Search results for: Traction Power Supply
2156 Using Game Engines in Lightning Shielding: The Application of the Rolling Spheres Method on Virtual As-Built Power Substations
Authors: Yuri A. Gruber, Matheus Rosendo, Ulisses G. A. Casemiro, Klaus de Geus, Rafael T. Bee
Abstract:
Lightning strikes can cause severe negative impacts to the electrical sector causing direct damage to equipment as well as shutdowns, especially when occurring in power substations. In order to mitigate this problem, a meticulous planning of the power substation protection system is of vital importance. A critical part of this is the distribution of shielding wires through the substation, which creates a 3D imaginary protection mesh similar to a circus tarpaulin. Equipment enclosed in the volume defined by that 3D mesh is considered protected against lightning strikes. The use of traditional methods of longitudinal cutting analysis based on 2D CAD tools makes the process laborious and the results obtained may not guarantee satisfactory protection of electrical equipment. This work describes the application of a Game Engine to the problem of lightning protection of power substations providing the visualization of the 3D protection mesh, the amount of protected components and the highlight of equipment which remain unprotected. In addition, aspects regarding the implementation and the advantages of approaching the problem using Unreal® Engine 4 are described. In order to validate results, a comparison with traditional 2D methods is applied to the same case study to which the proposed technique has been applied. Finally, a comparative study involving different levels of protection using the technique developed in this work is presented, showing that modern game engines can be a powerful accessory for simulations in several areas of engineering.
Keywords: Game engine, rolling spheres method, substation protection, UE4, Unreal® Engine 4.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12412155 Simulation Based Performance Comparison of Different Control Methods of ZSI Feeding Industrial Drives
Authors: Parag Nihawan, Ravinder Singh Bhatia, Dinesh Kumar Jain
Abstract:
Industrial drives are source of serious power quality problems. In this, two typical industrial drives have been dealt with, namely, FOC induction motor drives and DTC induction motor drive. The Z-source inverter is an emerging topology of power electronic converters which is capable of buck boost characteristics. The performances of different control methods based Z-source inverters feeding these industrial drives have been investigated, in this work. The test systems have been modeled and simulated in MATLAB/SIMULINK. The results obtained after carrying out these simulations have been used to draw the conclusions.
Keywords: Z-Source Inverter, total harmonic distortion, direct torque control, field orientation control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10342154 Analysis of Performance of 3T1D Dynamic Random-Access Memory Cell
Authors: Nawang Chhunid, Gagnesh Kumar
Abstract:
On-chip memories consume a significant portion of the overall die space and power in modern microprocessors. On-chip caches depend on Static Random-Access Memory (SRAM) cells and scaling of technology occurring as per Moore’s law. Unfortunately, the scaling is affecting stability, performance, and leakage power which will become major problems for future SRAMs in aggressive nanoscale technologies due to increasing device mismatch and variations. 3T1D Dynamic Random-Access Memory (DRAM) cell is a non-destructive read DRAM cell with three transistors and a gated diode. In 3T1D DRAM cell gated diode (D1) acts as a storage device and also as an amplifier, which leads to fast read access. Due to its high tolerance to process variation, high density, and low cost of memory as compared to 6T SRAM cell, it is universally used by the advanced microprocessor for on chip data and program memory. In the present paper, it has been shown that 3T1D DRAM cell can perform better in terms of fast read access as compared to 6T, 4T, 3T SRAM cells, respectively.Keywords: DRAM cell, read access time, tanner EDA tool write access time and retention time, average power dissipation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13402153 Adaptive Routing Protocol for Dynamic Wireless Sensor Networks
Authors: Fayez Mostafa Alhamoui, Adnan Hadi Mahdi Al- Helali
Abstract:
The main issue in designing a wireless sensor network (WSN) is the finding of a proper routing protocol that complies with the several requirements of high reliability, short latency, scalability, low power consumption, and many others. This paper proposes a novel routing algorithm that complies with these design requirements. The new routing protocol divides the WSN into several subnetworks and each sub-network is divided into several clusters. This division is designed to reduce the number of radio transmission and hence decreases the power consumption. The network division may be changed dynamically to adapt with the network changes and allows the realization of the design requirements.Keywords: Wireless sensor networks, routing protocols, ad hoc topology, cluster, sub-network, WSN design requirements.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19642152 An Eigen-Approach for Estimating the Direction-of Arrival of Unknown Number of Signals
Authors: Dia I. Abu-Al-Nadi, M. J. Mismar, T. H. Ismail
Abstract:
A technique for estimating the direction-of-arrival (DOA) of unknown number of source signals is presented using the eigen-approach. The eigenvector corresponding to the minimum eigenvalue of the autocorrelation matrix yields the minimum output power of the array. Also, the array polynomial with this eigenvector possesses roots on the unit circle. Therefore, the pseudo-spectrum is found by perturbing the phases of the roots one by one and calculating the corresponding array output power. The results indicate that the DOAs and the number of source signals are estimated accurately in the presence of a wide range of input noise levels.
