Search results for: Thermal Diffusion
274 Rapid Discharge of Solid-State Hydrogen Storage Using Porous Silicon and Metal Foam
Authors: Loralee P. Potter, Peter J. Schubert
Abstract:
Solid-state hydrogen storage using catalytically-modified porous silicon can be rapidly charged at moderate pressures (8 bar) without exothermic runaway. Discharge requires temperatures of approximately 110oC, so for larger storage vessels a means is required for thermal energy to penetrate bulk storage media. This can be realized with low-density metal foams, such as Celmet™. This study explores several material and dimensional choices of the metal foam to produce rapid heating of bulk silicon particulates. Experiments run under vacuum and in a pressurized hydrogen environment bracket conditions of empty and full hydrogen storage vessels, respectively. Curve-fitting of the heating profiles at various distances from an external heat source is used to derive both a time delay and a characteristic time constant. System performance metrics of a hydrogen storage subsystem are derived from the experimental results. A techno-economic analysis of the silicon and metal foam provides comparison with other methods of storing hydrogen for mobile and portable applications.
Keywords: conduction, convection, kinetics, fuel cell
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 694273 Statistical Analysis of Stresses in Rigid Pavement
Authors: Aleš Florian, Lenka Ševelová, Rudolf Hela
Abstract:
Complex statistical analysis of stresses in concrete slab of the real type of rigid pavement is performed. The computational model of the pavement is designed as a spatial (3D) model, is based on a nonlinear variant of the finite element method that respects the structural nonlinearity, enables to model different arrangement of joints, and the entire model can be loaded by the thermal load. Interaction of adjacent slabs in joints and contact of the slab and the subsequent layer are modeled with help of special contact elements. Four concrete slabs separated by transverse and longitudinal joints and the additional subgrade layers and soil to the depth of about 3m are modeled. The thickness of individual layers, physical and mechanical properties of materials, characteristics of joints, and the temperature of the upper and lower surface of slabs are supposed to be random variables. The modern simulation technique Updated Latin Hypercube Sampling with 20 simulations is used for statistical analysis. As results, the estimates of basic statistics of the principal stresses s1 and s3 in 53 points on the upper and lower surface of the slabs are obtained.Keywords: concrete, FEM, pavement, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1574272 Optimal Temperature and Duration for Dabbing Customers with the Massage Compressed Packs Reported from Customers’ Perception
Authors: Wichan Lertlop, Boonyarat Chaleephay
Abstract:
The objective of this research was to study the appropriate thermal level and time for dabbing customers with the massage compressed pack reported from their perception. The investigation was conducted by comparing different angles of tilted heads done by the customers together with their perception before and after the dabbing. The variables included different temperature of the compressed packs and different dabbing duration. Samples in this study included volunteers who got massage therapy and dabbing with hot compressed packs by traditional Thai medical students. The experiment was conducted during January to June 2013. The research tool consisted of angle meters, stop watches, thermometers, and massage compressed packs. The customers were interviewed for their perceptions before and after the dabbing. The results showed that:
- There was a difference of the average angles of tilted heads before and after the dabbing.
- There was no difference of the average angles at different temperatures but constant duration.
- There was no difference of the average angles at different durations.
- The customers reported relaxation no matter what the various temperatures and various dabbing durations were. However, they reported too hot at the temperature 70oC and over.
