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Abstract—Recently, collectable manufacturing data are rapidly
increasing. On the other hand, mega recall is getting serious as
a social problem. Under such circumstances, there are increasing
needs for preventing mega recalls by defect analysis such as
root cause analysis and abnormal detection utilizing manufacturing
data. However, the time to classify strings in manufacturing data
by traditional method is too long to meet requirement of quick
defect analysis. Therefore, we present String Length Distribution
Classification method (SLDC) to correctly classify strings in a short
time. This method learns character features, especially string length
distribution from Product ID, Machine ID in BOM and asset list.
By applying the proposal to strings in actual manufacturing data, we
verified that the classification time of strings can be reduced by 80%.
As a result, it can be estimated that the requirement of quick defect
analysis can be fulfilled.

Keywords—Data quality, feature selection, probability distribution,
string classification, string length.

I. INTRODUCTION

W ITH the advancement of IoT technology and sensor

diversification [1], manufacturing data analysis is

expected to solve social problems. On the other hand,

mega recall is becoming a deepening problem resulting in

tremendous economic loss and safety issues [2]. Therefore,

defect analysis, such as root cause analysis and abnormal

detection, is becoming increasingly essential to prevent mega

recall. However, quality [3] of manufacturing data collected

in factories are too low to be analyzed directly. Specifically,

manufacturing events are generated by various machines in

factory. As a result, data of various types are collected,

such as machine ID, operator name, material ID and product

ID. Normally, manufacturing events generated by different

machines have different schemas, thus, they have different

column names and data types at each column. However,

these manufacturing events are forcibly integrated ignoring

their original schemas in order to avoid constant redesign

of database schema. The necessity of redesign comes from

the frequent change of data format generated by constantly

updating machines.

As the result of integration ignoring the original data

schemas, various data types are mixed in each column of

MES DB. In other words, the data in MES DB lacks structural

consistency [4]-[6] and are of low data quality [3], [7]-[11].
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Therefore, data classification and organization are previously

required before defect analysis. Actually, in certain factory

we investigated, defect analysis takes about 2 weeks due to

the time-consuming data classification performed by manual.

However, product providers, which are customers of factories

normally require defect analysis result within 7 days. As a

result, there arises a problem that defect analysis cannot be

finished in requested time. Therefore, fast and high precision

classifier is required.
The conventional data classification methods can be

categorized in two kinds, probabilistic method and

deterministic method [12]. When classifying strings in

manufacturing data, the conventional probabilistic method has

low precision using only two features, character frequency and

character position although it creates rules in a short time. On

the other hand, the conventional deterministic method takes a

long time to create the rules for high classification precision

by using three features: Character frequency, character

position and string length. Thus, there is trade-off between

rule creation time and classification precision in conventional

methods when classifying strings in manufacturing data.
To overcome the trade-off, we propose new data

classification method to correctly classify strings in

manufacturing data in short time. With our proposal,

the manufacturing data can be correctly classified in a short

time. Thus, defect analysis can be finished in time requested

by product providers.
The rest of this paper is organized as follows: Section

II describes the background and challenge of this research.

Then, the proposed data classification method, String Length

Distribution Classification method (SLDC) is introduced in

Section III. The evaluation of SLDC and its result is explained

in Section IV. Section V concludes the research.

II. BACKGROUND AND CHALLENGE

A. Background
As the recent trend in manufacturing vertical, many kinds

of data are collected by various sensors. The revenue of IoT

sensors in manufacturing vertical is increasing at compound

average growth rate (CAGR) of 38% [1]. Thus, more and

more sensors should be installed in factories in near future.

As the result, it can be estimated that collectable data in

manufacturing vertical will be rapidly increasing. On the other

hand, mega recall, defined as the recall of defective products

in which the effected number is more than threshold level per

call, is becoming more serious.
According to [2], mega recalls have resulted in tremendous

economic loss and safety issue recently. In North America, the
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Fig. 1 Overview of a factory system

economic loss by mega recalls of automobiles is increasing

at the CAGR of 24%. For example, by 2015, more than

34 million automobiles were recalled by defective airbag

recalls, resulting in $2.7 billion loss. Furthermore, defective

airbags have resulted in ten deaths and numerous serious

injuries in the United States. Thus, mega recall is becoming

a deepening social problem that must be solved. Therefore,

defect analysis, such as root cause analysis and abnormal

detection, is becoming increasingly essential to prevent mega

recall. Under such circumstances, defect analysis utilizing

manufacturing data is becoming more and more important.

