Search results for: Electric machine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1796

Search results for: Electric machine

416 Study on the Addition of Solar Generating and Energy Storage Units to a Power Distribution System

Authors: T. Costa, D. Narvaez, K. Melo, M. Villalva

Abstract:

Installation of micro-generators based on renewable energy in power distribution system has increased in recent years, with the main renewable sources being solar and wind. Due to the intermittent nature of renewable energy sources, such micro-generators produce time-varying energy which does not correspond at certain times of the day to the peak energy consumption of end users. For this reason, the use of energy storage units next to the grid contributes to the proper leveling of the buses’ voltage level according to Brazilian energy quality standards. In this work, the effect of the addition of a photovoltaic solar generator and a store of energy in the busbar voltages of an electric system is analyzed. The consumption profile is defined as the average hourly use of appliances in a common residence, and the generation profile is defined as a function of the solar irradiation available in a locality. The power summation method is validated with analytical calculation and is used to calculate the modules and angles of the voltages in the buses of an electrical system based on the IEEE standard, at each hour of the day and with defined load and generation profiles. The results show that bus 5 presents the worst voltage level at the power consumption peaks and stabilizes at the appropriate range with the inclusion of the energy storage during the night time period. Solar generator maintains improvement of the voltage level during the period when it receives solar irradiation, having peaks of production during the 12 pm (without exceeding the appropriate maximum levels of tension).

Keywords: Energy storage, power distribution system, solar generator, voltage level.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 828
415 Data Quality Enhancement with String Length Distribution

Authors: Qi Xiu, Hiromu Hota, Yohsuke Ishii, Takuya Oda

Abstract:

Recently, collectable manufacturing data are rapidly increasing. On the other hand, mega recall is getting serious as a social problem. Under such circumstances, there are increasing needs for preventing mega recalls by defect analysis such as root cause analysis and abnormal detection utilizing manufacturing data. However, the time to classify strings in manufacturing data by traditional method is too long to meet requirement of quick defect analysis. Therefore, we present String Length Distribution Classification method (SLDC) to correctly classify strings in a short time. This method learns character features, especially string length distribution from Product ID, Machine ID in BOM and asset list. By applying the proposal to strings in actual manufacturing data, we verified that the classification time of strings can be reduced by 80%. As a result, it can be estimated that the requirement of quick defect analysis can be fulfilled.

Keywords: Data quality, feature selection, probability distribution, string classification, string length.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1328
414 Dynamic Measurement System Modeling with Machine Learning Algorithms

Authors: Changqiao Wu, Guoqing Ding, Xin Chen

Abstract:

In this paper, ways of modeling dynamic measurement systems are discussed. Specially, for linear system with single-input single-output, it could be modeled with shallow neural network. Then, gradient based optimization algorithms are used for searching the proper coefficients. Besides, method with normal equation and second order gradient descent are proposed to accelerate the modeling process, and ways of better gradient estimation are discussed. It shows that the mathematical essence of the learning objective is maximum likelihood with noises under Gaussian distribution. For conventional gradient descent, the mini-batch learning and gradient with momentum contribute to faster convergence and enhance model ability. Lastly, experimental results proved the effectiveness of second order gradient descent algorithm, and indicated that optimization with normal equation was the most suitable for linear dynamic models.

Keywords: Dynamic system modeling, neural network, normal equation, second order gradient descent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 781
413 Electroencephalography-Based Intention Recognition and Consensus Assessment during Emergency Response

Authors: Siyao Zhu, Yifang Xu

Abstract:

After natural and man-made disasters, robots can bypass the danger, expedite the search, and acquire unprecedented situational awareness to design rescue plans. Brain-computer interface is a promising option to overcome the limitations of tedious manual control and operation of robots in the urgent search-and-rescue tasks. This study aims to test the feasibility of using electroencephalography (EEG) signals to decode human intentions and detect the level of consensus on robot-provided information. EEG signals were classified using machine-learning and deep-learning methods to discriminate search intentions and agreement perceptions. The results show that the average classification accuracy for intention recognition and consensus assessment is 67% and 72%, respectively, proving the potential of incorporating recognizable users’ bioelectrical responses into advanced robot-assisted systems for emergency response.