Keywords: Massage, Therapy, Therapeutic Systems and Technologies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1693271 Free Convective Heat Transfer in an Enclosure Filled with Porous Media with and without Insulated Moving Wall
Authors: Laith Jaafer Habeeb
Abstract:
The present work is concerned with the free convective two dimensional flow and heat transfer, in isotropic fluid filled porous rectangular enclosure with differentially heated walls for steady state incompressible flow have been investigated for non- Darcy flow model. Effects of Darcy number (0.0001 £Da£ 10), Rayleigh number (10 £Ra£ 5000), and aspect ratio (0.25 £AR£ 4), for a range of porosity (0.4 £e£ 0.9) with and without moving lower wall have been studied. The cavity was insulated at the lower and upper surfaces. The right and left heated surfaces allows convective transport through the porous medium, generating a thermal stratification and flow circulations. It was found that the Darcy number, Rayleigh number, aspect ratio, and porosity considerably influenced characteristics of flow and heat transfer mechanisms. The results obtained are discussed in terms of the Nusselt number, vectors, contours, and isotherms.Keywords: Numerical study, moving-wall cavity flow, saturated porous medium, different Darcy and Rayleigh numbers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2065270 Properties Modification of Fiber Metal Laminates by Nanofillers
Authors: R. Eslami-Farsani, S. M. S. Mousavi Bafrouyi
Abstract:
During past decades, increasing demand of modified Fiber Metal Laminates (FMLs) has stimulated a strong trend towards the development of these structures. FMLs contain several thin layers of metal bonded with composite materials. Characteristics of FMLs such as low specific mass, high bearing strength, impact resistance, corrosion resistance and high fatigue life are attractive. Nowadays, increasing development can be observed to promote the properties of polymer-based composites by nanofillers. By dispersing strong, nanofillers in polymer matrix, modified composites can be developed and tailored to individual applications. On the other hand, the synergic effects of nanoparticles such as graphene and carbon nanotube can significantly improve the mechanical, electrical and thermal properties of nanocomposites. In present paper, the modifying of FMLs by nanofillers and the dispersing of nanoparticles in the polymers matrix are discussed. The evaluations have revealed that this approach is acceptable. Finally, a prospect is presented. This paper will lead to further work on these modified FML species.Keywords: Fiber metal laminate, nanofiller, polymer matrix, property modification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1164269 Numerical Study of Oxygen Enrichment on NO Pollution Spread in a Combustion Chamber
Authors: Zohreh Orshesh
Abstract:
In this study, a 3D combustion chamber was simulated using FLUENT 6.32. Aim to obtain detailed information on combustion characteristics and _ nitrogen oxides in the furnace and the effect of oxygen enrichment in a combustion process. Oxygenenriched combustion is an effective way to reduce emissions. This paper analyzes NO emission, including thermal NO and prompt NO. Flow rate ratio of air to fuel is varied as 1.3, 3.2 and 5.1 and the oxygen enriched flow rates are 28, 54 and 68 lit/min. The 3D Reynolds Averaged Navier Stokes (RANS) equations with standard k-ε turbulence model are solved together by Fluent 6.32 software. First order upwind scheme is used to model governing equations and the SIMPLE algorithm is used as pressure velocity coupling. Results show that for AF=1.3, increase the oxygen flow rate of oxygen reduction in NO emissions is Lance. Moreover, in a fixed oxygen enrichment condition, increasing the air to fuel ratio will increase the temperature peak, but not the NO emission rate. As a result, oxygen enrichment can reduce the NO emission at this kind of furnace in low air to fuel rates.Keywords: Combustion chamber, Oxygen enrichment, Reynolds Averaged Navier- Stokes, NO emission
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1636268 Zero Carbon & Low Energy Housing; Comparative Analysis of Two Persian Vernacular Architectural Solutions to Increase Energy Efficiency
Authors: N. Poorang
Abstract:
In order to respond the human needs, all regional, social, and economical factors are available to gain residents’ comfort and ideal architecture. There is no doubt the thermal comfort has to satisfy people not only for daily and physical activities but also creating pleasant area for mental activities and relaxing. It costs energy and increases greenhouse gas emissions.
Reducing energy use in buildings is a critical component of meeting carbon reduction commitments. Hence housing design represents a major opportunity to cut energy use and CO2 emissions.
In terms of energy efficiency, it is vital to propose and research modern design methods for buildings however vernacular architecture techniques are proven empirical existing practices which have to be considered. This research tries to compare two architectural solution were proposed by Persian vernacular architecture, to achieve energy efficiency in hot areas.
The aim of this research is to analyze two forms of traditional Persian architecture in different locations in order to develop a systematic research and sustainable technologies on adaptation to contemporary living standards.
Keywords: Comparative Analysis, Persian Vernacular Architecture, Sustainable architecture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2294267 A Functional Thermochemical Energy Storage System for Mobile Applications: Design and Performance Analysis
Authors: Jure Galović, Peter Hofmann
Abstract:
Thermochemical energy storage (TCES), as a long-term and lossless energy storage principle, provides a contribution for the reduction of greenhouse emissions of mobile applications, such as passenger vehicles with an internal combustion engine. A prototype of a TCES system, based on reversible sorption reactions of LiBr composite and methanol has been designed at Vienna University of Technology. In this paper, the selection of reactive and inert carrier materials as well as the design of heat exchangers (reactor vessel and evapo-condenser) was reviewed and the cycle stability under real operating conditions was investigated. The performance of the developed system strongly depends on the environmental temperatures, to which the reactor vessel and evapo-condenser are exposed during the phases of thermal conversion. For an integration of the system into mobile applications, the functionality of the designed prototype was proved in numerous conducted cycles whereby no adverse reactions were observed.