Keywords: Array signal processing, direction-of-arrival, antenna arrays, eigenvalues, eigenvectors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13792151 Impact of Wind Energy on Cost and Balancing Reserves
Authors: A. Khanal, A. Osareh, G. Lebby
Abstract:
Wind energy offers a significant advantage such as no fuel costs and no emissions from generation. However, wind energy sources are variable and non-dispatchable. The utility grid is able to accommodate the variability of wind in smaller proportion along with the daily load. However, at high penetration levels, the variability can severely impact the utility reserve requirements and the cost associated with it. In this paper the impact of wind energy is evaluated in detail in formulating the total utility cost. The objective is to minimize the overall cost of generation while ensuring the proper management of the load. Overall cost includes the curtailment cost, reserve cost and the reliability cost, as well as any other penalty imposed by the regulatory authority. Different levels of wind penetrations are explored and the cost impacts are evaluated. As the penetration level increases significantly, the reliability becomes a critical question to be answered. Here we increase the penetration from the wind yet keep the reliability factor within the acceptable limit provided by NERC. This paper uses an economic dispatch (ED) model to incorporate wind generation into the power grid. Power system costs are analyzed at various wind penetration levels using Linear Programming. The goal of this study is show how the increases in wind generation will affect power system economics.
Keywords: Balancing Reserves, Optimization, Wind Energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26462150 Reduced Rule Based Fuzzy Logic Controlled Isolated Bidirectional Converter Operating in Extended Phase Shift Control for Bidirectional Energy Transfer
Authors: Anupam Kumar, Abdul Hamid Bhat, Pramod Agarwal
Abstract:
Bidirectional energy transfer capability with high efficiency and reduced cost is fast gaining prominence in the central part of a lot of power conversion systems in Direct Current (DC) microgrid. Preferably, under the economics constraints, these systems utilise a single high efficiency power electronics conversion system and a dual active bridge converter. In this paper, modeling and performance of Dual Active Bridge (DAB) converter with Extended Phase Shift (EPS) is evaluated with two batteries on both sides of DC bus and bidirectional energy transfer is facilitated and this is further compared with the Single Phase Shift (SPS) mode of operation. Optimum operating zone is identified through exhaustive simulations using MATLAB/Simulink and SimPowerSystem software. Reduced rules based fuzzy logic controller is implemented for closed loop control of DAB converter. The control logic enables the bidirectional energy transfer within the batteries even at lower duty ratios. Charging and discharging of batteries is supervised by the fuzzy logic controller. State of charge, current and voltage for both the batteries are plotted in the battery characteristics. Power characteristics of batteries are also obtained using MATLAB simulations.