Keywords: Consensus assessment, electroencephalogram, EEG, emergency response, human-robot collaboration, intention recognition, search and rescue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 344
412 Chemical Reaction Algorithm for Expectation Maximization Clustering

Authors: Li Ni, Pen ManMan, Li KenLi

Abstract:

Clustering is an intensive research for some years because of its multifaceted applications, such as biology, information retrieval, medicine, business and so on. The expectation maximization (EM) is a kind of algorithm framework in clustering methods, one of the ten algorithms of machine learning. Traditionally, optimization of objective function has been the standard approach in EM. Hence, research has investigated the utility of evolutionary computing and related techniques in the regard. Chemical Reaction Optimization (CRO) is a recently established method. So the property embedded in CRO is used to solve optimization problems. This paper presents an algorithm framework (EM-CRO) with modified CRO operators based on EM cluster problems. The hybrid algorithm is mainly to solve the problem of initial value sensitivity of the objective function optimization clustering algorithm. Our experiments mainly take the EM classic algorithm:k-means and fuzzy k-means as an example, through the CRO algorithm to optimize its initial value, get K-means-CRO and FKM-CRO algorithm. The experimental results of them show that there is improved efficiency for solving objective function optimization clustering problems.

Keywords: Chemical reaction optimization, expectation maximization, initial, objective function clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1293
411 Methods for Distinction of Cattle Using Supervised Learning

Authors: Radoslav Židek, Veronika Šidlová, Radovan Kasarda, Birgit Fuerst-Waltl

Abstract:

Machine learning represents a set of topics dealing with the creation and evaluation of algorithms that facilitate pattern recognition, classification, and prediction, based on models derived from existing data. The data can present identification patterns which are used to classify into groups. The result of the analysis is the pattern which can be used for identification of data set without the need to obtain input data used for creation of this pattern. An important requirement in this process is careful data preparation validation of model used and its suitable interpretation. For breeders, it is important to know the origin of animals from the point of the genetic diversity. In case of missing pedigree information, other methods can be used for traceability of animal´s origin. Genetic diversity written in genetic data is holding relatively useful information to identify animals originated from individual countries. We can conclude that the application of data mining for molecular genetic data using supervised learning is an appropriate tool for hypothesis testing and identifying an individual.

Keywords: Genetic data, Pinzgau cattle, supervised learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2318
410 Automatic Segmentation of Thigh Magnetic Resonance Images

Authors: Lorena Urricelqui, Armando Malanda, Arantxa Villanueva

Abstract:

Purpose: To develop a method for automatic segmentation of adipose and muscular tissue in thighs from magnetic resonance images. Materials and methods: Thirty obese women were scanned on a Siemens Impact Expert 1T resonance machine. 1500 images were finally used in the tests. The developed segmentation method is a recursive and multilevel process that makes use of several concepts such as shaped histograms, adaptative thresholding and connectivity. The segmentation process was implemented in Matlab and operates without the need of any user interaction. The whole set of images were segmented with the developed method. An expert radiologist segmented the same set of images following a manual procedure with the aid of the SliceOmatic software (Tomovision). These constituted our 'goal standard'. Results: The number of coincidental pixels of the automatic and manual segmentation procedures was measured. The average results were above 90 % of success in most of the images. Conclusions: The proposed approach allows effective automatic segmentation of MRIs from thighs, comparable to expert manual performance.

Keywords: Segmentation, thigh, magnetic resonance image, fat, muscle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1905
409 Triple Intercell Bar for Electrometallurgical Processes: A Design to Increase PV Energy Utilization

Authors: Eduardo P. Wiechmann, Jorge A. Henríquez, Pablo E. Aqueveque, Luis G. Muñoz

Abstract:

PV energy prices are declining rapidly. To take advantage of the benefits of those prices and lower the carbon footprint, operational practices must be modified. Undoubtedly, it challenges the electrowinning practice to operate at constant current throughout the day. This work presents a technology that contributes in providing modulation capacity to the electrode current distribution system. This is to raise the day time dc current and lower it at night. The system is a triple intercell bar that operates in current-source mode. The design is a capping board free dogbone type of bar that ensures an operation free of short circuits, hot swapability repairs and improved current balance. This current-source system eliminates the resetting currents circulating in equipotential bars. Twin auxiliary connectors are added to the main connectors providing secure current paths to bypass faulty or impaired contacts. All system conductive elements are positioned over a baseboard offering a large heat sink area to the ventilation of a facility. The system works with lower temperature than a conventional busbar. Of these attributes, the cathode current balance property stands out and is paramount for day/night modulation and the use of photovoltaic energy. A design based on a 3D finite element method model predicting electric and thermal performance under various industrial scenarios is presented. Preliminary results obtained in an electrowinning facility with industrial prototypes are included.

Keywords: Electrowinning, intercell bars, PV energy, current modulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 623
408 Adaption Model for Building Agile Pronunciation Dictionaries Using Phonemic Distance Measurements

Authors: Akella Amarendra Babu, Rama Devi Yellasiri, Natukula Sainath

Abstract:

Where human beings can easily learn and adopt pronunciation variations, machines need training before put into use. Also humans keep minimum vocabulary and their pronunciation variations are stored in front-end of their memory for ready reference, while machines keep the entire pronunciation dictionary for ready reference. Supervised methods are used for preparation of pronunciation dictionaries which take large amounts of manual effort, cost, time and are not suitable for real time use. This paper presents an unsupervised adaptation model for building agile and dynamic pronunciation dictionaries online. These methods mimic human approach in learning the new pronunciations in real time. A new algorithm for measuring sound distances called Dynamic Phone Warping is presented and tested. Performance of the system is measured using an adaptation model and the precision metrics is found to be better than 86 percent.

Keywords: Pronunciation variations, dynamic programming, machine learning, natural language processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 800
407 Aesthetics and Robotics: Which Form to give to the Human-Like Robot?

Authors: B. Tondu, N. Bardou

Abstract:

The recent development of humanoid robots has led robot designers to imagine a great variety of anthropomorphic forms for human-like machine. Which form is the best ? We try to answer this question from a double meaning of the anthropomorphism : a positive anthropomorphism corresponing to the realization of an effective anthropomorphic form object and a negative one corresponding to our natural tendency in certain circumstances to give human attributes to non-human beings. We postulate that any humanoid robot is concerned by both these two anthropomorphism kinds. We propose to use gestalt theory and Heider-s balance theory in order to analyze how negative anthropomorphism can influence our perception of human-like robots. From our theoretical approach we conclude that an “even shape" as defined by gestalt theory is not a sufficient condition for a good integration of future humanoid robots into a human community. Aesthetic perception of the robot cannot be splitted from a social perception : a humanoid robot, any how the efforts made for improving its appearance, could be rejected if it is devoted to a task with too high affective implications.

Keywords: Robot appearance, humanoid robot, uncanny valley, human-robot-interaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2420
406 IPSO Based UPFC Robust Output Feedback Controllers for Damping of Low Frequency Oscillations

Authors: A. Safari, H. Shayeghi, H. A. Shayanfar

Abstract:

On the basis of the linearized Phillips-Herffron model of a single-machine power system, a novel method for designing unified power flow controller (UPFC) based output feedback controller is presented. The design problem of output feedback controller for UPFC is formulated as an optimization problem according to with the time domain-based objective function which is solved by iteration particle swarm optimization (IPSO) that has a strong ability to find the most optimistic results. To ensure the robustness of the proposed damping controller, the design process takes into account a wide range of operating conditions and system configurations. The simulation results prove the effectiveness and robustness of the proposed method in terms of a high performance power system. The simulation study shows that the designed controller by Iteration PSO performs better than Classical PSO in finding the solution.

