Search results for: IS success model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7920

Search results for: IS success model

6540 Building a Service-Centric Business Model in SMEs in the Business-to-Business Context

Authors: Päivi J. Tossavainen , Leena Alakoski, Katri Ojasalo

Abstract:

Building a service-centric business model requires new knowledge and capabilities in companies. This paper enlightens the challenges small and medium sized firms (SMEs) face when developing their service-centric business models. This paper examines the premise for knowledge transfer and capability development required. The objective of this paper is to increase knowledge about SME-s transformation to service-centric business models.This paper reports an action research based case study. The paper provides empirical evidence from three case companies. The empirical data was collected through multiple methods. The findings of the paper are: First, the developed model to analyze the current state in companies. Second, the process of building the service – centric business models. Third, the selection of suitable service development methods. The lack of a holistic understanding on service logic suggests that SMEs need practical and easy to use methods to improve their business

Keywords: service-centric business model, service development, action research, case study

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1781
6539 A Superior Delay Estimation Model for VLSI Interconnect in Current Mode Signaling

Authors: Sunil Jadav, Rajeevan Chandel Munish Vashishath

Abstract:

Today’s VLSI networks demands for high speed. And in this work the compact form mathematical model for current mode signalling in VLSI interconnects is presented.RLC interconnect line is modelled using characteristic impedance of transmission line and inductive effect. The on-chip inductance effect is dominant at lower technology node is emulated into an equivalent resistance. First order transfer function is designed using finite difference equation, Laplace transform and by applying the boundary conditions at the source and load termination. It has been observed that the dominant pole determines system response and delay in the proposed model. The novel proposed current mode model shows superior performance as compared to voltage mode signalling. Analysis shows that current mode signalling in VLSI interconnects provides 2.8 times better delay performance than voltage mode. Secondly the damping factor of a lumped RLC circuit is shown to be a useful figure of merit.

Keywords: Current Mode, Voltage Mode, VLSI Interconnect.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2450
6538 A Strategy for a Robust Design of Cracked Stiffened Panels

Authors: Francesco Caputo, Giuseppe Lamanna, Alessandro Soprano

Abstract:

This work is focused on the numerical prediction of the fracture resistance of a flat stiffened panel made of the aluminium alloy 2024 T3 under a monotonic traction condition. The performed numerical simulations have been based on the micromechanical Gurson-Tvergaard (GT) model for ductile damage. The applicability of the GT model to this kind of structural problems has been studied and assessed by comparing numerical results, obtained by using the WARP 3D finite element code, with experimental data available in literature. In the sequel a home-made procedure is presented, which aims to increase the residual strength of a cracked stiffened aluminum panel and which is based on the stochastic design improvement (SDI) technique; a whole application example is then given to illustrate the said technique.

Keywords: Residual strength, R-Curve, Gurson model, SDI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1541
6537 A Procedure to Assess Streamflow Rating Curves and Streamflow Sequences

Authors: Elena Carcano, Mirzi Betasolo

Abstract:

This study aims to provide sub-hourly streamflow predictions and associated rating curves for small catchments of intermittent and torrential flow regime characterized by flash floods occurring especially during April and November. The methodology entails two lumped conceptual hydrological models which work in series. The total model is based upon eleven parameters and shows good flexibility in handling different input sets. Runoff Coefficient has contributed to improving the model’s performances and has been treated as an additional parameter; while Sensitivity Analysis has highlighted how slight changes in the model’s input can lead to changes in model’s output. The adopted procedure is steady and useful to give very practical engineering information at the expense of a parsimonious request both in input data and in the number of adopted parameters. According to the obtained results, the authors encourage the test of this combined procedure on different hydrological scenarios in order to provide information for poorly monitored catchments and not updated sites.

