenting the representations of claims and references through the use of a knowledge base, combined with the multi-head attention technique, contributes to improved performance of fact-checking. 2) SAC with auto-selected references outperforms existing fact-checking approaches with manual selected references. Future directions of this study include I) exploring knowledge graph in Wikidata to dynamically augment the representations of claims and references without introducing too much noises; II) exploring semantic relations in claims and references to further enhance fact-checking.
Keywords: Fact checking, claim verification, Deep Learning, Natural Language Processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8111307 Probability Density Estimation Using Advanced Support Vector Machines and the Expectation Maximization Algorithm
Authors: Refaat M Mohamed, Ayman El-Baz, Aly A. Farag
Abstract:
This paper presents a new approach for the prob-ability density function estimation using the Support Vector Ma-chines (SVM) and the Expectation Maximization (EM) algorithms.In the proposed approach, an advanced algorithm for the SVM den-sity estimation which incorporates the Mean Field theory in the learning process is used. Instead of using ad-hoc values for the para-meters of the kernel function which is used by the SVM algorithm,the proposed approach uses the EM algorithm for an automatic optimization of the kernel. Experimental evaluation using simulated data set shows encouraging results.
Keywords: Density Estimation, SVM, Learning Algorithms, Parameters Estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 250611306 The Impacts of Off-Campus Students on Local Neighbourhood in Malaysia
Authors: Dasimah Bt Omar, Faizul Abdullah, Fatimah Yusof, Hazlina Hamdan, Naasah Nasrudin, Ishak Che Abullah
Abstract:
The impacts of near-campus student housing, or offcampus students accommodation cannot be ignored by the universities and as well as the community officials. Numerous scholarly studies, have highlighted the substantial economic impacts either; direct, indirect or induced, and cumulatively the roles of the universities have significantly contributed to the local economies. The issue of the impacts of off-campus student rental housing on neighbourhoods is one that has been of long-standing but increasing concern in Malaysia. Statistically, in Malaysia, there was approximately a total of 1.2 - 1.5 million students in 2009. By the year 2015, it is expected that 50 per cent of 18 to 30 year olds active population should gain access to university education, amounting to 120,000 yearly. The objectives of the research are to assess the impacts off-campus students on the local neighbourhood and specifically to obtain information on the living and learning conditions of off-campus students of Universiti Teknologi MARA Shah Alam, Malaysia. It is also to isolate those factors that may impede the successful learning so that priority can be given to them in subsequent policy implementations and actions by government and the higher education institutions.Keywords: off-campus students, neighbourhood, impacts, living and learning conditions
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 441211305 Automatic Rearrangement of Localized Graphical User Interface
Authors: Ágoston Winkler, Sándor Juhász
Abstract:
The localization of software products is essential for reaching the users of the international market. An important task for this is the translation of the user interface into local national languages. As graphical interfaces are usually optimized for the size of the texts in the original language, after the translation certain user controls (e.g. text labels and buttons in dialogs) may grow in such a manner that they slip above each other. This not only causes an unpleasant appearance but also makes the use of the program more difficult (or even impossible) which implies that the arrangement of the controls must be corrected subsequently. The correction should preserve the original structure of the interface (e.g. the relation of logically coherent controls), furthermore, it is important to keep the nicely proportioned design: the formation of large empty areas should be avoided. This paper describes an algorithm that automatically rearranges the controls of a graphical user interface based on the principles above. The algorithm has been implemented and integrated into a translation support system and reached results pleasant for the human eye in most test cases.Keywords: Graphical user interface, GUI, natural languages, software localization, translation support systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 168411304 Online Brands: A Comparative Study of World Top Ranked Universities with Science and Technology Programs
Authors: Zullina H. Shaari, Amzairi Amar, Abdul Mutalib Embong, Hezlina Hashim
Abstract:
University websites are considered as one of the brand primary touch points for multiple stakeholders, but most of them did not have great designs to create favorable impressions. Some of the elements that web designers should carefully consider are the appearance, the content, the functionality, usability and search engine optimization. However, priority should be placed on website simplicity and negative space. In terms of content, previous research suggests that universities should include reputation, learning environment, graduate career prospects, image destination, cultural integration, and virtual tour on their websites. The study examines how top 200 world ranking science and technology-based universities present their brands online and whether the websites capture the content dimensions. Content analysis of the websites revealed that the top ranking universities captured these dimensions at varying degree. Besides, the UK-based university had better priority on website simplicity and negative space compared to the Malaysian-based university.