Keywords: UPFC, IPSO, output feedback Controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1434
405 Eco-Friendly Preservative Treated Bamboo Culm: Compressive Strength Analysis

Authors: Perminder JitKaur, Santosh Satya, K. K. Pant, S. N. Naik

Abstract:

Bamboo is extensively used in construction industry. Low durability of bamboo due to fungus infestation and termites attack under storage puts certain constrains for it usage as modern structural material. Looking at many chemical formulations for bamboo treatment leading to severe harmful environment effects, research on eco-friendly preservatives for bamboo treatment has been initiated world-over. In the present studies, eco-friendly preservative for bamboo treatment has been developed. To validate its application for structural purposes, investigation of effect of treatment on compressive strength has been investigated. Neemoil (25%) integrated with copper naphthenate (0.3%) on dilution with kerosene oil impregnated into bamboo culm at 2 bar pressure, has shown weight loss of only 3.15% in soil block analysis method. The results from compressive strength analysis using HEICO Automatic Compression Testing Machine reveal that preservative treatment has not altered the structural properties of bamboo culms. Compressive strength of control (11.72 N/mm2) and above treated samples (11.71 N/mm2) was found to be comparable.

Keywords: Compressive strength, D. strictus bamboo, Ecofriendly treatment, neem oil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3445
404 A Fuzzy Swarm Optimized Approach for Piece Selection in Bit Torrent Like Peer to Peer Network

Authors: M. Padmavathi, R. M. Suresh

Abstract:

Every machine plays roles of client and server simultaneously in a peer-to-peer (P2P) network. Though a P2P network has many advantages over traditional client-server models regarding efficiency and fault-tolerance, it also faces additional security threats. Users/IT administrators should be aware of risks from malicious code propagation, downloaded content legality, and P2P software’s vulnerabilities. Security and preventative measures are a must to protect networks from potential sensitive information leakage and security breaches. Bit Torrent is a popular and scalable P2P file distribution mechanism which successfully distributes large files quickly and efficiently without problems for origin server. Bit Torrent achieved excellent upload utilization according to measurement studies, but it also raised many questions as regards utilization in settings, than those measuring, fairness, and Bit Torrent’s mechanisms choice. This work proposed a block selection technique using Fuzzy ACO with optimal rules selected using ACO.

Keywords: Ant Colony Optimization (ACO), Bit Torrent, Download time, Peer-to-Peer (P2P) network, Performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2587
403 Quantification of E-Waste: A Case Study in Federal University of Espírito Santo, Brazil

Authors: Andressa S. T. Gomes, Luiza A. Souza, Luciana H. Yamane, Renato R. Siman

Abstract:

The segregation of waste of electrical and electronic equipment (WEEE) in the generating source, its characterization (quali-quantitative) and identification of origin, besides being integral parts of classification reports, are crucial steps to the success of its integrated management. The aim of this paper was to count WEEE generation at the Federal University of Espírito Santo (UFES), Brazil, as well as to define sources, temporary storage sites, main transportations routes and destinations, the most generated WEEE and its recycling potential. Quantification of WEEE generated at the University in the years between 2010 and 2015 was performed using data analysis provided by UFES’s sector of assets management. EEE and WEEE flow in the campuses information were obtained through questionnaires applied to the University workers. It was recorded 6028 WEEEs units of data processing equipment disposed by the university between 2010 and 2015. Among these waste, the most generated were CRT screens, desktops, keyboards and printers. Furthermore, it was observed that these WEEEs are temporarily stored in inappropriate places at the University campuses. In general, these WEEE units are donated to NGOs of the city, or sold through auctions (2010 and 2013). As for recycling potential, from the primary processing and further sale of printed circuit boards (PCB) from the computers, the amount collected could reach U$ 27,839.23. The results highlight the importance of a WEEE management policy at the University.

Keywords: Solid waste, waste of electric and electronic equipment, waste management, institutional generation of solid waste.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1568
402 A Hybrid Gene Selection Technique Using Improved Mutual Information and Fisher Score for Cancer Classification Using Microarrays

Authors: M. Anidha, K. Premalatha

Abstract:

Feature Selection is significant in order to perform constructive classification in the area of cancer diagnosis. However, a large number of features compared to the number of samples makes the task of classification computationally very hard and prone to errors in microarray gene expression datasets. In this paper, we present an innovative method for selecting highly informative gene subsets of gene expression data that effectively classifies the cancer data into tumorous and non-tumorous. The hybrid gene selection technique comprises of combined Mutual Information and Fisher score to select informative genes. The gene selection is validated by classification using Support Vector Machine (SVM) which is a supervised learning algorithm capable of solving complex classification problems. The results obtained from improved Mutual Information and F-Score with SVM as a classifier has produced efficient results.