Keywords: Streamflow rating curve, chronological data, streamflow sequences, conceptual models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 420
6536 Optical and Double Folding Model Analysis for Alpha Particles Elastically Scattered from 9Be and 11B Nuclei at Different Energies

Authors: Ahmed H. Amer, A. Amar, Sh. Hamada, I. I. Bondouk, F. A. El-Hussiny

Abstract:

Elastic scattering of α-particles from 9Be and 11B nuclei at different alpha energies have been analyzed. Optical model parameters (OMPs) of α-particles elastic scattering by these nuclei at different energies have been obtained. In the present calculations, the real part of the optical potential are derived by folding of nucleonnucleon (NN) interaction into nuclear matter density distribution of the projectile and target nuclei using computer code FRESCO. A density-dependent version of the M3Y interaction (CDM3Y6), which is based on the G-matrix elements of the Paris NN potential, has been used. Volumetric integrals of the real and imaginary potential depth (JR, JW) have been calculated and found to be energy dependent. Good agreement between the experimental data and the theoretical predictions in the whole angular range. In double folding (DF) calculations, the obtained normalization coefficient Nr is in the range 0.70–1.32.

Keywords: Elastic scattering of α-particles, optical model parameters, double folding model, nucleon-nucleon interaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2196
6535 Numerical Simulations on Feasibility of Stochastic Model Predictive Control for Linear Discrete-Time Systems with Random Dither Quantization

Authors: Taiki Baba, Tomoaki Hashimoto

Abstract:

The random dither quantization method enables us to achieve much better performance than the simple uniform quantization method for the design of quantized control systems. Motivated by this fact, the stochastic model predictive control method in which a performance index is minimized subject to probabilistic constraints imposed on the state variables of systems has been proposed for linear feedback control systems with random dither quantization. In other words, a method for solving optimal control problems subject to probabilistic state constraints for linear discrete-time control systems with random dither quantization has been already established. To our best knowledge, however, the feasibility of such a kind of optimal control problems has not yet been studied. Our objective in this paper is to investigate the feasibility of stochastic model predictive control problems for linear discrete-time control systems with random dither quantization. To this end, we provide the results of numerical simulations that verify the feasibility of stochastic model predictive control problems for linear discrete-time control systems with random dither quantization.

Keywords: Model predictive control, stochastic systems, probabilistic constraints, random dither quantization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1020
6534 Sentiment Analysis of Fake Health News Using Naive Bayes Classification Models

Authors: Danielle Shackley, Yetunde Folajimi

Abstract:

As more people turn to the internet seeking health related information, there is more risk of finding false, inaccurate, or dangerous information. Sentiment analysis is a natural language processing technique that assigns polarity scores of text, ranging from positive, neutral and negative. In this research, we evaluate the weight of a sentiment analysis feature added to fake health news classification models. The dataset consists of existing reliably labeled health article headlines that were supplemented with health information collected about COVID-19 from social media sources. We started with data preprocessing, tested out various vectorization methods such as Count and TFIDF vectorization. We implemented 3 Naive Bayes classifier models, including Bernoulli, Multinomial and Complement. To test the weight of the sentiment analysis feature on the dataset, we created benchmark Naive Bayes classification models without sentiment analysis, and those same models were reproduced and the feature was added. We evaluated using the precision and accuracy scores. The Bernoulli initial model performed with 90% precision and 75.2% accuracy, while the model supplemented with sentiment labels performed with 90.4% precision and stayed constant at 75.2% accuracy. Our results show that the addition of sentiment analysis did not improve model precision by a wide margin; while there was no evidence of improvement in accuracy, we had a 1.9% improvement margin of the precision score with the Complement model. Future expansion of this work could include replicating the experiment process, and substituting the Naive Bayes for a deep learning neural network model.

