Search results for: data mining technique
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9811

Search results for: data mining technique

8461 An Approach to Image Extraction and Accurate Skin Detection from Web Pages

Authors: Moheb R. Girgis, Tarek M. Mahmoud, Tarek Abd-El-Hafeez

Abstract:

This paper proposes a system to extract images from web pages and then detect the skin color regions of these images. As part of the proposed system, using BandObject control, we built a Tool bar named 'Filter Tool Bar (FTB)' by modifying the Pavel Zolnikov implementation. The Yahoo! Team provides us with the Yahoo! SDK API, which also supports image search and is really useful. In the proposed system, we introduced three new methods for extracting images from the web pages (after loading the web page by using the proposed FTB, before loading the web page physically from the localhost, and before loading the web page from any server). These methods overcome the drawback of the regular expressions method for extracting images suggested by Ilan Assayag. The second part of the proposed system is concerned with the detection of the skin color regions of the extracted images. So, we studied two famous skin color detection techniques. The first technique is based on the RGB color space and the second technique is based on YUV and YIQ color spaces. We modified the second technique to overcome the failure of detecting complex image's background by using the saturation parameter to obtain an accurate skin detection results. The performance evaluation of the efficiency of the proposed system in extracting images before and after loading the web page from localhost or any server in terms of the number of extracted images is presented. Finally, the results of comparing the two skin detection techniques in terms of the number of pixels detected are presented.

Keywords: Browser Helper Object, Color spaces, Image and URL extraction, Skin detection, Web Browser events.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1896
8460 Applying p-Balanced Energy Technique to Solve Liouville-Type Problems in Calculus

Authors: Lina Wu, Ye Li, Jia Liu

Abstract:

We are interested in solving Liouville-type problems to explore constancy properties for maps or differential forms on Riemannian manifolds. Geometric structures on manifolds, the existence of constancy properties for maps or differential forms, and energy growth for maps or differential forms are intertwined. In this article, we concentrate on discovery of solutions to Liouville-type problems where manifolds are Euclidean spaces (i.e. flat Riemannian manifolds) and maps become real-valued functions. Liouville-type results of vanishing properties for functions are obtained. The original work in our research findings is to extend the q-energy for a function from finite in Lq space to infinite in non-Lq space by applying p-balanced technique where q = p = 2. Calculation skills such as Hölder's Inequality and Tests for Series have been used to evaluate limits and integrations for function energy. Calculation ideas and computational techniques for solving Liouville-type problems shown in this article, which are utilized in Euclidean spaces, can be universalized as a successful algorithm, which works for both maps and differential forms on Riemannian manifolds. This innovative algorithm has a far-reaching impact on research work of solving Liouville-type problems in the general settings involved with infinite energy. The p-balanced technique in this algorithm provides a clue to success on the road of q-energy extension from finite to infinite.

Keywords: Differential Forms, Hölder Inequality, Liouville-type problems, p-balanced growth, p-harmonic maps, q-energy growth, tests for series.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 829
8459 Effect of Muscle Energy Technique on Anterior Pelvic Tilt in Lumbar Spondylosis Patients

Authors: Enas Elsayed Abutaleb, Mohamed Taher Eldesoky, Shahenda Abd El Rasol

Abstract:

Background: Muscle Energy Techniques (MET) have been widely used by manual therapists over the past years, but still limited research validated its use and there was limited evidence to substantiate the theories used to explain its effects. Objective: To investigate the effect of Muscle Energy Technique (MET) on anterior pelvic tilt in patients with lumbar spondylosis. Design: Randomized controlled trial. Subjects: Thirty patients with anterior pelvic tilt from both sexes were involved, aged between 35 to 50 years old and they were divided into MET and control groups with 15 patients in each. Methods: All patients received 3sessions/week for 4 weeks where the study group received MET, Ultrasound and Infrared, and the control group received U.S and I.R only. Pelvic angle was measured by palpation meter, pain severity by the visual analogue scale and functional disabilities by the Oswestry disability index. Results: Both groups showed significant improvement in all measured variables. The MET group was significantly better than the control group in pelvic angle, pain severity, and functional disability as p-value were (0.001, 0.0001, 0.0001) respectively. Conclusion and implication: the study group fulfilled greater improvement in all measured variables than the control group which implies that application of MET in combination with U.S and I.R were more effective in improving pelvic tilting angle, pain severity and functional disabilities than using electrotherapy only.