Keywords: Fuzzy logic controller, rule base, membership functions, dual active bridge converter, bidirectional power flow, duty ratio, extended phase shift, state of charge.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8702149 Optimization of Multifunctional Battery Structures for Mars
Authors: James A Foster, Guglielmo S Aglietti
Abstract:
Multifunctional structures are a potentially disruptive technology that allows for significant mass savings on spacecraft. The specific concept addressed herein is that of a multifunctional power structure. In this paper, a parametric optimisation of the design of such a structure that uses commercially available battery cells is presented. Using numerical modelling, it was found that there exists several trade-offs aboutthe conflict between the capacity of the panel and its mechanical properties. It was found that there is no universal optimal location for the cells. Placing them close to the mechanical interfaces increases loading in the mechanically weak cells whereas placing them at the centre of the panel increases the stress inthe panel and reduces the stiffness of the structure.Keywords: Design Optimization, Multifunctional Structures, Power Storage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16342148 Stochastic Optimization of a Vendor-Managed Inventory Problem in a Two-Echelon Supply Chain
Authors: Bita Payami-Shabestari, Dariush Eslami
Abstract:
The purpose of this paper is to develop a multi-product economic production quantity model under vendor management inventory policy and restrictions including limited warehouse space, budget, and number of orders, average shortage time and maximum permissible shortage. Since the “costs” cannot be predicted with certainty, it is assumed that data behave under uncertain environment. The problem is first formulated into the framework of a bi-objective of multi-product economic production quantity model. Then, the problem is solved with three multi-objective decision-making (MODM) methods. Then following this, three methods had been compared on information on the optimal value of the two objective functions and the central processing unit (CPU) time with the statistical analysis method and the multi-attribute decision-making (MADM). The results are compared with statistical analysis method and the MADM. The results of the study demonstrate that augmented-constraint in terms of optimal value of the two objective functions and the CPU time perform better than global criteria, and goal programming. Sensitivity analysis is done to illustrate the effect of parameter variations on the optimal solution. The contribution of this research is the use of random costs data in developing a multi-product economic production quantity model under vendor management inventory policy with several constraints.Keywords: Economic production quantity, random cost, supply chain management, vendor-managed inventory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6832147 On the Mathematical Model of Vascular Endothelial Growth Connected with a Tumor Proliferation
Authors: N. Khatiashvili, Ch. Pirumova, V. Akhobadze
Abstract:
In the paper the mathematical model of tumor growth is considered. New capillary network formation, which supply cancer cells with the nutrients, is taken into the account. A formula estimating a tumor growth in connection with the number of capillaries is obtained.Keywords: Differential Equations, Mathematical Models, Vascular Endothelial, Tumor
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12272146 Mitigation of Flicker using STATCOM with Three-Level 12-pulse Voltage Source Inverter
Authors: Ali Z a'fari
Abstract:
Voltage flicker is a disturbance in electrical power systems. The reason for this disturbance is mainly the large nonlinear loads such as electric arc furnaces. Synchronous static compensator (STATCOM) is considered as a proper technique to mitigate the voltage flicker. Application of more suitable and precise power electronic converter leads to a more precise performance of the compensator. In this paper a three-level 12-pulse voltage source inverter (VSI) with a 12-terminal transformer connected to the ac system is studied and the obtained results are compared with the performance of a STATCOM using a simple two-level VSI and an optimal and more precise performance of the proposed scheme is achieved.Keywords: Flicker mitigation, STATCOM, Inverter, 12-pulse, 3- level
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19932145 ZigBee Wireless Sensor Nodes with Hybrid Energy Storage System Based On Li-ion Battery and Solar Energy Supply
Authors: Chia-Chi Chang, Chuan-Bi Lin, Chia-Min Chan
Abstract:
Most ZigBee sensor networks to date make use of nodes with limited processing, communication, and energy capabilities. Energy consumption is of great importance in wireless sensor applications as their nodes are commonly battery-driven. Once ZigBee nodes are deployed outdoors, limited power may make a sensor network useless before its purpose is complete. At present, there are two strategies for long node and network lifetime. The first strategy is saving energy as much as possible. The energy consumption will be minimized through switching the node from active mode to sleep mode and routing protocol with ultra-low energy consumption. The second strategy is to evaluate the energy consumption of sensor applications as accurately as possible. Erroneous energy model may render a ZigBee sensor network useless before changing batteries.