However, the data quality [3], [7]-[11] of manufacturing data

collected in factories are too low to be analyzed directly. Fig.

1 shows the currently processing flow of manufacturing data

in an actual factory we investigated.

a) In the factory, materials are manufactured by machines

operated by operators according to manufacturing

method.

b) In the above manufacturing process, manufacturing

events are generated by various machines. Thus, data of

various types are collected, such as machine ID, operator

name, material ID and product ID

c) Manufacturing events are then stored in Manufacturing

Execution System Database (MES DB). Although

manufacturing events generated by various machines

normally have different schema, they are forcibly

integrated into MES DB ignoring original schemas.

d) Manufacturing events stored in MES DB are classified

and organized by data admin.

e) The organized data are then provided to data analyst.

f) Finally, data analyst utilizes organized manufacturing

data by applications such as abnormal detection system

or root cause analysis system for defect analysis.

The reason manufacturing events stored in MES DB must be

classified and organized previously is that there is data schema

gap between table in MES DB and analyzable data table. Fig.

2 illustrates table in MES DB and analyzable data table as

a) and b), respectively. As a result of forcibly manufacturing

events integrating by ignoring their original schemas, columns

names of a) table in MES DB are meaningless. Moreover,

various data types are mixed in each column of a). Thus, a)

table in MES DB lacks structural consistency [4]-[6]. On the

other hand, b) analyzable data table must have original column

names. Furthermore, b) analyzable table can only have one

data type in each column.

To improve structural consistency and to bridge the gap,

data classification and data organization are necessary to

recognized the data types and reconstruct the original schema

ignored in data integration. Normally, the classification of

manufacturing events is performed by data admin using master

data such as Bill of Materials (BOM) and asset list as hint to

classify manufacturing events in MES DB. However, manual

data classification results in long classification time while

customer of factories, product providers normally require fast

data classification in order to minimize the effect of recall.

Specifically, customers of the factory we investigated requires

defect analysis in 7 days after defective products occurring.

So that the effect of recall can be minimized by stopping the

shipment of automobiles effected by defective parts. However,

as shown in Fig. 3, defect analysis takes about 2 weeks

in the actual factory we investigated. In more details, data

classification performed manually costs nine days itself, data

classification performed by ETL tools costs half day and

defect analysis costs another 6 days. Therefore, the data

classification is the bottleneck of defect analysis flow and we

must shorten data classification time to half day to meet the

requirement of customer. Hence, it is necessary to provide

fast classification method. On the other hand, high precision

classification method even with incomplete master data are

required because it is difficult to update master data matching

the exact timing of frequent machine changing. Fig. 4 shows

the case that master data such as asset list was lastly updated

in October 2015 and new machine was added in February

2016. The new machine would be misclassified because it is

not documented in master data and defect analysis would be

failed. As the failure of defect analysis may result in serious

economic loss for product providers or safety issue for users,

we must provide high precision classifier with even incomplete

master data. Therefore, the challenge of this research is to

provide fast and high precision manufacturing events method

with even incomplete master data.

Fig. 2 Data schema gap between table in MES DB and analyzable data table

B. Conventional Data Classification Methods

In this subsection, conventional data classification methods

are explained. However, only supervised classification methods

automatically creating classification rules from master data are
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Fig. 3 Challenge of rule creation time

Fig. 4 Challenge of classification precision

discussed. Typically, there are 2 types of conventional data

classification methods: Probabilistic data classification method

and deterministic data classification method [12], which are

explained as follows respectively.

1) Conventional Probabilistic Methods: Early in 1959, the

method of estimating classification probabilities based on

the statistical learning theory was introduced in [13]. Fig. 5

shows the conceptual model of the conventional probabilistic

methods. As shown in the figure, the conventional probabilistic

methods classify manufacturing events in three phases, feature

extraction phase, rule creation phase and classification phase.