Keywords: Sentiment analysis, Naive Bayes model, natural language processing, topic analysis, fake health news classification model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 488
6533 Decision Trees for Predicting Risk of Mortality using Routinely Collected Data

Authors: Tessy Badriyah, Jim S. Briggs, Dave R. Prytherch

Abstract:

It is well known that Logistic Regression is the gold standard method for predicting clinical outcome, especially predicting risk of mortality. In this paper, the Decision Tree method has been proposed to solve specific problems that commonly use Logistic Regression as a solution. The Biochemistry and Haematology Outcome Model (BHOM) dataset obtained from Portsmouth NHS Hospital from 1 January to 31 December 2001 was divided into four subsets. One subset of training data was used to generate a model, and the model obtained was then applied to three testing datasets. The performance of each model from both methods was then compared using calibration (the χ2 test or chi-test) and discrimination (area under ROC curve or c-index). The experiment presented that both methods have reasonable results in the case of the c-index. However, in some cases the calibration value (χ2) obtained quite a high result. After conducting experiments and investigating the advantages and disadvantages of each method, we can conclude that Decision Trees can be seen as a worthy alternative to Logistic Regression in the area of Data Mining.

Keywords: Decision Trees, Logistic Regression, clinical outcome, risk of mortality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2523
6532 Improving the Management Systems of the Ownership Risks in Conditions of Transformation of the Russian Economy

Authors: Mikhail V. Khachaturyan

Abstract:

The article analyzes problems of improving the management systems of the ownership risks in the conditions of the transformation of the Russian economy. Among the main sources of threats business owners should highlight is the inefficiency of the implementation of business models and interaction with hired managers. In this context, it is particularly important to analyze the relationship of business models and ownership risks. The analysis of this problem appears to be relevant for a number of reasons: Firstly, the increased risk appetite of the owner directly affects the business model and the composition of his holdings; secondly, owners with significant stakes in the company are factors in the formation of particular types of risks for owners, for which relations have a significant influence on a firm's competitiveness and ultimately determines its survival; and thirdly, inefficient system of management ownership of risk is one of the main causes of mass bankruptcies, which significantly affects the stable operation of the economy as a whole. The separation of the processes of possession, disposal and use in modern organizations is the cause of not only problems in the process of interaction between the owner and managers in managing the organization as a whole, but also the asymmetric information about the kinds and forms of the main risks. Managers tend to avoid risky projects, inhibit the diversification of the organization's assets, while owners can insist on the development of such projects, with the aim not only of creating new values for themselves and consumers, but also increasing the value of the company as a result of increasing capital. In terms of separating ownership and management, evaluation of projects by the ratio of risk-yield requires preservation of the influence of the owner on the process of development and making management decisions. It is obvious that without a clearly structured system of participation of the owner in managing the risks of their business, further development is hopeless. In modern conditions of forming a risk management system, owners are compelled to compromise between the desire to increase the organization's ability to produce new value, and, consequently, increase its cost due to the implementation of risky projects and the need to tolerate the cost of lost opportunities of risk diversification. Improving the effectiveness of the management of ownership risks may also contribute to the revitalization of creditors on implementation claims to inefficient owners, which ultimately will contribute to the efficiency models of ownership control to exclude variants of insolvency. It is obvious that in modern conditions, the success of the model of the ownership of risk management and audit is largely determined by the ability and willingness of the owner to find a compromise between potential opportunities for expanding the firm's ability to create new value through risk and maintaining the current level of new value creation and an acceptable level of risk through the use of models of diversification.

Keywords: Risk management, ownership risks, economic transformation, Russian economy, management systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1261
6531 System Identification Based on Stepwise Regression for Dynamic Market Representation

Authors: Alexander Efremov

Abstract:

A system for market identification (SMI) is presented. The resulting representations are multivariable dynamic demand models. The market specifics are analyzed. Appropriate models and identification techniques are chosen. Multivariate static and dynamic models are used to represent the market behavior. The steps of the first stage of SMI, named data preprocessing, are mentioned. Next, the second stage, which is the model estimation, is considered in more details. Stepwise linear regression (SWR) is used to determine the significant cross-effects and the orders of the model polynomials. The estimates of the model parameters are obtained by a numerically stable estimator. Real market data is used to analyze SMI performance. The main conclusion is related to the applicability of multivariate dynamic models for representation of market systems.