Keywords: Mobile applications, LiBr composite, methanol, performance of TCES system, sorption process, thermochemical energy storage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 975266 A Hybrid Differential Transform Approach for Laser Heating of a Double-Layered Thin Film
Authors: Cheng-Ying Lo
Abstract:
This paper adopted the hybrid differential transform approach for studying heat transfer problems in a gold/chromium thin film with an ultra-short-pulsed laser beam projecting on the gold side. The physical system, formulated based on the hyperbolic two-step heat transfer model, covers three characteristics: (i) coupling effects between the electron/lattice systems, (ii) thermal wave propagation in metals, and (iii) radiation effects along the interface. The differential transform method is used to transfer the governing equations in the time domain into the spectrum equations, which is further discretized in the space domain by the finite difference method. The results, obtained through a recursive process, show that the electron temperature in the gold film can rise up to several thousand degrees before its electron/lattice systems reach equilibrium at only several hundred degrees. The electron and lattice temperatures in the chromium film are much lower than those in the gold film.
Keywords: Differential transform, hyperbolic heat transfer, thin film, ultrashort-pulsed laser.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1591265 Sinusoidal Roughness Elements in a Square Cavity
Abstract:
Numerical studies were conducted using Lattice Boltzmann Method (LBM) to study the natural convection in a square cavity in the presence of roughness. An algorithm based on a single relaxation time Bhatnagar-Gross-Krook (BGK) model of Lattice Boltzmann Method (LBM) was developed. Roughness was introduced on both the hot and cold walls in the form of sinusoidal roughness elements. The study was conducted for a Newtonian fluid of Prandtl number (Pr) 1.0. The range of Ra number was explored from 10^3 to 10^6 in a laminar region. Thermal and hydrodynamic behavior of fluid was analyzed using a differentially heated square cavity with roughness elements present on both the hot and cold wall. Neumann boundary conditions were introduced on horizontal walls with vertical walls as isothermal. The roughness elements were at the same boundary condition as corresponding walls. Computational algorithm was validated against previous benchmark studies performed with different numerical methods, and a good agreement was found to exist. Results indicate that the maximum reduction in the average heat transfer was 16.66 percent at Ra number 10^5.
Keywords: Lattice Boltzmann Method Natural convection, Nusselt Number Rayleigh number, Roughness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2153264 Offline Parameter Identification and State-of-Charge Estimation for Healthy and Aged Electric Vehicle Batteries Based on the Combined Model
Authors: Xiaowei Zhang, Min Xu, Saeid Habibi, Fengjun Yan, Ryan Ahmed
Abstract:
Recently, Electric Vehicles (EVs) have received extensive consideration since they offer a more sustainable and greener transportation alternative compared to fossil-fuel propelled vehicles. Lithium-Ion (Li-ion) batteries are increasingly being deployed in EVs because of their high energy density, high cell-level voltage, and low rate of self-discharge. Since Li-ion batteries represent the most expensive component in the EV powertrain, accurate monitoring and control strategies must be executed to ensure their prolonged lifespan. The Battery Management System (BMS) has to accurately estimate parameters such as the battery State-of-Charge (SOC), State-of-Health (SOH), and Remaining Useful Life (RUL). In order for the BMS to estimate these parameters, an accurate and control-oriented battery model has to work collaboratively with a robust state and parameter estimation strategy. Since battery physical parameters, such as the internal resistance and diffusion coefficient change depending on the battery state-of-life (SOL), the BMS has to be adaptive to accommodate for this change. In this paper, an extensive battery aging study has been conducted over 12-months period on 5.4 Ah, 3.7 V Lithium polymer cells. Instead of using fixed charging/discharging aging cycles at fixed C-rate, a set of real-world driving scenarios have been used to age the cells. The test has been interrupted every 5% capacity degradation by a set of reference performance tests to assess the battery degradation and track model parameters. As battery ages, the combined model parameters are optimized and tracked in an offline mode over the entire batteries lifespan. Based on the optimized model, a state and parameter estimation strategy based on the Extended Kalman Filter (EKF) and the relatively new Smooth Variable Structure Filter (SVSF) have been applied to estimate the SOC at various states of life.