In feature extraction phase, only 2 features are extracted

from master data, character frequency and character position.

In rule creation phase, based on character frequency and

character position extracted from master data, the centroids

of each group are calculated individually. In classification

phase, the similarity between manufacturing event and centroid

are calculated. Finally, manufacturing event are classified

according to the similarity.

The conventional probabilistic methods create rules very fast

because centroid is calculated by master data of only one data

type. However, the precision is low by using incomprehensive

featurez; only character frequency and character position.

Taking Naive Bayes Classifier [14] as an example, the actual

similarity calculation process based on character frequency and

character position is shown in Fig. 6.

a) When master data of Machine ID, ‘Y11’, ‘Y22’ are

input. The probability distribution model showing the

character appearance probability at each position is

created based on master data in rule creation phase. At

the first position, the character appearance probability

of ‘Y’ is calculated as 100%. At the second position,

character ‘1’ and ‘2’ have the appearance probability of

Fig. 5 Conventional probabilistic method

50%, respectively. Similarly, character ‘1’ and ‘2’ both

have the probability of 50% at the third position.

b) In the classification phase, when manufacturing event

‘Y21’ is input, the similarity is calculated by multiplying

the character appearance probability of ‘Y’ at the first

position, ‘2’ at the second position and ‘1’ at the third

position. The similarity of ‘Y21’ as Machine ID is

therefore calculated as 25%.

Fig. 6 Actual similarity calculation process of the conventional probabilistic
method

For example, Tamr R© ’s data connection and enrichment

platform [15] uses the conventional probabilistic method [16].

2) Conventional Deterministic Method: The conventional

deterministic method automatically develops a set of

classification rules and then apply these rules to classify

target data. As example, [17]-[19] introduce the method of

automatically generating regular expressions. Target data can

be then classified by checking whether or not the they match

previously created regular expressions.

As Fig. 7 shows, the conventional deterministic method

classifies manufacturing events in three phases. Firstly, in

feature extraction phase, in addition to character frequency,

character position, string length are also extracted from master

data as feature. By using comprehensive features, the precision

of deterministic method is high. Then, in rule creation

phase, boundary between different data types are defined. The

rule creation time of deterministic method is long because

complicated boundaries are calculated from master data of

all data types. In classification phase, boundaries are used as

rules to classify. In this case, manufacturing event is classified

as Machine ID as it is in its boundary. For instance, IBM R©
InforSphere R© QualityStage R© [20] and Informatica R© [21]

use the conventional deterministic method.

C. Challenge

As Table I shows, there is trade-off between rule creation

time and classification precision in conventional methods.
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Fig. 7 Conventional deterministic method

The conventional deterministic method takes a long time to

create the rules for high precision. On the other hand, the

conventional probabilistic method creates rules in a short time

but has low classification precision.

TABLE I
TRADE-OFF BETWEEN RULE CREATION TIME AND CLASSIFICATION

PRECISION

Conventional methods
Deterministic Probabilistic

Rule creation time ��� Long ��� Short
Classification precision ��� High ��� Low

In more details, the conventional deterministic method

has very long rule creation time. Because in rule creation

phase, it needs master data of all types to define the

complicated boundary between different data types. Hence

it is not appropriate to be applied to manufacturing

events with numerous data types. However, by using

comprehensive features, the classification precision of

conventional deterministic method is high. On the other

hand, the conventional probabilistic method creates rules fast.

Because in rule creation phase, it only needs master data of

one data type to calculate centroid. However, by only using

character frequency and character position as features, its

classification precision is low.

When applying conventional probabilistic method to

manufacturing events, such 2 data types of identifier, Product

ID, ‘Y10’ and Machine ID, ‘Y1’, would be incorrectly

classified as the same data type because there are 2 out of 3

common characters at the same position. Thus, the precision

of the conventional probabilistic method is low by using

incomprehensive features.

III. PROPOSAL OF DATA CLASSIFICATION METHOD:

SLDC

In this section, we will explain our proposal, String Length

Distribution Classification method, SLDC.