Keywords: market identification, dynamic models, stepwise regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1618
6530 A Proposed Framework for Visualization to Teach Computer Science

Authors: Muhammed Yousoof, Mohd Sapiyan, Khaja Kamaluddin

Abstract:

Computer programming is considered a very difficult course by many computer science students. The reasons for the difficulties include cognitive load involved in programming, different learning styles of students, instructional methodology and the choice of the programming languages. To reduce the difficulties the following have been tried: pair programming, program visualization, different learning styles etc. However, these efforts have produced limited success. This paper reviews the problem and proposes a framework to help students overcome the difficulties involved.

Keywords: Cognitive Load, Instructional Models, LearningStyles, Program Visualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1455
6529 Landfill Gas Monitoring at Borehole Wells using an Autonomous Environmental Monitoring System

Authors: Breda M. Kiernan, Stephen Beirne, Cormac Fay, Dermot Diamond

Abstract:

An autonomous environmental monitoring system (Smart Landfill) has been constructed for the quantitative measurement of the components of landfill gas found at borehole wells at the perimeter of landfill sites. The main components of landfill gas are the greenhouse gases, methane and carbon dioxide and have been monitored in the range 0-5 % volume. This monitoring system has not only been tested in the laboratory but has been deployed in multiple field trials and the data collected successfully compared with on-site monitors. This success shows the potential of this system for application in environments where reliable gas monitoring is crucial.

Keywords: Environmental monitoring, greenhouse gas, landfill gas, sensor deployment

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2117
6528 Fuzzy Trust for Peer-to-Peer Based Systems

Authors: Farag Azzedin, Ahmad Ridha, Ali Rizvi

Abstract:

Trust management is one of the drawbacks in Peer-to-Peer (P2P) system. Lack of centralized control makes it difficult to control the behavior of the peers. Reputation system is one approach to provide trust assessment in P2P system. In this paper, we use fuzzy logic to model trust in a P2P environment. Our trust model combines first-hand (direct experience) and second-hand (reputation)information to allow peers to represent and reason with uncertainty regarding other peers' trustworthiness. Fuzzy logic can help in handling the imprecise nature and uncertainty of trust. Linguistic labels are used to enable peers assign a trust level intuitively. Our fuzzy trust model is flexible such that inference rules are used to weight first-hand and second-hand accordingly.

Keywords: P2P Systems; Trust, Reputation, Fuzzy Logic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2158
6527 Structural Parsing of Natural Language Text in Tamil Using Phrase Structure Hybrid Language Model

Authors: Selvam M, Natarajan. A M, Thangarajan R

Abstract:

Parsing is important in Linguistics and Natural Language Processing to understand the syntax and semantics of a natural language grammar. Parsing natural language text is challenging because of the problems like ambiguity and inefficiency. Also the interpretation of natural language text depends on context based techniques. A probabilistic component is essential to resolve ambiguity in both syntax and semantics thereby increasing accuracy and efficiency of the parser. Tamil language has some inherent features which are more challenging. In order to obtain the solutions, lexicalized and statistical approach is to be applied in the parsing with the aid of a language model. Statistical models mainly focus on semantics of the language which are suitable for large vocabulary tasks where as structural methods focus on syntax which models small vocabulary tasks. A statistical language model based on Trigram for Tamil language with medium vocabulary of 5000 words has been built. Though statistical parsing gives better performance through tri-gram probabilities and large vocabulary size, it has some disadvantages like focus on semantics rather than syntax, lack of support in free ordering of words and long term relationship. To overcome the disadvantages a structural component is to be incorporated in statistical language models which leads to the implementation of hybrid language models. This paper has attempted to build phrase structured hybrid language model which resolves above mentioned disadvantages. In the development of hybrid language model, new part of speech tag set for Tamil language has been developed with more than 500 tags which have the wider coverage. A phrase structured Treebank has been developed with 326 Tamil sentences which covers more than 5000 words. A hybrid language model has been trained with the phrase structured Treebank using immediate head parsing technique. Lexicalized and statistical parser which employs this hybrid language model and immediate head parsing technique gives better results than pure grammar and trigram based model.