In this paper, we present a ZigBee wireless sensor node with four key modules: a processing and radio unit, an energy harvesting unit, an energy storage unit, and a sensor unit. The processing unit uses CC2530 for controlling the sensor, carrying out routing protocol, and performing wireless communication with other nodes. The harvesting unit uses a 2W solar panel to provide lasting energy for the node. The storage unit consists of a rechargeable 1200 mAh Li-ion battery and a battery charger using a constant-current/constant-voltage algorithm. Our solution to extend node lifetime is implemented. Finally, a long-term sensor network test is used to exhibit the functionality of the solar powered system.
Keywords: ZigBee, Li-ion battery, solar panel, CC2530.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30912144 Application of Neural Network for Contingency Ranking Based on Combination of Severity Indices
Authors: S. Jadid, S. Jalilzadeh
Abstract:
In this paper, an improved technique for contingency ranking using artificial neural network (ANN) is presented. The proposed approach is based on multi-layer perceptrons trained by backpropagation to contingency analysis. Severity indices in dynamic stability assessment are presented. These indices are based on the concept of coherency and three dot products of the system variables. It is well known that some indices work better than others for a particular power system. This paper along with test results using several different systems, demonstrates that combination of indices with ANN provides better ranking than a single index. The presented results are obtained through the use of power system simulation (PSS/E) and MATLAB 6.5 software.Keywords: composite indices, transient stability, neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22252143 An Investigation into the Isolation and Bandwidth Characteristics of X-Band Chireix PA Combiners
Authors: D. P. Clayton, E. A. Ball
Abstract:
This paper describes an investigation into the isolation characteristics and bandwidth performance of radio frequency (RF) combiners that are used as part of Chireix power amplifier (PA) architectures, designed for use in the X-Band range of frequencies. Combiner designs investigated are the typical Chireix and Wilkinson configurations which also include simulation of the Wilkinson using manufacturer’s data for the isolation resistor. Another simulation was the less common approach of using a Branchline coupler to form the combiner, as well as simulation results from adding an additional stage. This paper presents the findings of this investigation and compares the bandwidth performance and isolation characteristics to determine suitability.
Keywords: Bandwidth, Chireix, couplers, outphasing, power amplifiers, Wilkinson, X-Band.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1882142 Sensitivity Analysis of External-Rotor Permanent Magnet Assisted Synchronous Reluctance Motor
Authors: Hadi Aghazadeh, Seyed Ebrahim Afjei, Alireza Siadatan
Abstract:
In this paper, a proper approach is taken to assess a set of the most effective rotor design parameters for an external-rotor permanent magnet assisted synchronous reluctance motor (PMaSynRM) and therefore to tackle the design complexity of the rotor structure. There are different advantages for introducing permanent magnets into the rotor flux barriers, some of which are to saturate the rotor iron ribs, to increase the motor torque density and to improve the power factor. Moreover, the d-axis and q-axis inductances are of great importance to simultaneously achieve maximum developed torque and low torque ripple. Therefore, sensitivity analysis of the rotor geometry of an 8-pole external-rotor permanent magnet assisted synchronous reluctance motor is performed. Several magnetically accurate finite element analyses (FEA) are conducted to characterize the electromagnetic performance of the motor. The analyses validate torque and power factor equations for the proposed external-rotor motor. Based upon the obtained results and due to an additional term, permanent magnet torque, added to the reluctance torque, the electromagnetic torque of the PMaSynRM increases.