A. Key Points of Proposal

To correctly classify manufacturing events in a short

time, we need to improve the precision of the conventional

probabilistic method. For that purpose, we need to add

comprehensive features used in the conventional deterministic

method to probabilistic method.

We found that string length is a necessary feature when

classifying manufacturing events. Because identifier is the key

component to trace manufacturing events and string length

is the indispensable feature classifying different types of

identifiers.

Specifically, string length is indispensable feature

classifying identifiers for two reasons. Firstly, identifiers

of different data types have different string length. Because

the string length of identifier depends on the total number of

objects, such as product or machine needed to be identified.

In mass production factory, the number of product is much

larger than machines or materials. Therefore, Product ID need

longer string length than Machine ID or Material ID.

Fig. 8 String length variation in 1 manufacturing line

The other reason is that identifier of different types have

different string length variation. As shown in Fig. 8, in one

manufacturing line, Machine IDs have multiple length as they

are sourced by multiple vendors while Product ID has only

one string length as it is under unified product management.

In a word, string length is a dispensable feature to classify

the key component of manufacturing events and therefore

must be included as a feature in order to correctly classify

manufacturing events.

B. Proposed Method

In this subsection, the flow of our proposal, SLDC will be

explained. Since string length is the necessary feature when

classifying manufacturing events, we add string length based

learning to conventional probabilistic method as Fig. 9 shows.

Fig. 9 Overview of SLDC processing flow

1) The same as probabilistic method, character frequency

and character position are extracted from master data

in feature extraction phase. Based on these features,
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the centroids of each data type are calculated. Then,

in classification phase, similarity is calculated based on

the distance between the input manufacturing events and

centroids of each data type.

2) In addition to that, SLDC extracts string length from

master data as another feature. Then, in rule creation

phase, the rule of string length is created. Length

histogram is firstly generated based on the string length

frequency of each data type in master data. Then

length distribution is created to resolve string lengths

not appeared in master data. In classification phase,

similarity are calculated based on length distribution

created.

3) Then, similarity calculated based on character frequency

and character position is adjusted by similarity

calculated based on string length. And manufacturing

events are finally classified according to the adjusted

similarity.

C. Example
Fig. 10 shows an example about how manufacturing event

is classified by SLDC.

1) As the input, master data have machine id ‘Y13’,

‘Y112’ , product id ‘Y65000’, ‘Y67000’. Meanwhile,

manufacturing events ‘Y6570’, which is actually a

machine id, is also input.

2) Centroids are calculated based on character frequency

and character position of master data. Identifier has ‘Y’

at the 1st position and ‘1’ at the 2nd position would be

plotted near machine id. While identifier has ‘Y’ at the

1st, ‘6’ at the 2nd and ‘0’ at 4th to 6th position would

be plotted near product id. As the input manufacturing

event ‘Y6570’ has ‘Y’ at the 1st, ‘6’ at the 2nd and ‘0’

at the 5th position, it has much shorter distance with the

centroid of product id.

3) On the other hand, length distribution is created based

on length of master data. Length of Machine ID varies

from 3 to 4 while length of product is ID fixed at 6.

The input manufacturing events have the string length

of 5, although length 5 has not appeared in master data.

We can still calculate the similarity based on length

distribution. Since product id is fixed at 6 in master data,

the similarity of product id is only 5%. Machine id has

95% of similarity as its string length varies in master

data.

4) Final process is the similarity adjustment by multiplying

similarity calculated based on conventional method with

similarity based on string length. After normalization,

‘Y6570’ is correctly classified to machine id as it has

the similarity of 68%.

IV. EVALUATION AND RESULT

For the purpose of verifying the effectiveness of SLDC,

we developed the prototype of SLDC and applied it to

actual manufacturing events as evaluation. This section

shows the details about the evaluation: The evaluation

environment, evaluation result, benchmark with conventional

data classification methods and discussion.

Fig. 10 Example of data classification by SLDC

A. Evaluation Conditions

In this subsection, the evaluation conditions are illustrated.