Keywords: Gene selection, mutual information, Fisher score, classification, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1152
401 Effect of Cladding Direction on Residual Stress Distribution in Laser Cladded Rails

Authors: Taposh Roy, Anna Paradowska, Ralph Abrahams, Quan Lai, Michael Law, Peter Mutton, Mehdi Soodi, Wenyi Yan

Abstract:

In this investigation, a laser cladding process with a powder feeding was used to deposit stainless steel 410L (high strength, excellent resistance to abrasion and corrosion, and great laser compatibility) onto railhead (higher strength, heat treated hypereutectoid rail grade manufactured in accordance with the requirements of European standard EN 13674 Part 1 for R400HT grade), to investigate the development and controllability of process-induced residual stress in the cladding, heat-affected zone (HAZ) and substrate and to analyse their correlation with hardness profile during two different laser cladding directions (across and along the track). Residual stresses were analysed by neutron diffraction at OPAL reactor, ANSTO. Neutron diffraction was carried out on the samples in longitudinal (parallel to the rail), transverse (perpendicular to the rail) and normal (through thickness) directions with high spatial resolution through the thickness. Due to the thick rail and thin cladding, 4 mm thick reference samples were prepared from every specimen by Electric Discharge Machining (EDM). Metallography across the laser claded sample revealed four distinct zones: The clad zone, the dilution zone, HAZ and the substrate. Compressive residual stresses were found in the clad zone and tensile residual stress in the dilution zone and HAZ. Laser cladding in longitudinally cladding induced higher tensile stress in the HAZ, whereas transversely cladding rail showed lower tensile behavior.

Keywords: Laser cladding, residual stress, neutron diffraction, HAZ.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1012
400 Personalized Email Marketing Strategy: A Reinforcement Learning Approach

Authors: Lei Zhang, Tingting Xu, Jun He, Zhenyu Yan, Roger Brooks

Abstract:

Email marketing is one of the most important segments of online marketing. Email content is vital to customers. Different customers may have different familiarity with a product, so a successful marketing strategy must personalize email content based on individual customers’ product affinity. In this study, we build our personalized email marketing strategy with three types of emails: nurture, promotion, and conversion. Each type of emails has a different influence on customers. We investigate this difference by analyzing customers’ open rates, click rates and opt-out rates. Feature importance from response models is also analyzed. The goal of the marketing strategy is to improve the click rate on conversion-type emails. To build the personalized strategy, we formulate the problem as a reinforcement learning problem and adopt a Q-learning algorithm with variations. The simulation results show that our model-based strategy outperforms the current marketer’s strategy.

Keywords: Email marketing, email content, reinforcement learning, machine learning, Q-learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 729
399 Fast Fourier Transform-Based Steganalysis of Covert Communications over Streaming Media

Authors: Jinghui Peng, Shanyu Tang, Jia Li

Abstract:

Steganalysis seeks to detect the presence of secret data embedded in cover objects, and there is an imminent demand to detect hidden messages in streaming media. This paper shows how a steganalysis algorithm based on Fast Fourier Transform (FFT) can be used to detect the existence of secret data embedded in streaming media. The proposed algorithm uses machine parameter characteristics and a network sniffer to determine whether the Internet traffic contains streaming channels. The detected streaming data is then transferred from the time domain to the frequency domain through FFT. The distributions of power spectra in the frequency domain between original VoIP streams and stego VoIP streams are compared in turn using t-test, achieving the p-value of 7.5686E-176 which is below the threshold. The results indicate that the proposed FFT-based steganalysis algorithm is effective in detecting the secret data embedded in VoIP streaming media.

Keywords: Steganalysis, security, fast Fourier transform, streaming media.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 783
398 Multi-Sensor Target Tracking Using Ensemble Learning

Authors: Bhekisipho Twala, Mantepu Masetshaba, Ramapulana Nkoana

Abstract:

Multiple classifier systems combine several individual classifiers to deliver a final classification decision. However, an increasingly controversial question is whether such systems can outperform the single best classifier, and if so, what form of multiple classifiers system yields the most significant benefit. Also, multi-target tracking detection using multiple sensors is an important research field in mobile techniques and military applications. In this paper, several multiple classifiers systems are evaluated in terms of their ability to predict a system’s failure or success for multi-sensor target tracking tasks. The Bristol Eden project dataset is utilised for this task. Experimental and simulation results show that the human activity identification system can fulfil requirements of target tracking due to improved sensors classification performances with multiple classifier systems constructed using boosting achieving higher accuracy rates.