Keywords: Hybrid Language Model, Immediate Head Parsing, Lexicalized and Statistical Parsing, Natural Language Processing, Parts of Speech, Probabilistic Context Free Grammar, Tamil Language, Tree Bank.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3643
6526 Enhanced Economic Evaluation – Approach for a Holistic Evaluation of Factory Planning Variants

Authors: Candy P. Schulze, Michael Brieke, Prof. Peter Nyhuis

Abstract:

The building of a factory can be a strategic investment owing to its long service life. An evaluation that only focuses, for example, on payments for the building, the technical equipment of the factory, and the personnel for the enterprise is – considering the complexity of the system factory – not sufficient for this long-term view. The success of an investment is secured, among other things, by the attainment of nonmonetary goals, too, like transformability. Such aspects are not considered in traditional investment calculations like the net present value method. This paper closes this gap with the enhanced economic evaluation (EWR) for factory planning. The procedure and the first results of an application in a project are presented.

Keywords: economic efficiency, holistic evaluation, factory planning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1696
6525 Torrefaction of Biomass Pellets: Modeling of the Process in a Fixed Bed Reactor

Authors: Ekaterina Artiukhina, Panagiotis Grammelis

Abstract:

Torrefaction of biomass pellets is considered as a useful pretreatment technology in order to convert them into a high quality solid biofuel that is more suitable for pyrolysis, gasification, combustion, and co-firing applications. In the course of torrefaction, the temperature varies across the pellet, and therefore chemical reactions proceed unevenly within the pellet. However, the uniformity of the thermal distribution along the pellet is generally assumed. The torrefaction process of a single cylindrical pellet is modeled here, accounting for heat transfer coupled with chemical kinetics. The drying sub-model was also introduced. The nonstationary process of wood pellet decomposition is described by the system of non-linear partial differential equations over the temperature and mass. The model captures well the main features of the experimental data.

Keywords: Torrefaction, biomass pellets, model, heat and mass transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1802
6524 A Convolutional Deep Neural Network Approach for Skin Cancer Detection Using Skin Lesion Images

Authors: Firas Gerges, Frank Y. Shih

Abstract:

Malignant Melanoma, known simply as Melanoma, is a type of skin cancer that appears as a mole on the skin. It is critical to detect this cancer at an early stage because it can spread across the body and may lead to the patient death. When detected early, Melanoma is curable. In this paper we propose a deep learning model (Convolutional Neural Networks) in order to automatically classify skin lesion images as Malignant or Benign. Images underwent certain pre-processing steps to diminish the effect of the normal skin region on the model. The result of the proposed model showed a significant improvement over previous work, achieving an accuracy of 97%.

Keywords: Deep learning, skin cancer, image processing, melanoma.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1540
6523 Species Spreading due to Environmental Hostility, Dispersal Adaptation and Allee Effects

Authors: Sanjeeva Balasuriya

Abstract:

A phenomenological model for species spreading which incorporates the Allee effect, a species- maximum attainable growth rate, collective dispersal rate and dispersal adaptability is presented. This builds on a well-established reaction-diffusion model for spatial spreading of invading organisms. The model is phrased in terms of the “hostility" (which quantifies the Allee threshold in relation to environmental sustainability) and dispersal adaptability (which measures how a species is able to adapt its migratory response to environmental conditions). The species- invading/retreating speed and the sharpness of the invading boundary are explicitly characterised in terms of the fundamental parameters, and analysed in detail.