Keywords: Lithium-Ion batteries, genetic algorithm optimization, battery aging test, and parameter identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1545263 Thermochemical Conversion: Jatropha curcus in Fixed Bed Reactor Using Slow Pyrolysis
Authors: Vipan Kumar Sohpal, Rajesh Kumar Sharma
Abstract:
Thermochemical conversion of non-edible biomass offers an efficient and economically process to provide valuable fuels and prepare chemicals derived from biomass in the context of developing countries. Pyrolysis has advantages over other thermochemical conversion techniques because it can convert biomass directly into solid, liquid and gaseous products by thermal decomposition of biomass in the absence of oxygen. The present paper aims to focus on the slow thermochemical conversion processes for non-edible Jatropha curcus seed cake. The present discussion focuses on the effect of nitrogen gas flow rate on products composition (wt %). In addition, comparative analysis has been performed for different mesh size for product composition. Result shows that, slow pyrolysis experiments of Jatropha curcus seed cake in fixed bed reactor yield the bio-oil 18.42 wt % at a pyrolysis temperature of 500°C, particle size of -6+8 mesh number and nitrogen gas flow rate of 150 ml/min.
Keywords: Jatropha curcus, Thermo-chemical, Pyrolysis, Product composition, Yield.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2857262 An Improved Particle Swarm Optimization Technique for Combined Economic and Environmental Power Dispatch Including Valve Point Loading Effects
Authors: Badr M. Alshammari, T. Guesmi
Abstract:
In recent years, the combined economic and emission power dispatch is one of the main problems of electrical power system. It aims to schedule the power generation of generators in order to minimize cost production and emission of harmful gases caused by fossil-fueled thermal units such as CO, CO2, NOx, and SO2. To solve this complicated multi-objective problem, an improved version of the particle swarm optimization technique that includes non-dominated sorting concept has been proposed. Valve point loading effects and system losses have been considered. The three-unit and ten-unit benchmark systems have been used to show the effectiveness of the suggested optimization technique for solving this kind of nonconvex problem. The simulation results have been compared with those obtained using genetic algorithm based method. Comparison results show that the proposed approach can provide a higher quality solution with better performance.
Keywords: Power dispatch, valve point loading effects, multiobjective optimization, Pareto solutions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 770261 Correlation between Capacitance and Dissipation Factor used for Assessment of Stator Insulation
Authors: José Luis Oslinger, Luis Carlos Castro
Abstract:
Measurements of capacitance C and dissipation factor tand of the stator insulation system provide useful information about internal defects within the insulation. The index k is defined as the proportionality constant between the changes at high voltage of capacitance DC and of the dissipation factor Dtand . DC and Dtand values were highly correlated when small flat defects were within the insulation and that correlation was lost in the presence of large narrow defects like electrical treeing. The discrimination between small and large defects is made resorting to partial discharge PD phase angle analysis. For the validation of the results, C and tand measurements were carried out in a 15MVA 4160V steam turbine turbogenerator placed in a sugar mill. In addition, laboratory test results obtained by other authors were analyzed jointly. In such laboratory tests, model coil bars subjected to thermal cycling resulted highly degraded and DC and Dtand values were not correlated. Thus, the index k could not be calculated.Keywords: Aging, capacitance, dissipation factor, electrical treeing, insulation condition, partial discharge.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2942260 Multi-Criteria Optimization of High-Temperature Reversed Starter-Generator
Authors: Flur R. Ismagilov, Irek Kh. Khayrullin, Vyacheslav E. Vavilov, Ruslan D. Karimov, Anton S. Gorbunov, Danis R. Farrakhov
Abstract:
The paper presents another structural scheme of high-temperature starter-generator with external rotor to be installed on High Pressure Shaft (HPS) of aircraft engines (AE) to implement More Electrical Engine concept. The basic materials to make this starter-generator (SG) were selected and justified. Multi-criteria optimization of the developed structural scheme was performed using a genetic algorithm and Pareto method. The optimum (in Pareto terms) active length and thickness of permanent magnets of SG were selected as a result of the optimization. Using the dimensions obtained, allowed to reduce the weight of the designed SG by 10 kg relative to a base option at constant thermal loads. Multidisciplinary computer simulation was performed on the basis of the optimum geometric dimensions, which proved performance efficiency of the design. We further plan to make a full-scale sample of SG of HPS and publish the results of its experimental research.Keywords: High-temperature starter-generator, More electrical engine, multi-criteria optimization, permanent magnet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1214259 Evaluation on Mechanical Stabilities of Clay-Sand Mixtures Used as Engineered Barrier for Radioactive Waste Disposal