Keywords: Single classifier, machine learning, ensemble learning, multi-sensor target tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 598
397 Identification of Promising Infant Clusters to Obtain Improved Block Layout Designs

Authors: Mustahsan Mir, Ahmed Hassanin, Mohammed A. Al-Saleh

Abstract:

The layout optimization of building blocks of unequal areas has applications in many disciplines including VLSI floorplanning, macrocell placement, unequal-area facilities layout optimization, and plant or machine layout design. A number of heuristics and some analytical and hybrid techniques have been published to solve this problem. This paper presents an efficient high-quality building-block layout design technique especially suited for solving large-size problems. The higher efficiency and improved quality of optimized solutions are made possible by introducing the concept of Promising Infant Clusters in a constructive placement procedure. The results presented in the paper demonstrate the improved performance of the presented technique for benchmark problems in comparison with published heuristic, analytic, and hybrid techniques.

Keywords: Block layout problem, building-block layout design, CAD, optimization, search techniques.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1239
396 Design of a Satellite Solar Panel Deployment Mechanism Using the Brushed DC Motor as Rotational Speed Damper

Authors: Hossein Ramezani Ali-Akbari

Abstract:

This paper presents an innovative method to control the rotational speed of a satellite solar panel during its deployment phase. A brushed DC motor has been utilized in the passive spring driven deployment mechanism to reduce the deployment speed. In order to use the DC motor as a damper, its connector terminals have been connected with an external resistance in a closed circuit. It means that, in this approach, there is no external power supply in the circuit. The working principle of this method is based on the back electromotive force (or back EMF) of the DC motor when an external torque (here the torque produced by the torsional springs) is coupled to the DC motor’s shaft. In fact, the DC motor converts to an electric generator and the current flows into the circuit and then produces the back EMF. Based on Lenz’s law, the generated current produced a torque which acts opposite to the applied external torque, and as a result, the deployment speed of the solar panel decreases. The main advantage of this method is to set an intended damping coefficient to the system via changing the external resistance. To produce the sufficient current, a gearbox has been assembled to the DC motor which magnifies the number of turns experienced by the DC motor. The coupled electro-mechanical equations of the system have been derived and solved, then, the obtained results have been presented. A full-scale prototype of the deployment mechanism has been built and tested. The potential application of brushed DC motors as a rotational speed damper has been successfully demonstrated.

Keywords: Back electromotive force, brushed DC motor, rotational speed damper, satellite solar panel deployment mechanism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1647
395 Multimodal Database of Emotional Speech, Video and Gestures

Authors: Tomasz Sapiński, Dorota Kamińska, Adam Pelikant, Egils Avots, Cagri Ozcinar, Gholamreza Anbarjafari

Abstract:

People express emotions through different modalities. Integration of verbal and non-verbal communication channels creates a system in which the message is easier to understand. Expanding the focus to several expression forms can facilitate research on emotion recognition as well as human-machine interaction. In this article, the authors present a Polish emotional database composed of three modalities: facial expressions, body movement and gestures, and speech. The corpora contains recordings registered in studio conditions, acted out by 16 professional actors (8 male and 8 female). The data is labeled with six basic emotions categories, according to Ekman’s emotion categories. To check the quality of performance, all recordings are evaluated by experts and volunteers. The database is available to academic community and might be useful in the study on audio-visual emotion recognition.