Keywords: Allee effect, dispersal, migration speed, diffusion, invasion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1265
6522 Modeling of a Novel Dual-Belt Continuously Variable Transmission for Automobiles

Authors: Y. Q. Chen, P. K. Wong, Z. C. Xie, H. W. Wu, K. U. Chan, J., L. Huang

Abstract:

It is believed that continuously variable transmission (CVT) will dominate the automotive transmissions in the future. The most popular design is Van Doorne-s CVT with single metal pushing V-belt. However, it is only applicable to low power passenger cars because its major limitation is low torque capacity. Therefore, this research studies a novel dual-belt CVT system to overcome the limitation of traditional single-belt CVT, such that it can be applicable to the heavy-duty vehicles. This paper presents the mathematical model of the design and its experimental verification. Experimental and simulated results show that the model developed is valid and the proposed dual-belt CVT can really overcome the traditional limitation of single-belt Van Doorne-s CVT.

Keywords: Analytical model, CVT, Dual belts, Torque capacity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2146
6521 A Novel Plausible Deniability Scheme in Secure Steganography

Authors: Farshad Amin, Majid Soleimanipour, Alireza Karimi

Abstract:

The goal of steganography is to avoid drawing suspicion to the transmission of a hidden message. If suspicion is raised, steganography may fail. The success of steganography depends on the secrecy of the action. If steganography is detected, the system will fail but data security depends on the robustness of the applied algorithm. In this paper, we propose a novel plausible deniability scheme in steganography by using a diversionary message and encrypt it with a DES-based algorithm. Then, we compress the secret message and encrypt it by the receiver-s public key along with the stego key and embed both messages in a carrier using an embedding algorithm. It will be demonstrated how this method can support plausible deniability and is robust against steganalysis.

Keywords: Steganography, Cryptography, Information Hiding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2191
6520 Using the Technology Acceptance Model to Examine Seniors’ Attitudes toward Facebook

Authors: Chien-Jen Liu, Shu Ching Yang

Abstract:

Using the technology acceptance model (TAM), this study examined the external variables of technological complexity (TC) to acquire a better understanding of the factors that influence the acceptance of computer application courses by learners at Active Aging Universities. After the learners in this study had completed a 27-hour Facebook course, 44 learners responded to a modified TAM survey. Data were collected to examine the path relationships among the variables that influence the acceptance of Facebook-mediated community learning. The partial least squares (PLS) method was used to test the measurement and the structural model. The study results demonstrated that attitudes toward Facebook use directly influence behavioral intentions (BI) with respect to Facebook use, evincing a high prediction rate of 58.3%. In addition to the perceived usefulness (PU) and perceived ease of use (PEOU) measures that are proposed in the TAM, other external variables, such as TC, also indirectly influence BI. These four variables can explain 88% of the variance in BI and demonstrate a high level of predictive ability. Finally, limitations of this investigation and implications for further research are discussed.

Keywords: Technology acceptance model (TAM), technological complexity, partial least squares (PLS), perceived usefulness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3196
6519 Intelligent Modeling of the Electrical Activity of the Human Heart

Authors: Lambros V. Skarlas, Grigorios N. Beligiannis, Efstratios F. Georgopoulos, Adam V. Adamopoulos

Abstract:

The aim of this contribution is to present a new approach in modeling the electrical activity of the human heart. A recurrent artificial neural network is being used in order to exhibit a subset of the dynamics of the electrical behavior of the human heart. The proposed model can also be used, when integrated, as a diagnostic tool of the human heart system. What makes this approach unique is the fact that every model is being developed from physiological measurements of an individual. This kind of approach is very difficult to apply successfully in many modeling problems, because of the complexity and entropy of the free variables describing the complex system. Differences between the modeled variables and the variables of an individual, measured at specific moments, can be used for diagnostic purposes. The sensor fusion used in order to optimize the utilization of biomedical sensors is another point that this paper focuses on. Sensor fusion has been known for its advantages in applications such as control and diagnostics of mechanical and chemical processes.

Keywords: Artificial Neural Networks, Diagnostic System, Health Condition Modeling Tool, Heart Diagnostics Model, Heart Electricity Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1827
6518 Edge Segmentation of Satellite Image using Phase Congruency Model

Authors: Ahmed Zaafouri, Mounir Sayadi, Farhat Fnaiech

Abstract:

In this paper, we present a method for edge segmentation of satellite images based on 2-D Phase Congruency (PC) model. The proposed approach is composed by two steps: The contextual non linear smoothing algorithm (CNLS) is used to smooth the input images. Then, the 2D stretched Gabor filter (S-G filter) based on proposed angular variation is developed in order to avoid the multiple responses in the previous work. An assessment of our proposed method performance is provided in terms of accuracy of satellite image edge segmentation. The proposed method is compared with others known approaches.