Authors: Ahmet E. Osmanlioglu
Abstract:
In this study, natural bentonite was used as natural clay material and samples were taken from the Kalecik district in Ankara. In this research, bentonite is the subject of an analysis from standpoint of assessing the basic properties of engineered barriers with respect to the buffer material. Bentonite and sand mixtures were prepared for tests. Some of clay minerals give relatively higher hydraulic conductivity and lower swelling pressure. Generally, hydraulic conductivity of these type clays is lower than <10-12 m/s. The hydraulic properties of clay-sand mixtures are evaluated to design engineered barrier specifications. Hydraulic conductivities of bentonite-sand mixture were found in the range of 1.2x10-10 to 9.3x10-10 m/s. Optimum B/S mixture ratio was determined as 35% in terms of hydraulic conductivity and mechanical stability. At the second stage of this study, all samples were compacted into cylindrical shape molds (diameter: 50 mm and length: 120 mm). The strength properties of compacted mixtures were better than the compacted bentonite. In addition, the larger content of the quartz sand in the mixture has the greater thermal conductivity.Keywords: Bentonite, hydraulic conductivity, clay, nuclear waste disposal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1420258 Heat and Mass Transfer of Triple Diffusive Convection in a Rotating Couple Stress Liquid Using Ginzburg-Landau Model
Authors: Sameena Tarannum, S. Pranesh
Abstract:
A nonlinear study of triple diffusive convection in a rotating couple stress liquid has been analysed. It is performed to study the effect of heat and mass transfer by deriving Ginzburg-Landau equation. Heat and mass transfer are quantified in terms of Nusselt number and Sherwood numbers, which are obtained as a function of thermal and solute Rayleigh numbers. The obtained Ginzburg-Landau equation is Bernoulli equation, and it has been elucidated numerically by using Mathematica. The effects of couple stress parameter, solute Rayleigh numbers, and Taylor number on the onset of convection and heat and mass transfer have been examined. It is found that the effects of couple stress parameter and Taylor number are to stabilize the system and to increase the heat and mass transfer.
Keywords: Couple stress liquid, Ginzburg-Landau model, rotation, triple diffusive convection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1271257 Experimental and Simulation Stress Strain Comparison of Hot Single Point Incremental Forming
Authors: Amar Al-Obaidi, Verena Kräusel, Dirk Landgrebe
Abstract:
Induction assisted single point incremental forming (IASPIF) is a flexible method and can be simply utilized to form a high strength alloys. Due to the interaction between the mechanical and thermal properties during IASPIF an evaluation for the process is necessary to be performed analytically. Therefore, a numerical simulation was carried out in this paper. The numerical analysis was operated at both room and elevated temperatures then compared with experimental results. Fully coupled dynamic temperature displacement explicit analysis was used to simulated the hot single point incremental forming. The numerical analysis was indicating that during hot single point incremental forming were a combination between complicated compression, tension and shear stresses. As a result, the equivalent plastic strain was increased excessively by rising both the formed part depth and the heating temperature during forming. Whereas, the forming forces were decreased from 5 kN at room temperature to 0.95 kN at elevated temperature. The simulation shows that the maximum true strain was occurred in the stretching zone which was the same as in experiment.Keywords: Induction heating, single point incremental forming, FE modeling, advanced high strength steel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 937256 Preparation and Characterization of Recycled PET/PP Blends from Automotive Textile Waste for Use in the Furniture Edge Banding Sector
Authors: Merve Ozer, Tolga Gokkurt, Yasemen Gokkurt, Ezgi Bozbey
Abstract:
In this study, research has been conducted on the recovery of automotive textile waste, which has heavy use in the automotive sector and consists of PET/PP content, through the upcycling technique of post-product and post-consumer usage. The aim is to investigate the formulation and production methods that will enable the substitution of original PP raw materials, used in the production of plastic edge bands, with PP/PET alloys. The lamination structure of the mentioned waste makes it impossible to separate the incompatible PP and PET phases, thereby hindering the production of high-quality raw materials or products through recycling. In this study, a comprehensive process was examined through a two-step production process using different types of block and maleic-grafted copolymers to achieve compatibility between these two incompatible phases. The obtained plastic raw materials, referred to as PP/PET blends, were examined in detail, with a focus on their mechanical, thermal, and morphological properties, to discuss their substitutability for the original raw materials.