Keywords: Science and technology programs, top-ranked universities, online brands, university websites.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 229211303 Discrimination of Seismic Signals Using Artificial Neural Networks
Authors: Mohammed Benbrahim, Adil Daoudi, Khalid Benjelloun, Aomar Ibenbrahim
Abstract:
The automatic discrimination of seismic signals is an important practical goal for earth-science observatories due to the large amount of information that they receive continuously. An essential discrimination task is to allocate the incoming signal to a group associated with the kind of physical phenomena producing it. In this paper, two classes of seismic signals recorded routinely in geophysical laboratory of the National Center for Scientific and Technical Research in Morocco are considered. They correspond to signals associated to local earthquakes and chemical explosions. The approach adopted for the development of an automatic discrimination system is a modular system composed by three blocs: 1) Representation, 2) Dimensionality reduction and 3) Classification. The originality of our work consists in the use of a new wavelet called "modified Mexican hat wavelet" in the representation stage. For the dimensionality reduction, we propose a new algorithm based on the random projection and the principal component analysis.Keywords: Seismic signals, Wavelets, Dimensionality reduction, Artificial neural networks, Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 163411302 AI-based Radio Resource and Transmission Opportunity Allocation for 5G-V2X HetNets: NR and NR-U networks
Authors: Farshad Zeinali, Sajedeh Norouzi, Nader Mokari, Eduard A. Jorswieck
Abstract:
The capacity of fifth-generation (5G)vehicle-to-everything (V2X) networks poses significant challenges.To address this challenge, this paper utilizes New Radio (NR) and New Radio Unlicensed (NR-U) networks to develop a vehicular heterogeneous network (HetNet). We propose a framework, named joint BS assignment and resource allocation (JBSRA) for mobile V2X users and also consider coexistence schemes based on flexible duty cycle (DC) mechanism for unlicensed bands. Our objective is to maximize the average throughput of vehicles, while guarantying the WiFi users throughput. In simulations based on deep reinforcement learning (DRL) algorithms such as deep deterministic policy gradient (DDPG) and deep Q network (DQN), our proposed framework outperforms existing solutions that rely on fixed DC or schemes without consideration of unlicensed bands.
Keywords: Vehicle-to-everything, resource allocation, BS assignment, new radio, new radio unlicensed, coexistence NR-U and WiFi, deep deterministic policy gradient, Deep Q-network, Duty cycle mechanism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32611301 Design of Wireless Sensor Networks for Environmental Monitoring Using LoRa
Authors: Shathya Duobiene, Gediminas Račiukaitis
Abstract:
Wireless Sensor Networks (WSNs) are an emerging technology that opens up a new field of research. The significant advance in WSN leads to an increasing prevalence of various monitoring applications and real-time assistance in labs and factories. Selective surface activation induced by laser (SSAIL) is a promising technology that adapts to the WSN design freedom of shape, dimensions, and material. This article proposes and implements a WSN-based temperature and humidity monitoring system, and its deployed architectures made for the monitoring task are discussed. Experimental results of developed sensor nodes implemented in university campus laboratories are shown. Then, the simulation and the implementation results obtained through monitoring scenarios are displayed. At last, a convenient solution to keep the WSN alive and functional as long as possible is proposed. Unlike other existing models, on success, the node is self-powered and can utilize minimal power consumption for sensing and data transmission to the base station.