Keywords: Anterior pelvic tilt, lumbar spondylosis, muscle energy technique exercise, palpation meter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4014
8458 Surveillance Video Summarization Based on Histogram Differencing and Sum Conditional Variance

Authors: Nada Jasim Habeeb, Rana Saad Mohammed, Muntaha Khudair Abbass

Abstract:

For more efficient and fast video summarization, this paper presents a surveillance video summarization method. The presented method works to improve video summarization technique. This method depends on temporal differencing to extract most important data from large video stream. This method uses histogram differencing and Sum Conditional Variance which is robust against to illumination variations in order to extract motion objects. The experimental results showed that the presented method gives better output compared with temporal differencing based summarization techniques.

Keywords: Temporal differencing, video summarization, histogram differencing, sum conditional variance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1695
8457 Operational Modal Analysis Implementation on a Hybrid Composite Plate

Authors: Z. A. C. Saffry, D. L. Majid, N. H. M. Haidzir

Abstract:

In aerospace applications, interactions of airflow with aircraft structures can result in undesirable structural deformations. This structural deformation in turn, can be predicted if the natural modes of the structure are known. This can be achieved through conventional modal testing that requires a known excitation force in order to extract these dynamic properties. This technique can be experimentally complex because of the need for artificial excitation and it is also does not represent actual operational condition. The current work presents part of research work that address the practical implementation of operational modal analysis (OMA) applied to a cantilevered hybrid composite plate employing single contactless sensing system via laser vibrometer. OMA technique extracts the modal parameters based only on the measurements of the dynamic response. The OMA results were verified with impact hammer modal testing and good agreement was obtained.

Keywords: Hybrid Kevlar composite, Laser Vibrometer, modal parameters, Operational Modal Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2168
8456 Modelling for Roof Failure Analysis in an Underground Cave

Authors: M. Belén Prendes-Gero, Celestino González-Nicieza, M. Inmaculada Alvarez-Fernández

Abstract:

Roof collapse is one of the problems with a higher frequency in most of the mines of all countries, even now. There are many reasons that may cause the roof to collapse, namely the mine stress activities in the mining process, the lack of vigilance and carelessness or the complexity of the geological structure and irregular operations. This work is the result of the analysis of one accident produced in the “Mary” coal exploitation located in northern Spain. In this accident, the roof of a crossroad of excavated galleries to exploit the “Morena” Layer, 700 m deep, collapsed. In the paper, the work done by the forensic team to determine the causes of the incident, its conclusions and recommendations are collected. Initially, the available documentation (geology, geotechnics, mining, etc.) and accident area were reviewed. After that, laboratory and on-site tests were carried out to characterize the behaviour of the rock materials and the support used (metal frames and shotcrete). With this information, different hypotheses of failure were simulated to find the one that best fits reality. For this work, the software of finite differences in three dimensions, FLAC 3D, was employed. The results of the study confirmed that the detachment was originated as a consequence of one sliding in the layer wall, due to the large roof span present in the place of the accident, and probably triggered as a consequence of the existence of a protection pillar insufficient. The results allowed to establish some corrective measures avoiding future risks. For example, the dimensions of the protection zones that must be remained unexploited and their interaction with the crossing areas between galleries, or the use of more adequate supports for these conditions, in which the significant deformations may discourage the use of rigid supports such as shotcrete. At last, a grid of seismic control was proposed as a predictive system. Its efficiency was tested along the investigation period employing three control equipment that detected new incidents (although smaller) in other similar areas of the mine. These new incidents show that the use of explosives produces vibrations which are a new risk factor to analyse in a next future.

Keywords: Forensic analysis, hypothesis modelling, roof failure, seismic monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 607
8455 A Prediction of Attractive Evaluation Objects Based On Complex Sequential Data

Authors: Shigeaki Sakurai, Makino Kyoko, Shigeru Matsumoto

Abstract:

This paper proposes a method that predicts attractive evaluation objects. In the learning phase, the method inductively acquires trend rules from complex sequential data. The data is composed of two types of data. One is numerical sequential data. Each evaluation object has respective numerical sequential data. The other is text sequential data. Each evaluation object is described in texts. The trend rules represent changes of numerical values related to evaluation objects. In the prediction phase, the method applies new text sequential data to the trend rules and evaluates which evaluation objects are attractive. This paper verifies the effect of the proposed method by using stock price sequences and news headline sequences. In these sequences, each stock brand corresponds to an evaluation object. This paper discusses validity of predicted attractive evaluation objects, the process time of each phase, and the possibility of application tasks.

Keywords: Trend rule, frequent pattern, numerical sequential data, text sequential data, evaluation object.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1235
8454 Mathematical Programming on Multivariate Calibration Estimation in Stratified Sampling

Authors: Dinesh Rao, M.G.M. Khan, Sabiha Khan

Abstract:

Calibration estimation is a method of adjusting the original design weights to improve the survey estimates by using auxiliary information such as the known population total (or mean) of the auxiliary variables. A calibration estimator uses calibrated weights that are determined to minimize a given distance measure to the original design weights while satisfying a set of constraints related to the auxiliary information. In this paper, we propose a new multivariate calibration estimator for the population mean in the stratified sampling design, which incorporates information available for more than one auxiliary variable. The problem of determining the optimum calibrated weights is formulated as a Mathematical Programming Problem (MPP) that is solved using the Lagrange multiplier technique.