Keywords: Twin screw extruders, mechanical recycling, melt blending, plastic blends, polyethylene, polypropylene, recycling of plastics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 176255 Plasterwork Ornamentation Finds of Hoşap Castle Archeological Excavation (2007-2015)
Abstract:
Plaster material has been a preferred material especially in the Middle East geography in terms of economy, easy process and thermal insulation since very old times. However, due to the unstable nature of the material, very little has been reached today. For this reason, both finds and studies about stucco ornamentation are very few. In this study, the excavated plasterwork finds used in the architectural ornamentation in the Hosap Castle (Van/Turkey) were considered worth examining since they are rare examples. The stucco relief finds that were found in the castle is discussed. The finds of engraved artifacts on the plasterworks were not addressed. Only the pieces found in Area II and Area III (harem) and surrounding during the cleaning and excavation work carried out at Hosap Kalesi between 2007-2015, will be discussed. This is a general assessment about the finds. It is unknown where many of the pieces found. For this reason, only general appraisal was able to done. Most of the parts are made of mold technique. The motifs on the fragments are similar to the motifs of Ottoman period tiles. Parallel to the settlement history of the castle, thought that these plaster pieces belong to the 16th-17th centuries.Keywords: Stucco decoration, Eastern Anatolia, Ottoman motifs, ornamentation, plasterwork.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 629254 Comparative Study of Sub-Critical and Supercritical ORC Applications for Exhaust Waste Heat Recovery
Authors: Buket Boz, Alvaro Diez
Abstract:
Waste heat recovery by means of Organic Rankine Cycle is a promising technology for the recovery of engine exhaust heat. However, it is complex to find out the optimum cycle conditions with appropriate working fluids to match exhaust gas waste heat due to its high temperature. Hence, this paper focuses on comparing sub-critical and supercritical ORC conditions with eight working fluids on a combined diesel engine-ORC system. The model employs two ORC designs, Regenerative-ORC and Pre-Heating-Regenerative-ORC respectively. The thermodynamic calculations rely on the first and second law of thermodynamics, thermal efficiency and exergy destruction factors are the fundamental parameters evaluated. Additionally, in this study, environmental and safety, GWP (Global Warming Potential) and ODP (Ozone Depletion Potential), characteristic of the refrigerants are taken into consideration as evaluation criteria to define the optimal ORC configuration and conditions. Consequently, the studys outcomes reveal that supercritical ORCs with alkane and siloxane are more suitable for high temperature exhaust waste heat recovery in contrast to sub-critical conditions.Keywords: Internal combustion engine, organic rankine cycle, waste heat recovery, working fluids.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1268253 Hydraulic Studies on Core Components of PFBR
Authors: G. K. Pandey, D. Ramadasu, I. Banerjee, V. Vinod, G. Padmakumar, V. Prakash, K. K. Rajan
Abstract:
Detailed thermal hydraulic investigations are very essential for safe and reliable functioning of liquid metal cooled fast breeder reactors. These investigations are further more important for components with complex profile, since there is no direct correlation available in literature to evaluate the hydraulic characteristics of such components directly. In those cases available correlations for similar profile or geometries may lead to significant uncertainty in the outcome. Hence experimental approach can be adopted to evaluate these hydraulic characteristics more precisely for better prediction in reactor core components. Prototype Fast Breeder Reactor (PFBR), a sodium cooled pool type reactor is under advanced stage of construction at Kalpakkam, India. Several components of this reactor core require hydraulic investigation before its usage in the reactor. These hydraulic investigations on full scale models, carried out by experimental approaches using water as simulant fluid are discussed in the paper.
Keywords: Fast Breeder Reactor, Cavitation, pressure drop, Reactor components.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2936252 The Role of Initiator in the Synthesis of Poly(Methyl Methacrylate)-Layered Silicate Nanocomposites through Bulk Polymerization
Authors: Tsung-Yen Tsai, Naveen Bunekar, Ming Hsuan Chang, Wen-Kuang Wang, Satoshi Onda
Abstract:
The structure-property relationship and initiator effect on bulk polymerized poly(methyl methacrylate) (PMMA)–oragnomodified layered silicate nanocomposites was investigated. In this study, we used 2, 2'-azobis (4-methoxy-2,4-dimethyl valeronitrile and benzoyl peroxide initiators for bulk polymerization. The bulk polymerized nanocomposites’ morphology was investigated by X-ray diffraction and transmission electron microscopy. The type of initiator strongly influences the physiochemical properties of the polymer nanocomposite. The thermal degradation of PMMA in the presence of nanofiller was studied. 5 wt% weight loss temperature (T5d) increased as compared to pure PMMA. The peak degradation temperature increased for the nanocomposites. Differential scanning calorimetry and dynamic mechanical analysis were performed to investigate the glass transition temperature and the nature of the constrained region as the reinforcement mechanism respectively. Furthermore, the optical properties such as UV-Vis and Total Luminous Transmission of nanocomposites are examined.