Keywords: Permanent magnet assisted synchronous reluctance motor, flux barrier, flux carrier, electromagnetic torque, and power factor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14282141 Design of Multiplier-free State-Space Digital Filters
Authors: Tamal Bose, Zhurun Zhang, Miloje Radenkovic, Ojas Chauhan
Abstract:
In this paper, a novel approach is presented for designing multiplier-free state-space digital filters. The multiplier-free design is obtained by finding power-of-2 coefficients and also quantizing the state variables to power-of-2 numbers. Expressions for the noise variance are derived for the quantized state vector and the output of the filter. A “structuretransformation matrix" is incorporated in these expressions. It is shown that quantization effects can be minimized by properly designing the structure-transformation matrix. Simulation results are very promising and illustrate the design algorithm.Keywords: Digital filters, minimum noise, multiplier-free, quantization, state-space.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15322140 An Ultra-Low Output Impedance Power Amplifier for Tx Array in 7-Tesla Magnetic Resonance Imaging
Authors: Ashraf Abuelhaija, Klaus Solbach
Abstract:
In Ultra high-field MRI scanners (3T and higher), parallel RF transmission techniques using multiple RF chains with multiple transmit elements are a promising approach to overcome the high-field MRI challenges in terms of inhomogeneity in the RF magnetic field and SAR. However, mutual coupling between the transmit array elements disturbs the desirable independent control of the RF waveforms for each element. This contribution demonstrates a 18 dB improvement of decoupling (isolation) performance due to the very low output impedance of our 1 kW power amplifier.Keywords: EM coupling, Inter-element isolation, Magnetic resonance imaging (MRI), Parallel Transmit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17432139 A High-Speed and Low-Energy Ternary Content Addressable Memory Design Using Feedback in Match-Line Sense Amplifier
Authors: Syed Iftekhar Ali, M. S. Islam
Abstract:
In this paper we present an energy efficient match-line (ML) sensing scheme for high-speed ternary content-addressable memory (TCAM). The proposed scheme isolates the sensing unit of the sense amplifier from the large and variable ML capacitance. It employs feedback in the sense amplifier to successfully detect a match while keeping the ML voltage swing low. This reduced voltage swing results in large energy saving. Simulation performed using 130nm 1.2V CMOS logic shows at least 30% total energy saving in our scheme compared to popular current race (CR) scheme for similar search speed. In terms of speed, dynamic energy, peak power consumption and transistor count our scheme also shows better performance than mismatch-dependant (MD) power allocation technique which also employs feedback in the sense amplifier. Additionally, the implementation of our scheme is simpler than CR or MD scheme because of absence of analog control voltage and programmable delay circuit as have been used in those schemes.Keywords: content-addressable memory, energy consumption, feedback, peak power, sensing scheme, sense amplifier, ternary.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18212138 Applying Wavelet Entropy Principle in Fault Classification
Authors: S. El Safty, A. El-Zonkoly
Abstract:
The ability to detect and classify the type of fault plays a great role in the protection of power system. This procedure is required to be precise with no time consumption. In this paper detection of fault type has been implemented using wavelet analysis together with wavelet entropy principle. The simulation of power system is carried out using PSCAD/EMTDC. Different types of faults were studied obtaining various current waveforms. These current waveforms were decomposed using wavelet analysis into different approximation and details. The wavelet entropy of such decompositions is analyzed reaching a successful methodology for fault classification. The suggested approach is tested using different fault types and proven successful identification for the type of fault.Keywords: Fault classification, wavelet transform, waveletentropy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19372137 Design of a Hybrid Fuel Cell with Battery Energy Storage for Stand-Alone Distributed Generation Applications
Authors: N. A. Zambri, A. Mohamed, H. Shareef, M. Z. C. Wanik
Abstract:
This paper presents the modeling and simulation of a hybrid proton exchange membrane fuel cell (PEMFC) with an energy storage system for use in a stand-alone distributed generation (DG) system. The simulation model consists of fuel cell DG, lead-acid battery, maximum power point tracking and power conditioning unit which is modeled in the MATLAB/Simulink platform. Poor loadfollowing characteristics and slow response to rapid load changes are some of the weaknesses of PEMFC because of the gas processing reaction and the fuel cell dynamics. To address the load-tracking issues in PEMFC, a hybrid PEMFC and battery storage system is considered and modelled. The model utilizes PEMFC as the main energy source whereas the battery functions as energy storage to compensate for the limitations of PEMFC.Simulation results are given to show the overall system performance under light and heavyloading conditions.
