\r\nCycle is a promising technology for the recovery of engine

\r\nexhaust heat. However, it is complex to find out the optimum

\r\ncycle conditions with appropriate working fluids to match exhaust

\r\ngas waste heat due to its high temperature. Hence, this paper

\r\nfocuses on comparing sub-critical and supercritical ORC conditions

\r\nwith eight working fluids on a combined diesel engine-ORC

\r\nsystem. The model employs two ORC designs, Regenerative-ORC

\r\nand Pre-Heating-Regenerative-ORC respectively. The thermodynamic

\r\ncalculations rely on the first and second law of thermodynamics,

\r\nthermal efficiency and exergy destruction factors are the fundamental

\r\nparameters evaluated. Additionally, in this study, environmental

\r\nand safety, GWP (Global Warming Potential) and ODP (Ozone

\r\nDepletion Potential), characteristic of the refrigerants are taken

\r\ninto consideration as evaluation criteria to define the optimal ORC

\r\nconfiguration and conditions. Consequently, the studys outcomes

\r\nreveal that supercritical ORCs with alkane and siloxane are more

\r\nsuitable for high temperature exhaust waste heat recovery in contrast

\r\nto sub-critical conditions.","references":"[1] S. N. Hossain and S. Bari, \u201cWaste heat recovery from the exhaust\r\nof a diesel generator using rankine cycle,\u201d Energy Conversion and\r\nManagement, vol. 75, pp. 141\u2013151, 2013.\r\n[2] H. Chen, D. Y. Goswami, and E. K. Stefanakos, \u201cA review of\r\nthermodynamic cycles and working fluids for the conversion of low-grade\r\nheat,\u201d Renewable and sustainable energy reviews, vol. 14, no. 9, pp.\r\n3059\u20133067, 2010.\r\n[3] D. A. Arias, T. A. Shedd, and R. K. Jester, \u201cTheoretical analysis of waste\r\nheat recovery from an internal combustion engine in a hybrid vehicle,\u201d\r\nSAE Technical Paper, Tech. Rep., 2006.\r\n[4] A. Uusitalo, J. Honkatukia, T. Turunen-Saaresti, and J. Larjola, \u201cA\r\nthermodynamic analysis of waste heat recovery from reciprocating engine\r\npower plants by means of organic rankine cycles,\u201d Applied Thermal\r\nEngineering, vol. 70, no. 1, pp. 33\u201341, 2014.\r\n[5] K. Kulkarni and A. Sood, \u201cPerformance analysis of organic rankine cycle\r\n(orc) for recovering waste heat from a heavy duty diesel engine,\u201d SAE\r\nTechnical Paper, Tech. Rep., 2015.\r\n[6] C. Sprouse and C. Depcik, \u201cReview of organic rankine cycles for\r\ninternal combustion engine exhaust waste heat recovery,\u201d Applied thermal\r\nengineering, vol. 51, no. 1, pp. 711\u2013722, 2013.\r\n[7] R. Law, A. Harvey, and D. Reay, \u201cOpportunities for low-grade\r\nheat recovery in the uk food processing industry,\u201d Applied thermal\r\nengineering, vol. 53, no. 2, pp. 188\u2013196, 2013.\r\n[8] I. Vaja and A. Gambarotta, \u201cInternal combustion engine (ice) bottoming\r\nwith organic rankine cycles (orcs),\u201d Energy, vol. 35, no. 2, pp. 1084\u20131093,\r\n2010.\r\n[9] B. Peris, J. Navarro-Esbr\u00b4\u0131, and F. Mol\u00b4es, \u201cBottoming organic rankine\r\ncycle configurations to increase internal combustion engines power output\r\nfrom cooling water waste heat recovery,\u201d Applied Thermal Engineering,\r\nvol. 61, no. 2, pp. 364\u2013371, 2013.