Keywords: Initiator, bulk polymerization, layered silicates, methyl methacrylate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 953251 A Digital Pulse-Width Modulation Controller for High-Temperature DC-DC Power Conversion Application
Authors: Jingjing Lan, Jun Yu, Muthukumaraswamy Annamalai Arasu
Abstract:
This paper presents a digital non-linear pulse-width modulation (PWM) controller in a high-voltage (HV) buck-boost DC-DC converter for the piezoelectric transducer of the down-hole acoustic telemetry system. The proposed design controls the generation of output signal with voltage higher than the supply voltage and is targeted to work under high temperature. To minimize the power consumption and silicon area, a simple and efficient design scheme is employed to develop the PWM controller. The proposed PWM controller consists of serial to parallel (S2P) converter, data assign block, a mode and duty cycle controller (MDC), linearly PWM (LPWM) and noise shaper, pulse generator and clock generator. To improve the reliability of circuit operation at higher temperature, this design is fabricated with the 1.0-μm silicon-on-insulator (SOI) CMOS process. The implementation results validated that the proposed design has the advantages of smaller size, lower power consumption and robust thermal stability.
Keywords: DC-DC power conversion, digital control, high temperatures, pulse-width modulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1711250 Trapping Efficiency of Diesel Particles Through a Square Duct
Authors: Francis William S, Imtiaz Ahmed Choudhury, Ananda Kumar Eriki, A. John Rajan
Abstract:
Diesel Engines emit complex mixtures of inorganic and organic compounds in the form of both solid and vapour phase particles. Most of the particulates released are ultrafine nanoparticles which are detrimental to human health and can easily enter the body by respiration. The emissions standards on particulate matter release from diesel engines are constantly upgraded within the European Union and with future regulations based on the particles numbers released instead of merely mass, the need for effective aftertreatment devices will increase. Standard particulate filters in the form of wall flow filters can have problems with high soot accumulation, producing a large exhaust backpressure. A potential solution would be to combine the standard filter with a flow through filter to reduce the load on the wall flow filter. In this paper soot particle trapping has been simulated in different continuous flow filters of monolithic structure including the use of promoters, at laminar flow conditions. An Euler Lagrange model, the discrete phase model in Ansys used with user defined functions for forces acting on particles. A method to quickly screen trapping of 5 nm and 10 nm particles in different catalysts designs with tracers was also developed. Simulations of square duct monoliths with promoters show that the strength of the vortices produced are not enough to give a high amount of particle deposition on the catalyst walls. The smallest particles in the simulations, 5 and 10 nm particles were trapped to a higher extent, than larger particles up to 1000 nm, in all studied geometries with the predominant deposition mechanism being Brownian diffusion. The comparison of the different filters designed with a wall flow filter does show that the options for altering a design of a flow through filter, without imposing a too large pressure drop penalty are good.Keywords: Diesel Engine trap, thermophoresis, Exhaust pipe, PM-Simulation modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2002249 Long Term Variability of Temperature in Armenia in the Context of Climate Change
Authors: Hrachuhi Galstyan, Lucian Sfîcă, Pavel Ichim
Abstract:
The purpose of this study is to analyze the temporal and spatial variability of thermal conditions in the Republic of Armenia. The paper describes annual fluctuations in air temperature. Research has been focused on case study region of Armenia and surrounding areas, where long–term measurements and observations of weather conditions have been performed within the National Meteorological Service of Armenia and its surrounding areas. The study contains yearly air temperature data recorded between 1961- 2012. Mann-Kendal test and the autocorrelation function were applied to detect the change trend of annual mean temperature, as well as other parametric and non-parametric tests searching to find the presence of some breaks in the long term evolution of temperature. The analysis of all records reveals a tendency mostly towards warmer years, with increased temperatures especially in valleys and inner basins. The maximum temperature increase is up to 1,5°C. Negative results have not been observed in Armenia. The patterns of temperature change have been observed since the 1990’s over much of the Armenian territory. The climate in Armenia was influenced by global change in the last 2 decades, as results from the methods employed within the study.Keywords: Air temperature, long-term variability, trend, climate change.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2215248 Studies on Microstructure and Mechanical Properties of Simulated Heat Affected Zone in a Micro Alloyed Steel
Authors: Sanjeev Kumar, S. K. Nath
Abstract:
Proper selection of welding parameters for getting excellent weld is a challenge. HAZ simulation helps in identifying suitable welding parameters like heating rate, cooling rate, peak temperature, and energy input. In this study, the influence of weld thermal cycle of heat affected zone (HAZ) is simulated for Submerged Arc Welding (SAW) using Gleeble ® 3800 thermomechanical simulator. A (Micro-alloyed) MA steel plate of thickness 18 mm having yield strength 450MPa is used for making test specimens. Determination of the mechanical properties of weld simulated specimens including Charpy V-notch toughness and hardness is performed. Peak temperatures of 1300°C, 1150°C, 1000°C, 900°C, 800°C, heat energy input of 22KJ/cm and preheat temperatures of 30°C have been used with Rykalin-3D simulation model. It is found that the impact toughness (75J) is the best for the simulated HAZ specimen at the peak temperature 900ºC. For parent steel, impact toughness value is 26.8J at -50°C in transverse direction.Keywords: HAZ Simulation, Mechanical Properties, Peak Temperature, Ship hull steel, and Weldability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1678247 The Impact of Modeling Method of Moisture Emission from the Swimming Pool on the Accuracy of Numerical Calculations of Air Parameters in Ventilated Natatorium
Authors: Piotr Ciuman, Barbara Lipska
Abstract:
The aim of presented research was to improve numerical predictions of air parameters distribution in the actual natatorium by the selection of calculation formula of mass flux of moisture emitted from the pool. Selected correlation should ensure the best compliance of numerical results with the measurements' results of these parameters in the facility. The numerical model of the natatorium was developed, for which boundary conditions were prepared on the basis of measurements' results carried out in the actual facility. Numerical calculations were carried out with the use of ANSYS CFX software, with six formulas being implemented, which in various ways made the moisture emission dependent on water surface temperature and air parameters in the natatorium. The results of calculations with the use of these formulas were compared for air parameters' distributions: Specific humidity, velocity and temperature in the facility. For the selection of the best formula, numerical results of these parameters in occupied zone were validated by comparison with the measurements' results carried out at selected points of this zone.
Keywords: Experimental validation, indoor swimming pool, moisture emission, natatorium, numerical calculations, CFD, thermal and humidity conditions, ventilation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1498246 CNet Module Design of IMCS
Authors: Youkyung Park, SeungYup Kang, SungHo Kim, SimKyun Yook
Abstract:
IMCS is Integrated Monitoring and Control System for thermal power plant. This system consists of mainly two parts; controllers and OIS (Operator Interface System). These two parts are connected by Ethernet-based communication. The controller side of communication is managed by CNet module and OIS side is managed by data server of OIS. CNet module sends the data of controller to data server and receives commend data from data server. To minimizes or balance the load of data server, this module buffers data created by controller at every cycle and send buffered data to data server on request of data server. For multiple data server, this module manages the connection line with each data server and response for each request from multiple data server. CNet module is included in each controller of redundant system. When controller fail-over happens on redundant system, this module can provide data of controller to data sever without loss. This paper presents three main features – separation of get task, usage of ring buffer and monitoring communication status –of CNet module to carry out these functions.Keywords: Ethernet communication, DCS, power plant, ring buffer, data integrity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1563245 CFD Investigation of Turbulent Mixed Convection Heat Transfer in a Closed Lid-Driven Cavity
Authors: A. Khaleel, S. Gao
Abstract:
Both steady and unsteady turbulent mixed convection heat transfer in a 3D lid-driven enclosure, which has constant heat flux on the middle of bottom wall and with isothermal moving sidewalls, is reported in this paper for working fluid with Prandtl number Pr = 0.71. The other walls are adiabatic and stationary. The dimensionless parameters used in this research are Reynolds number, Re = 5000, 10000 and 15000, and Richardson number, Ri = 1 and 10. The simulations have been done by using different turbulent methods such as RANS, URANS, and LES. The effects of using different k-ε models such as standard, RNG and Realizable k-ε model are investigated. Interesting behaviours of the thermal and flow fields with changing the Re or Ri numbers are observed. Isotherm and turbulent kinetic energy distributions and variation of local Nusselt number at the hot bottom wall are studied as well. The local Nusselt number is found increasing with increasing either Re or Ri number. In addition, the turbulent kinetic energy is discernibly affected by increasing Re number. Moreover, the LES results have shown good ability of this method in predicting more detailed flow structures in the cavity.Keywords: Mixed convection, Lid-driven cavity, Turbulent flow, RANS model, URANS model, Large eddy simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2274