Keywords: Internet of Things, IoT, network formation, sensor nodes, SSAIL technology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38511300 Didactical and Semiotic Affordance of GeoGebra in a Productive Mathematical Discourse
Authors: I. Benning
Abstract:
Using technology to expand the learning space is critical for a productive mathematical discourse. This is a case study of two teachers who developed and enacted GeoGebra-based mathematics lessons following their engagement in a two-year professional development. The didactical and semiotic affordance of GeoGebra in widening the learning space for a productive mathematical discourse was explored. The approach of thematic analysis was used for lesson artefact, lesson observation, and interview data. The results indicated that constructing tools in GeoGebra provided a didactical milieu where students used them to explore mathematical concepts with little or no support from their teacher. The prompt feedback from the GeoGebra motivated students to practice mathematical concepts repeatedly in which they privately rethink their solutions before comparing their answers with that of their colleagues. The constructing tools enhanced self-discovery, team spirit, and dialogue among students. With regards to the semiotic construct, the tools widened the physical and psychological atmosphere of the classroom by providing animations that served as virtual concrete to enhance the recording, manipulation, testing of a mathematical idea, construction, and interpretation of geometric objects. These findings advance the discussion of widening the classroom for a productive mathematical discourse within the context of the mathematics curriculum of Ghana and similar sub-Saharan African countries.
Keywords: GeoGebra, theory of didactical situation, semiotic mediation, mathematics laboratory, mathematical discussion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39611299 A Grid-based Neural Network Framework for Multimodal Biometrics
Authors: Sitalakshmi Venkataraman
Abstract:
Recent scientific investigations indicate that multimodal biometrics overcome the technical limitations of unimodal biometrics, making them ideally suited for everyday life applications that require a reliable authentication system. However, for a successful adoption of multimodal biometrics, such systems would require large heterogeneous datasets with complex multimodal fusion and privacy schemes spanning various distributed environments. From experimental investigations of current multimodal systems, this paper reports the various issues related to speed, error-recovery and privacy that impede the diffusion of such systems in real-life. This calls for a robust mechanism that caters to the desired real-time performance, robust fusion schemes, interoperability and adaptable privacy policies. The main objective of this paper is to present a framework that addresses the abovementioned issues by leveraging on the heterogeneous resource sharing capacities of Grid services and the efficient machine learning capabilities of artificial neural networks (ANN). Hence, this paper proposes a Grid-based neural network framework for adopting multimodal biometrics with the view of overcoming the barriers of performance, privacy and risk issues that are associated with shared heterogeneous multimodal data centres. The framework combines the concept of Grid services for reliable brokering and privacy policy management of shared biometric resources along with a momentum back propagation ANN (MBPANN) model of machine learning for efficient multimodal fusion and authentication schemes. Real-life applications would be able to adopt the proposed framework to cater to the varying business requirements and user privacies for a successful diffusion of multimodal biometrics in various day-to-day transactions.Keywords: Back Propagation, Grid Services, MultimodalBiometrics, Neural Networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 191711298 Using Self Organizing Feature Maps for Classification in RGB Images
Authors: Hassan Masoumi, Ahad Salimi, Nazanin Barhemmat, Babak Gholami
Abstract:
Artificial neural networks have gained a lot of interest as empirical models for their powerful representational capacity, multi input and output mapping characteristics. In fact, most feedforward networks with nonlinear nodal functions have been proved to be universal approximates. In this paper, we propose a new supervised method for color image classification based on selforganizing feature maps (SOFM). This algorithm is based on competitive learning. The method partitions the input space using self-organizing feature maps to introduce the concept of local neighborhoods. Our image classification system entered into RGB image. Experiments with simulated data showed that separability of classes increased when increasing training time. In additional, the result shows proposed algorithms are effective for color image classification.Keywords: Classification, SOFM, neural network, RGB images.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 231911297 An Artificial Immune System for a Multi Agent Robotics System
Authors: Chingtham Tejbanta Singh, Shivashankar B. Nair
Abstract:
This paper explores an application of an adaptive learning mechanism for robots based on the natural immune system. Most of the research carried out so far are based either on the innate or adaptive characteristics of the immune system, we present a combination of these to achieve behavior arbitration wherein a robot learns to detect vulnerable areas of a track and adapts to the required speed over such portions. The test bed comprises of two Lego robots deployed simultaneously on two predefined near concentric tracks with the outer robot capable of helping the inner one when it misaligns. The helper robot works in a damage-control mode by realigning itself to guide the other robot back onto its track. The panic-stricken robot records the conditions under which it was misaligned and learns to detect and adapt under similar conditions thereby making the overall system immune to such failures.