Keywords: Hybrid, Lead–Acid Battery, Maximum Power Point Tracking, Proton Exchange Membrane Fuel Cell.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31232136 Model Predictive Control of Three Phase Inverter for PV Systems
Authors: Irtaza M. Syed, Kaamran Raahemifar
Abstract:
This paper presents a model predictive control (MPC) of a utility interactive three phase inverter (TPI) for a photovoltaic (PV) system at commercial level. The proposed model uses phase locked loop (PLL) to synchronize the TPI with the power electric grid (PEG) and performs MPC control in a dq reference frame. TPI model consists of a boost converter (BC), maximum power point tracking (MPPT) control, and a three-leg voltage source inverter (VSI). The operational model of VSI is used to synthesize the sinusoidal current and track the reference. The model is validated using a 35.7 kW PV system in Matlab/Simulink. Implementation results show simplicity and accuracy, as well as reliability of the model.Keywords: Model predictive control, three phase voltage source inverter, PV system, Matlab/Simulink.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37662135 Frequency- and Content-Based Tag Cloud Font Distribution Algorithm
Authors: Ágnes Bogárdi-Mészöly, Takeshi Hashimoto, Shohei Yokoyama, Hiroshi Ishikawa
Abstract:
The spread of Web 2.0 has caused user-generated content explosion. Users can tag resources to describe and organize them. Tag clouds provide rough impression of relative importance of each tag within overall cloud in order to facilitate browsing among numerous tags and resources. The goal of our paper is to enrich visualization of tag clouds. A font distribution algorithm has been proposed to calculate a novel metric based on frequency and content, and to classify among classes from this metric based on power law distribution and percentages. The suggested algorithm has been validated and verified on the tag cloud of a real-world thesis portal.
Keywords: Tag cloud, font distribution algorithm, frequency-based, content-based, power law.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20932134 Optimal Location of Multi Type Facts Devices for Multiple Contingencies Using Particle Swarm Optimization
Authors: S. Sutha, N. Kamaraj
Abstract:
In deregulated operating regime power system security is an issue that needs due thoughtfulness from researchers in the horizon of unbundling of generation and transmission. Electric power systems are exposed to various contingencies. Network contingencies often contribute to overloading of branches, violation of voltages and also leading to problems of security/stability. To maintain the security of the systems, it is desirable to estimate the effect of contingencies and pertinent control measurement can be taken on to improve the system security. This paper presents the application of particle swarm optimization algorithm to find the optimal location of multi type FACTS devices in a power system in order to eliminate or alleviate the line over loads. The optimizations are performed on the parameters, namely the location of the devices, their types, their settings and installation cost of FACTS devices for single and multiple contingencies. TCSC, SVC and UPFC are considered and modeled for steady state analysis. The selection of UPFC and TCSC suitable location uses the criteria on the basis of improved system security. The effectiveness of the proposed method is tested for IEEE 6 bus and IEEE 30 bus test systems.