Keywords: Edge segmentation, Phase congruency model, Satellite images, Stretched Gabor filter

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2667
6517 Simulation of a Multi-Component Transport Model for the Chemical Reaction of a CVD-Process

Authors: J. Geiser, R. Röhle

Abstract:

In this paper we present discretization and decomposition methods for a multi-component transport model of a chemical vapor deposition (CVD) process. CVD processes are used to manufacture deposition layers or bulk materials. In our transport model we simulate the deposition of thin layers. The microscopic model is based on the heavy particles, which are derived by approximately solving a linearized multicomponent Boltzmann equation. For the drift-process of the particles we propose diffusionreaction equations as well as for the effects of heat conduction. We concentrate on solving the diffusion-reaction equation with analytical and numerical methods. For the chemical processes, modelled with reaction equations, we propose decomposition methods and decouple the multi-component models to simpler systems of differential equations. In the numerical experiments we present the computational results of our proposed models.

Keywords: Chemical reactions, chemical vapor deposition, convection-diffusion-reaction equations, decomposition methods, multi-component transport.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1410
6516 Anomaly Detection in a Data Center with a Reconstruction Method Using a Multi-Autoencoders Model

Authors: Victor Breux, Jérôme Boutet, Alain Goret, Viviane Cattin

Abstract:

Early detection of anomalies in data centers is important to reduce downtimes and the costs of periodic maintenance. However, there is little research on this topic and even fewer on the fusion of sensor data for the detection of abnormal events. The goal of this paper is to propose a method for anomaly detection in data centers by combining sensor data (temperature, humidity, power) and deep learning models. The model described in the paper uses one autoencoder per sensor to reconstruct the inputs. The auto-encoders contain Long-Short Term Memory (LSTM) layers and are trained using the normal samples of the relevant sensors selected by correlation analysis. The difference signal between the input and its reconstruction is then used to classify the samples using feature extraction and a random forest classifier. The data measured by the sensors of a data center between January 2019 and May 2020 are used to train the model, while the data between June 2020 and May 2021 are used to assess it. Performances of the model are assessed a posteriori through F1-score by comparing detected anomalies with the data center’s history. The proposed model outperforms the state-of-the-art reconstruction method, which uses only one autoencoder taking multivariate sequences and detects an anomaly with a threshold on the reconstruction error, with an F1-score of 83.60% compared to 24.16%.

Keywords: Anomaly detection, autoencoder, data centers, deep learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 743
6515 Jeffrey's Prior for Unknown Sinusoidal Noise Model via Cramer-Rao Lower Bound

Authors: Samuel A. Phillips, Emmanuel A. Ayanlowo, Rasaki O. Olanrewaju, Olayode Fatoki

Abstract:

This paper employs the Jeffrey's prior technique in the process of estimating the periodograms and frequency of sinusoidal model for unknown noisy time variants or oscillating events (data) in a Bayesian setting. The non-informative Jeffrey's prior was adopted for the posterior trigonometric function of the sinusoidal model such that Cramer-Rao Lower Bound (CRLB) inference was used in carving-out the minimum variance needed to curb the invariance structure effect for unknown noisy time observational and repeated circular patterns. An average monthly oscillating temperature series measured in degree Celsius (0C) from 1901 to 2014 was subjected to the posterior solution of the unknown noisy events of the sinusoidal model via Markov Chain Monte Carlo (MCMC). It was not only deduced that two minutes period is required before completing a cycle of changing temperature from one particular degree Celsius to another but also that the sinusoidal model via the CRLB-Jeffrey's prior for unknown noisy events produced a miniature posterior Maximum A Posteriori (MAP) compare to a known noisy events.