Keywords: Body movement, emotion recognition, emotional corpus, facial expressions, gestures, multimodal database, speech.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1125
394 Polishing Machine Based on High-Pressure Water Jet

Authors: Mohammad A. Khasawneh

Abstract:

The design of high pressure water jet based polishing equipment and its fabrication conducted in this study is reported herein, together with some preliminary test results for assessing its applicability for HMA surface polishing. This study also provides preliminary findings concerning the test variables, such as the rotational speed, the water jet pressure, the abrasive agent used, and the impact angel that were experimentally investigated in this study. The preliminary findings based on four trial tests (two on large slab specimens and two on small size gyratory compacted specimens), however, indicate that both friction and texture values tend to increase with the polishing durations for two combinations of pressure and rotation speed of the rotary deck. It seems that the more polishing action the specimen is subjected to; the aggregate edges are created such that the surface texture values are increased with the accompanied increase in friction values. It may be of interest (but which is outside the scope of this study) to investigate if the similar trend exist for HMA prepared with aggregate source that is sand and gravel.

Keywords: High-pressure, water jet, Friction, Texture, Polishing, Statistical Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2052
393 Investigation of Chip Formation Characteristics during Surface Finishing of HDPE Samples

Authors: M. S. Kaiser, S. Reaz Ahmed

Abstract:

Chip formation characteristics are investigated during surface finishing of high density polyethylene (HDPE) samples using a shaper machine. Both the cutting speed and depth of cut are varied continually to enable observations under various machining conditions. The generated chips are analyzed in terms of their shape, size, and deformation. Their physical appearances are also observed using digital camera and optical microscope. The investigation shows that continuous chips are obtained for all the cutting conditions. It is observed that cutting speed is more influential than depth of cut to cause dimensional changes of chips. Chips curl radius is also found to increase gradually with the increase of cutting speed. The length of continuous chips remains always smaller than the job length, and the corresponding discrepancies are found to be more prominent at lower cutting speed. Microstructures of the chips reveal that cracks are formed at higher cutting speeds and depth of cuts, which is not that significant at low depth of cut.

Keywords: HDPE, surface-finishing, chip formation, deformation, roughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 539
392 A New Self-Tuning Fuzzy PD Controller of a BDFIG for Wind Energy Conversion

Authors: Zoheir Tir, Rachid Abdessemed

Abstract:

This paper presents a new control scheme to control a brushless doubly fed induction generator (BDFIG) using back-to-back PWM converters for wind power generation. The proposed control scheme is a New Self-Tuning Fuzzy Proportional-Derivative Controller (NSTFPDC). The goal of BDFIG control is to achieve a similar dynamic performance to the doubly fed induction generator (DFIG), exploiting the well-known induction machine vector control philosophy. The performance of NSTFPDC controller has been investigated and compared with the two controllers, called Proportional–Integral (PI) and PD-like Fuzzy Logic controller (PD-like FLC) based BDFIG. The simulation results demonstrate the effectiveness and the robustness of the NSTFPDC controller.

Keywords: Brushless Doubly Fed Induction Generator (BDFIG), PI controller, PD-like Fuzzy Logic controller, New Self-Tuning Fuzzy Proportional-Derivative Controller (NSTFPDC), Scaling factor, back-to-back PWM converters, wind energy system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2386
391 Modelling of Powered Roof Supports Work

Authors: Marcin Michalak

Abstract:

Due to the increasing efforts on saving our natural environment a change in the structure of energy resources can be observed - an increasing fraction of a renewable energy sources. In many countries traditional underground coal mining loses its significance but there are still countries, like Poland or Germany, in which the coal based technologies have the greatest fraction in a total energy production. This necessitates to make an effort to limit the costs and negative effects of underground coal mining. The longwall complex is as essential part of the underground coal mining. The safety and the effectiveness of the work is strongly dependent of the diagnostic state of powered roof supports. The building of a useful and reliable diagnostic system requires a lot of data. As the acquisition of a data of any possible operating conditions it is important to have a possibility to generate a demanded artificial working characteristics. In this paper a new approach of modelling a leg pressure in the single unit of powered roof support. The model is a result of the analysis of a typical working cycles.

Keywords: Machine modelling, underground mining, coal mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1925
390 Enabling Remote Desktop in a Virtualized Environment for Cloud Services

Authors: Shuen-Tai Wang, Yu-Ching Lin, Hsi-Ya Chang

Abstract:

Cloud computing is the innovative and leading information technology model for enabling convenient, on-demand network access to a shared pool of configurable computing resources that can be rapidly provisioned and released with minimal management effort. This paper presents our development on enabling an individual user's desktop in a virtualized environment, which is stored on a remote virtual machine rather than locally. We present the initial work on the integration of virtual desktop and application sharing with virtualization technology. Given the development of remote desktop virtualization, this proposed effort has the potential to positively provide an efficient, resilience and elastic environment for online cloud service. Users no longer need to burden the cost of software licenses and platform maintenances. Moreover, this development also helps boost user productivity by promoting a flexible model that lets users access their desktop environments from virtually anywhere.