Keywords: Contingency Severity Index, Particle Swarm Optimization, Performance Index, Static Security Assessment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27662133 Energy-Efficient Sensing Concept for a Micromachined Yaw Rate Sensor
Authors: D. Oshinubi, M. Rocznik, K. Dostert
Abstract:
The need for micromechanical inertial sensors is increasing in future electronic stability control (ESC) and other positioning, navigation and guidance systems. Due to the rising density of sensors in automotive and consumer devices the goal is not only to get high performance, robustness and smaller package sizes, but also to optimize the energy management of the overall sensor system. This paper presents an evaluation concept for a surface micromachined yaw rate sensor. Within this evaluation concept an energy-efficient operation of the drive mode of the yaw rate sensor is enabled. The presented system concept can be realized within a power management subsystem.Keywords: inertial sensors, micromachined gyros, gyro sensing concepts, power management, FPGA
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15062132 Case Study of the Roma Tomato Distribution Chain: A Dynamic Interface for an Agricultural Enterprise in Mexico
Authors: Ernesto A. Lagarda-Leyva, Manuel A. Valenzuela L., José G. Oshima C., Arnulfo A. Naranjo-Flores
Abstract:
From August to December of 2016, a diagnostic and strategic planning study was carried out on the supply chain of the company Agropecuaria GABO S.A. de C.V. The final product of the study was the development of the strategic plan and a project portfolio to meet the demands of the three links in the supply chain of the Roma tomato exported annually to the United States of America. In this project, the strategic objective of ensuring the proper handling of the product was selected and one of the goals associated with this was the employment of quantitative methods to support decision making. Considering the antecedents, the objective of this case study was to develop a model to analyze the behavioral dynamics in the distribution chain, from the logistics of storage and shipment of Roma tomato in 81-case pallets (11.5 kg per case), to the two pre-cooling rooms and eventual loading onto transports, seeking to reduce the bottleneck and the associated costs by means of a dynamic interface. The methodology used was that of system dynamics, considering four phases that were adapted to the purpose of the study: 1) the conceptualization phase; 2) the formulation phase; 3) the evaluation phase; and 4) the communication phase. The main practical conclusions lead to the possibility of reducing both the bottlenecks in the cooling rooms and the costs by simulating scenarios and modifying certain policies. Furthermore, the creation of the dynamic interface between the model and the stakeholders was achieved by generating interaction with buttons and simple instructions that allow making modifications and observing diverse behaviors.
Keywords: Agrilogistics, distribution, scenarios, system dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8292131 The Fabrication and Characterization of a Honeycomb Ceramic Electric Heater with a Conductive Coating
Authors: Siming Wang, Qing Ni, Yu Wu, Ruihai Xu, Hong Ye
Abstract:
Porous electric heaters, compared to conventional electric heaters, exhibit excellent heating performance due to their large specific surface area. Porous electric heaters employ porous metallic materials or conductive porous ceramics as the heating element. The former attains a low heating power with a fixed current due to the low electrical resistivity of metal. Although the latter can bypass the inherent challenges of porous metallic materials, the fabrication process of the conductive porous ceramics is complicated and high cost. This work proposed a porous ceramic electric heater with dielectric honeycomb ceramic as a substrate and surface conductive coating as a heating element. The conductive coating was prepared by the sol-gel method using silica sol and methyl trimethoxysilane as raw materials and graphite powder as conductive fillers. The conductive mechanism and degradation reason of the conductive coating was studied by electrical resistivity and thermal stability analysis. The heating performance of the proposed heater was experimentally investigated by heating air and deionized water. The results indicate that the electron transfer is achieved by forming the conductive network through the contact of the graphite flakes. With 30 wt% of graphite, the electrical resistivity of the conductive coating can be as low as 0.88 Ω∙cm. The conductive coating exhibits good electrical stability up to 500 °C but degrades beyond 600 °C due to the formation of many cracks in the coating caused by the weight loss and thermal expansion. The results also show that the working medium has a great influence on the volume power density of the heater. With air under natural convection as the working medium, the volume power density attains 640.85 kW/m3, which can be increased by 5 times when using deionized water as the working medium. The proposed honeycomb ceramic electric heater has the advantages of the simple fabrication method, low cost, and high-volume power density, demonstrating great potential in the fluid heating field.