Keywords: Adaptive, AIS, Behavior Arbitration, ClonalSelection, Immune System, Innate, Robot, Self Healing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 134911296 Differences in IT Effectiveness among Firms: An Empirical Investigation
Authors: Crystal X. Jiang, Tess Han, George J. Titus, Matthew J. Liberatore
Abstract:
Information is a critical asset and an important source for gaining competitive advantage in firms. The effective maintenance of IT becomes an important task. In order to better understand the determinants of IT effectiveness, this study employs the Industrial Organization (I/O) and Resource Based View (RBV) theories and investigates the industry effect and several major firmspecific factors in relation to their impact on firms- IT effectiveness. The data consist of a panel data of ten-year observations of firms whose IT excellence had been recognized by the CIO Magazine. The non-profit organizations were deliberately excluded, as explained later. The results showed that the effectiveness of IT management varied significantly across industries. Industry also moderated the effects of firm demographic factors such as size and age on IT effectiveness. Surprisingly, R & D investment intensity had negative correlation to IT effectiveness. For managers and practitioners, this study offers some insights for evaluation criteria and expectation for IT project success. Finally, the empirical results indicate that the sustainability of IT effectiveness appears to be short in duration.
Keywords: Firm effect, industry effect, IT effectiveness, sustained IT effectiveness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 131911295 Automated User Story Driven Approach for Web-Based Functional Testing
Authors: Mahawish Masud, Muhammad Iqbal, M. U. Khan, Farooque Azam
Abstract:
Manual writing of test cases from functional requirements is a time-consuming task. Such test cases are not only difficult to write but are also challenging to maintain. Test cases can be drawn from the functional requirements that are expressed in natural language. However, manual test case generation is inefficient and subject to errors. In this paper, we have presented a systematic procedure that could automatically derive test cases from user stories. The user stories are specified in a restricted natural language using a well-defined template. We have also presented a detailed methodology for writing our test ready user stories. Our tool “Test-o-Matic” automatically generates the test cases by processing the restricted user stories. The generated test cases are executed by using open source Selenium IDE. We evaluate our approach on a case study, which is an open source web based application. Effectiveness of our approach is evaluated by seeding faults in the open source case study using known mutation operators. Results show that the test case generation from restricted user stories is a viable approach for automated testing of web applications.Keywords: Automated testing, natural language, user story modeling, software engineering, software testing, test case specification, transformation and automation, user story, web application testing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 294311294 Model of Optimal Centroids Approach for Multivariate Data Classification
Authors: Pham Van Nha, Le Cam Binh
Abstract:
Particle swarm optimization (PSO) is a population-based stochastic optimization algorithm. PSO was inspired by the natural behavior of birds and fish in migration and foraging for food. PSO is considered as a multidisciplinary optimization model that can be applied in various optimization problems. PSO’s ideas are simple and easy to understand but PSO is only applied in simple model problems. We think that in order to expand the applicability of PSO in complex problems, PSO should be described more explicitly in the form of a mathematical model. In this paper, we represent PSO in a mathematical model and apply in the multivariate data classification. First, PSOs general mathematical model (MPSO) is analyzed as a universal optimization model. Then, Model of Optimal Centroids (MOC) is proposed for the multivariate data classification. Experiments were conducted on some benchmark data sets to prove the effectiveness of MOC compared with several proposed schemes.Keywords: Analysis of optimization, artificial intelligence-based optimization, optimization for learning and data analysis, global optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 912