Keywords: Cramer-Rao Lower Bound (CRLB), Jeffrey's prior, Sinusoidal, Maximum A Posteriori (MAP), Markov Chain Monte Carlo (MCMC), Periodograms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 658
6514 Bifurcation Analysis of a Delayed Predator-prey Fishery Model with Prey Reserve in Frequency Domain

Authors: Changjin Xu

Abstract:

In this paper, applying frequency domain approach, a delayed predator-prey fishery model with prey reserve is investigated. By choosing the delay τ as a bifurcation parameter, It is found that Hopf bifurcation occurs as the bifurcation parameter τ passes a sequence of critical values. That is, a family of periodic solutions bifurcate from the equilibrium when the bifurcation parameter exceeds a critical value. The length of delay which preserves the stability of the positive equilibrium is calculated. Some numerical simulations are included to justify the theoretical analysis results. Finally, main conclusions are given.

Keywords: Predator-prey model, stability, Hopf bifurcation, frequency domain, Nyquist criterion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1404
6513 Aeroelastic Response for Pure Plunging Motion of a Typical Section Due to Sharp Edged Gust, Using Jones Approximation Aerodynamics

Authors: M. H. Kargarnovin, A. Mamandi

Abstract:

This paper presents investigation effects of a sharp edged gust on aeroelastic behavior and time-domain response of a typical section model using Jones approximate aerodynamics for pure plunging motion. Flutter analysis has been done by using p and p-k methods developed for presented finite-state aerodynamic model for a typical section model (airfoil). Introduction of gust analysis as a linear set of ordinary differential equations in a simplified procedure has been carried out by using transformation into an eigenvalue problem.

Keywords: Aeroelastic response, jones approximation, pure plunging motion, sharp edged gust.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1885
6512 Machine Scoring Model Using Data Mining Techniques

Authors: Wimalin S. Laosiritaworn, Pongsak Holimchayachotikul

Abstract:

this article proposed a methodology for computer numerical control (CNC) machine scoring. The case study company is a manufacturer of hard disk drive parts in Thailand. In this company, sample of parts manufactured from CNC machine are usually taken randomly for quality inspection. These inspection data were used to make a decision to shut down the machine if it has tendency to produce parts that are out of specification. Large amount of data are produced in this process and data mining could be very useful technique in analyzing them. In this research, data mining techniques were used to construct a machine scoring model called 'machine priority assessment model (MPAM)'. This model helps to ensure that the machine with higher risk of producing defective parts be inspected before those with lower risk. If the defective prone machine is identified sooner, defective part and rework could be reduced hence improving the overall productivity. The results showed that the proposed method can be successfully implemented and approximately 351,000 baht of opportunity cost could have saved in the case study company.

Keywords: Computer Numerical Control, Data Mining, HardDisk Drive.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1395
6511 Using Jumping Particle Swarm Optimization for Optimal Operation of Pump in Water Distribution Networks

Authors: R. Rajabpour, N. Talebbeydokhti, M. H. Ahmadi

Abstract:

Carefully scheduling the operations of pumps can be resulted to significant energy savings. Schedules can be defined either implicit, in terms of other elements of the network such as tank levels, or explicit by specifying the time during which each pump is on/off. In this study, two new explicit representations based on timecontrolled triggers were analyzed, where the maximum number of pump switches was established beforehand, and the schedule may contain fewer switches than the maximum. The optimal operation of pumping stations was determined using a Jumping Particle Swarm Optimization (JPSO) algorithm to achieve the minimum energy cost. The model integrates JPSO optimizer and EPANET hydraulic network solver. The optimal pump operation schedule of VanZyl water distribution system was determined using the proposed model and compared with those from Genetic and Ant Colony algorithms. The results indicate that the proposed model utilizing the JPSO algorithm is a versatile management model for the operation of realworld water distribution system.

Keywords: JPSO, operation, optimization, water distribution system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2052