Keywords: Cloud Computing, Virtualization, Virtual Desktop, Elastic Environment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2207
389 Electrophoretic Deposition of p-Type Bi2Te3 for Thermoelectric Applications

Authors: Tahereh Talebi, Reza Ghomashchi, Pejman Talemi, Sima Aminorroaya

Abstract:

Electrophoretic deposition (EPD) of p-type Bi2Te3 material has been accomplished, and a high quality crack-free thick film has been achieved for thermoelectric (TE) applications. TE generators (TEG) can convert waste heat into electricity, which can potentially solve global warming problems. However, TEG is expensive due to the high cost of materials, as well as the complex and expensive manufacturing process. EPD is a simple and cost-effective method which has been used recently for advanced applications. In EPD, when a DC electric field is applied to the charged powder particles suspended in a suspension, they are attracted and deposited on the substrate with the opposite charge. In this study, it has been shown that it is possible to prepare a TE film using the EPD method and potentially achieve high TE properties at low cost. The relationship between the deposition weight and the EPD-related process parameters, such as applied voltage and time, has been investigated and a linear dependence has been observed, which is in good agreement with the theoretical principles of EPD. A stable EPD suspension of p-type Bi2Te3 was prepared in a mixture of acetone-ethanol with triethanolamine as a stabilizer. To achieve a high quality homogenous film on a copper substrate, the optimum voltage and time of the EPD process was investigated. The morphology and microstructures of the green deposited films have been investigated using a scanning electron microscope (SEM). The green Bi2Te3 films have shown good adhesion to the substrate. In summary, this study has shown that not only EPD of p-type Bi2Te3 material is possible, but its thick film is of high quality for TE applications.

Keywords: Electrical conductivity, electrophoretic deposition, p-type Bi2Te3, thermoelectric materials, thick films.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1007
388 Real-Coded Genetic Algorithm for Robust Power System Stabilizer Design

Authors: Sidhartha Panda, C. Ardil

Abstract:

Power system stabilizers (PSS) are now routinely used in the industry to damp out power system oscillations. In this paper, real-coded genetic algorithm (RCGA) optimization technique is applied to design robust power system stabilizer for both singlemachine infinite-bus (SMIB) and multi-machine power system. The design problem of the proposed controller is formulated as an optimization problem and RCGA is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. The non-linear simulation results are presented under wide range of operating conditions; disturbances at different locations as well as for various fault clearing sequences to show the effectiveness and robustness of the proposed controller and their ability to provide efficient damping of low frequency oscillations.

Keywords: Particle swarm optimization, power system stabilizer, low frequency oscillations, power system stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2061
387 A Survey of Sentiment Analysis Based on Deep Learning

Authors: Pingping Lin, Xudong Luo, Yifan Fan

Abstract:

Sentiment analysis is a very active research topic. Every day, Facebook, Twitter, Weibo, and other social media, as well as significant e-commerce websites, generate a massive amount of comments, which can be used to analyse peoples opinions or emotions. The existing methods for sentiment analysis are based mainly on sentiment dictionaries, machine learning, and deep learning. The first two kinds of methods rely on heavily sentiment dictionaries or large amounts of labelled data. The third one overcomes these two problems. So, in this paper, we focus on the third one. Specifically, we survey various sentiment analysis methods based on convolutional neural network, recurrent neural network, long short-term memory, deep neural network, deep belief network, and memory network. We compare their futures, advantages, and disadvantages. Also, we point out the main problems of these methods, which may be worthy of careful studies in the future. Finally, we also examine the application of deep learning in multimodal sentiment analysis and aspect-level sentiment analysis.

Keywords: Natural language processing, sentiment analysis, document analysis, multimodal sentiment analysis, deep learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2004