Keywords: Conductive coating, honeycomb ceramic electric heater, high specific surface area, high volume power density.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4552130 Thermal Analysis of a Transport Refrigeration Power Pack Unit Using a Coupled 1D/3D Simulation Approach
Authors: A. Kospach, A. Mladek, M. Waltenberger, F. Schilling
Abstract:
In this work, a coupled 1D/3D simulation approach for thermal protection and optimization of a trailer refrigeration power pack unit was developed. With the developed 1D/3D simulation approach thermal critical scenarios, such as summer, high-load scenarios are investigated. The 1D thermal model was built up consisting of the thermal network, which includes different point masses and associated heat transfers, the coolant and oil circuits, as well as the fan unit. The 3D computational fluid dynamics (CFD) model was developed to model the air flow through the power pack unit considering convective heat transfer effects. In the 1D thermal model the temperatures of the individual point masses were calculated, which served as input variables for the 3D CFD model. For the calculation of the point mass temperatures in the 1D thermal model, the convective heat transfer rates from the 3D CFD model were required as input variables. These two variables (point mass temperatures and convective heat transfer rates) were the main couple variables for the coupled 1D/3D simulation model. The coupled 1D/3D model was validated with measurements under normal operating conditions. Coupled simulations for summer high-load case were than performed and compared with a reference case under normal operation conditions. Hot temperature regions and components could be identified. Due to the detailed information about the flow field, temperatures and heat fluxes, it was possible to directly derive improvement suggestions for the cooling design of the transport refrigeration power pack unit.
Keywords: Coupled thermal simulation, thermal analysis, transport refrigeration unit, 3D computational fluid dynamics, 1D thermal modelling, thermal management systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2062129 Laser Excited Nuclear γ -Source of High Spectral Brightness
Authors: A. Аndreev, Yu. Rozhdestvenskii, К. Platonov, R. Salomaa
Abstract:
This paper considers various channels of gammaquantum generation via an ultra-short high-power laser pulse interaction with different targets.We analyse the possibilities to create a pulsed gamma-radiation source using laser triggering of some nuclear reactions and isomer targets. It is shown that sub-MeV monochromatic short pulse of gamma-radiation can be obtained with pulse energy of sub-mJ level from isomer target irradiated by intense laser pulse. For nuclear reaction channel in light- atom materials, it is shown that sub-PW laser pulse gives rise to formation about million gamma-photons of multi-MeV energy.Keywords: High power laser, short pulse, fast particles, isomertarget.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18262128 Studies on the Mechanical Behavior of Bottom Ash for a Sustainable Environment
Authors: B. A. Mir, Asim Malik
Abstract:
Bottom ash is a by-product of the combustion process of coal in furnaces in the production of electricity in thermal power plants. In India, about 75% of total power is produced by using pulverized coal. The coal of India has a high ash content which leads to the generation of a huge quantity of bottom ash per year posing the dual problem of environmental pollution and difficulty in disposal. This calls for establishing strategies to use this industry by-product effectively and efficiently. However, its large-scale utilization is possible only in geotechnical applications, either alone or with soil. In the present investigation, bottom ash was collected from National Capital Power Station Dadri, Uttar Pradesh, India. Test samples of bottom ash admixed with 20% clayey soil were prepared and treated with different cement content by weight and subjected to various laboratory tests for assessing its suitability as an engineered construction material. This study has shown that use of 10% cement content is a viable chemical additive to enhance the mechanical properties of bottom ash, which can be used effectively as an engineered construction material in various geotechnical applications. More importantly, it offers an interesting potential for making use of an industrial waste to overcome challenges posed by bottom ash for a sustainable environment.
Keywords: Bottom ash, environmental pollution, solid waste, sustainable environment, waste utilization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17212127 Effect of Isfahan Refinery, Power Plant and Petrochemical on Borkhar District Soil
Authors: A. Gandomkar
Abstract:
This study aimed to evaluate regional soil Borkhar of the metals Lead has been made. In this field study fires visits to the regions. The limit of this study located in the East refineries, petrochemical and power plant to 20 km was selected. The 41 soil samples from depths of 0 to 10 cm in area and were randomized. Soil samples were transported to the laboratory and by air was dry and passed through 2-mil thickness sieve. In the laboratory of physical and chemical characteristics and concentrations of total absorption was measured. The results showed that the amount of lead in soil in many parts of the range higher than the standard limit. Survey maps show that the lead spatial distribution of the region does not special pattern.Keywords: Soil Pollution, Heavy Metals, Borkhar District, Soil Sampling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1167