The experiment is executed on the virtual machine of

OpenStack R© . The hardware configuration of host is shown

as:

• CPU: Dual Intel R© Xeon R© X5675 (3.07GHz/6cores)

Hyper-threading was enabled

• Memory: 96GB (8GB (DDR3 1333 DIMM) * 12)

• Disk: 1TB * 2 (SATA R© 6Gb/s/MLC) (Raid 0)

• Disk controller: LSI MR9261-8i

• Network: Intel R© 82599ES 10GbE (for inter-VM

network)

• Network interfaces: Intel R© 82576 1GbE (for

management)

The software of host is shown in as:

• IaaS: Openstack R© Kilo

• Virtual Switch: Open vSwitch 2.3.2

• Virtualization API: Libvirt 1.2.12

• Hypervisor: QEMU R© /KVM 2.2

• OS: Ubuntu R© 14.04 (kernel 3.16.0)

The hardware configuration of the guest on which we

performed experiment is shown as:

• CPU: 4VCPUs

• Memory: 8GB

• Disk: 80GB

The software of guest is shown as:

• IaaS: Openstack Kilo

• OS: Ubuntu 14.04 (kernel 3.13.0)

In the factory we investigated and collected target data,

about 8000 products are manufactured everyday by 49

machines spreading on 4 production lines. More than 1M

records of manufacturing events are collected every month,

whose data size is about 250 MB.

The summary of target data is shown as:

• Classification target data: Actual manufacturing events

• Data size: 500 MB

• Number of columns: 213

• Number of records: 2.1 million
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We used 2 months’ manufacturing events for evaluation.

The data size is about 500 MB and there are 213 columns and

2.1 million records.

Table II shows the samples of master data we generated to

create rules. Each data type has 25 sample data. The sample

of manufacturing events is shown as Table III.

TABLE II
EXAMPLE OF MASTER DATA

Product ID Machine ID Line no Time
Y11541567 MA020110 VT-A-COV1 2014/12/15 1:15:00
S11541800 MA030110 VT-A-MAN1 2003/12/15 0:00:48
C11541026 MK010110 VT-M-SFT1 2003/12/15 0:46:00
V11531033 ML010110 VT-M-COV2 2015/11/11 4:16:00

TABLE III
EXAMPLE OF MANUFACTURING EVENTS FOR EVALUATION

Result no ... DATA001 DATA002 DATA003 ...
150401228 ... 3276.7 LS110656 C11533190 ...
150401230 ... 257.4 -0.11 0.24 ...
150401231 ... 35.3 0.62 10000 ...
150401233 ... 3276.7 LS110656 C11533190 ...
150401237 ... 0 S11540129 V11540133 ...

B. Comparison Target

As the comparison with SLDC, hybrid method, which

is the combination of the conventional probabilistic method

and the conventional deterministic method, is evaluated.

The hybrid method is illustrated in Fig. 11. Firstly hybrid

method uses the conventional probabilistic method to classify

manufacturing events. As the precision of the conventional

probabilistic method is only 63%, the misclassified data

are then classified by conventional deterministic method.

The rule creation time and classification time of both

the conventional probabilistic method and the conventional

deterministic method are evaluated.

Fig. 11 Hybrid method

C. Evaluation Result

In this subsection, evaluation result will be explained.

As shown in Fig. 12, the horizontal axis shows the number

of data types, and vertical axis shows the total time used for

rule creation and classification. Hence, this graph shows the

total time with the increase of data types. However, the data

size for classification is fixed. There are 20 data types in the

manufacturing events we used for evaluation. As shown in

the figure, SLDC finished in 6 hours with the classification

precision of 100%.

We also evaluated the total time of hybrid method as

comparison. The hybrid method takes about 40 hours to

Fig. 12 Total classification time with the increase of data types

classify manufacturing events, significantly exceeds half day’s

work time as required. Therefore, the total classification time

can be reduced by 80% compared with conventional methods.

D. Benchmark

Fig. 13 Comparison of SLDC with conventional methods

As shown in Fig. 13. SLDC is the only method which

can 100% correctly classify actual manufacturing events

in 6 hours. The first 2 rows show the features of each

classification method. The first line shows features used

in each classification method. SLDC and the deterministic

method use character frequency, character position and string

length three features, while the conventional probabilistic

method only use character frequency and character position

2 features. The second line shows the interpolation used in

each classification method, SLDC uses length distribution

to resolve string length not appeared in master data while

conventional methods have no method for interpolation. The

next four lines show the classification time and classification

precision of each method. As shown, SLDC can classify

manufacturing events in 6 hours, much faster than 45 hours

of the conventional deterministic method. On the other hand,

SLDC has the classification precision of 100%, much higher

than 63% of the conventional probabilistic method. Therefore,

SLDC resolves the trade-off between rule/model creation time

and classification precision in the conventional methods.