\r\n[10] A. Schuster, S. Karellas, and R. Aumann, \u201cEfficiency optimization\r\npotential in supercritical organic rankine cycles,\u201d Energy, vol. 35, no. 2,\r\npp. 1033\u20131039, 2010. [11] S. Glover, R. Douglas, L. Glover, G. McCullough, and S. McKenna,\r\n\u201cAutomotive waste heat recovery: Working fluid selection and related\r\nboundary conditions,\u201d International Journal of Automotive Technology,\r\nvol. 16, no. 3, pp. 399\u2013409, 2015.\r\n[12] R. Freymann, W. Strobl, and A. Obieglo, \u201cThe turbosteamer: a system\r\nintroducing the principle of cogeneration in automotive applications,\u201d\r\nMTZ worldwide, vol. 69, no. 5, pp. 20\u201327, 2008.\r\n[13] A. F. Agudelo, R. Garc\u00b4\u0131a-Contreras, J. R. Agudelo, and O. Armas,\r\n\u201cPotential for exhaust gas energy recovery in a diesel passenger car under\r\neuropean driving cycle,\u201d Applied Energy, vol. 174, pp. 201\u2013212, 2016.\r\n[14] I. Statistics, \u201cCo2 emissions from fuel combustion-highlights,\u201d IEA,\r\nParis http:\/\/www. iea. org\/co2highlights\/co2highlights. pdf. Cited July,\r\n2011.\r\n[15] C. Kalra, G. Becquin, J. Jackson, A. L. Laursen, H. Chen, K. Myers,\r\nA. Hardy, H. Klockow, and J. Zia, \u201cHigh-potential working fluids\r\nand cycle concepts for next-generation binary organic rankine cycle\r\nfor enhanced geothermal systems,\u201d in 37th Workshop on Geothermal\r\nReservoir Engineering, Stanford, CA, Jan, 2012.\r\n[16] S. Glover, R. Douglas, M. De Rosa, X. Zhang, and L. Glover,\r\n\u201cSimulation of a multiple heat source supercritical orc (organic rankine\r\ncycle) for vehicle waste heat recovery,\u201d Energy, vol. 93, pp. 1568\u20131580,\r\n2015.\r\n[17] H. Teng, G. Regner, and C. Cowland, \u201cAchieving high engine efficiency\r\nfor heavy-duty diesel engines by waste heat recovery using supercritical\r\norganic-fluid rankine cycle,\u201d SAE Technical Paper, Tech. Rep., 2006.\r\n[18] H. Teng, G. Regner, and C. Cowland,, \u201cWaste heat recovery of\r\nheavy-duty diesel engines by organic rankine cycle part i: hybrid energy\r\nsystem of diesel and rankine engines,\u201d SAE Technical Paper, Tech. Rep.,\r\n2007.\r\n[19] \u201cSiemens steam turbine sst-060,\u201d http:\/\/www.energy.siemens.com\/ru\/en\/\r\nfossil-power-generation\/steam-turbines\/sst-060.htm, accessed:\r\n2002-2017.\r\n[20] E. Wang, H. Zhang, B. Fan, M. Ouyang, Y. Zhao, and Q. Mu, \u201cStudy\r\nof working fluid selection of organic rankine cycle (orc) for engine waste\r\nheat recovery,\u201d Energy, vol. 36, no. 5, pp. 3406\u20133418, 2011.\r\n[21] J. H\u00e6rvig, K. S\u00f8rensen, and T. J. Condra, \u201cGuidelines for optimal\r\nselection of working fluid for an organic rankine cycle in relation to\r\nwaste heat recovery,\u201d Energy, vol. 96, pp. 592\u2013602, 2016.\r\n[22] H. Tian, L. Chang, Y. Gao, G. Shu, M. Zhao, and N. Yan,\r\n\u201cThermo-economic analysis of zeotropic mixtures based on siloxanes\r\nfor engine waste heat recovery using a dual-loop organic rankine cycle\r\n(dorc),\u201d Energy Conversion and Management, vol. 136, pp. 11\u201326, 2017.\r\n[23] T. Falano, H. K. Jeswani, and A. Azapagic, \u201cAssessing the environmental\r\nsustainability of ethanol from integrated biorefineries,\u201d Biotechnology\r\njournal, vol. 9, no. 6, pp. 753\u2013765, 2014.","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 134, 2018"}