E. Discussion

1) The Change of Rule Creation Time with the Number
of Data Types: As illustrated in Fig. 12, the total time of
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SLDC and the conventional probabilistic method remains the

same with the increase of data types while total time of the

conventional deterministic method becomes longer with the

increase of data types. The reason of this will be discussed

as follows: The total time of deterministic method becomes

longer with the increase of data types because the rule creation

time increases quadratically with the number of data types. As

mentioned before, in the rule creation phase, the conventional

deterministic method defines complicated boundary using

master data of all data types. Thus, the rule creation time of a

single rule increase linearly with the number of data types as

more master data are needed to define boundary differentiating

different data types. As number of boundaries also increase

linearly with the number of data types, the rule creation time

of deterministic method increases quadratically. On the other

hand, the total time of probabilistic method remains almost

the same since the rule creation time increases linearly with

the number of data types. In the rule creation phase, the

conventional probabilistic method calculate the centroid of

each data type. Hence, master data of one data type are needed

in centroid calculation. Therefore, the creation time of single

rule stays unchanged with the number of data types, and total

rule creation time increases linearly. As the rule creation time

remains within 1 secs even with 20 data types, the increase of

rule creation time can be ignored and its total time is almost

unchanged.

2) Using Proper Data Classification Method: As

mentioned before, SLDC is designed to classify identifiers.

Compared with conventional probabilistic method, the

classification precision of SLDC was significantly improved

by adding string length as another feature. However, when

classification method is necessary for other purpose, such as

entity resolution for data in customer management system,

conventional probabilistic method should be used. The reason

is discussed as follows.

For generic words, in the purpose of entity resolution [22],

[23], ‘Christ’ and ‘Christoph’ are supposed to be classified

as the same data type because they refer to the same person

in the real world. On the other hand, ‘Christ’ and ‘Chrome’

are supposed to be classified as different data types since

they are used to refer different entities in the real world.

Using the features of conventional probabilistic classification

method, character frequency and character position, ‘Christ’

and ‘Christoph’ are more likely to be classified as the same

data type because they have more common characters at the

same position than ‘Christ’ and ‘Chrome’. The difference

between their string length does not matter in this case.

Furthermore, as shown in Fig. 14, when generic words

and identifiers both exist, hybrid method of SLDC and the

conventional probabilistic method can be used. Thus, SLDC

is firstly used to extract identifiers and classify them. The rest

data can then be classified by the conventional probabilistic

method.

V. CONCLUSION

In this research, we presented String Length Distribution

Classification method (SLDC). The method resolves the

Fig. 14 Combination of SLDC and the conventional probabilistic method

trade-off between rule creation time and classification

precision in the conventional data classification method when

classifying strings, especially identifiers. We developed the

prototype of SLDC and applied it to 2 months’ manufacturing

events collected from actual factory. The result shows that

data can be correctly classified within 6 hours, reduced 80%
compared with conventional methods. As a result, factories

can reply defect analysis results in 7 days by utilizing SLDC

to minimize the effect recalls.

As future work, we are applying SLDC to other products,

other factories and other verticals to brush it up. In 2016, we

plan to apply SLDC to at least three cases and 6 products in

manufacturing vertical and financial vertical.

The second future work is implementing the methodology

of automatic feature selection and include it into SLDC.

In the example case, character frequency, character position

and string length are the optimal feature subset to classify

identifiers in manufacturing events. However, there is no

assurance that these three features are also the optimal features

for other factories and other cases. Hence, it is necessary

to develop a automatic feature selection methodology. For

example, scatter matrices [24][p280-p282] can be used as the

criteria to evaluate the ability of feature for classification.

The floating search methods [24][p286-288] can be used to

optimize the subset of features.
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