Keywords: Calibration estimation, Stratified sampling, Multivariate auxiliary information, Mathematical programming problem, Lagrange multiplier technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1952
8453 A Critics Study of Neural Networks Applied to ion-Exchange Process

Authors: John Kabuba, Antoine Mulaba-Bafubiandi, Kim Battle

Abstract:

This paper presents a critical study about the application of Neural Networks to ion-exchange process. Ionexchange is a complex non-linear process involving many factors influencing the ions uptake mechanisms from the pregnant solution. The following step includes the elution. Published data presents empirical isotherm equations with definite shortcomings resulting in unreliable predictions. Although Neural Network simulation technique encounters a number of disadvantages including its “black box", and a limited ability to explicitly identify possible causal relationships, it has the advantage to implicitly handle complex nonlinear relationships between dependent and independent variables. In the present paper, the Neural Network model based on the back-propagation algorithm Levenberg-Marquardt was developed using a three layer approach with a tangent sigmoid transfer function (tansig) at hidden layer with 11 neurons and linear transfer function (purelin) at out layer. The above mentioned approach has been used to test the effectiveness in simulating ion exchange processes. The modeling results showed that there is an excellent agreement between the experimental data and the predicted values of copper ions removed from aqueous solutions.

Keywords: Copper, ion-exchange process, neural networks, simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1632
8452 An Evaluation on the Effectiveness of a 3D Printed Composite Compression Mold

Authors: Peng Hao Wang, Garam Kim, Ronald Sterkenburg

Abstract:

The applications of composite materials within the aviation industry has been increasing at a rapid pace.  However, the growing applications of composite materials have also led to growing demand for more tooling to support its manufacturing processes. Tooling and tooling maintenance represents a large portion of the composite manufacturing process and cost. Therefore, the industry’s adaptability to new techniques for fabricating high quality tools quickly and inexpensively will play a crucial role in composite material’s growing popularity in the aviation industry. One popular tool fabrication technique currently being developed involves additive manufacturing such as 3D printing. Although additive manufacturing and 3D printing are not entirely new concepts, the technique has been gaining popularity due to its ability to quickly fabricate components, maintain low material waste, and low cost. In this study, a team of Purdue University School of Aviation and Transportation Technology (SATT) faculty and students investigated the effectiveness of a 3D printed composite compression mold. A 3D printed composite compression mold was fabricated by 3D scanning a steel valve cover of an aircraft reciprocating engine. The 3D printed composite compression mold was used to fabricate carbon fiber versions of the aircraft reciprocating engine valve cover. The 3D printed composite compression mold was evaluated for its performance, durability, and dimensional stability while the fabricated carbon fiber valve covers were evaluated for its accuracy and quality. The results and data gathered from this study will determine the effectiveness of the 3D printed composite compression mold in a mass production environment and provide valuable information for future understanding, improvements, and design considerations of 3D printed composite molds.

Keywords: Additive manufacturing, carbon fiber, composite tooling, molds.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 708
8451 Comparison of BER Performances for Conventional and Non-Conventional Mapping Schemes Used in OFDM

Authors: Riddhi Parmar, Shilpi Gupta, Upena Dalal

Abstract:

Orthogonal Frequency Division Multiplexing (OFDM) is one of the techniques for high speed data rate communication with main consideration for 4G and 5G systems. In OFDM, there are several mapping schemes which provide a way of parallel transmission. In this paper, comparisons of mapping schemes used by some standards have been made and also has been discussed about the performance of the non-conventional modulation technique. The Comparisons of Bit Error Rate (BER) performances for conventional and non-conventional modulation schemes have been done using MATLAB software. Mentioned schemes used in OFDM system can be selected on the basis of the requirement of power or spectrum efficiency and BER analysis.

Keywords: BER, π/4 differential quadrature phase shift keying (Pi/4 DQPSK), OFDM, phase shift keying, quadrature phase shift keying.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3123
8450 Intelligent Recognition of Diabetes Disease via FCM Based Attribute Weighting

Authors: Kemal Polat

Abstract:

In this paper, an attribute weighting method called fuzzy C-means clustering based attribute weighting (FCMAW) for classification of Diabetes disease dataset has been used. The aims of this study are to reduce the variance within attributes of diabetes dataset and to improve the classification accuracy of classifier algorithm transforming from non-linear separable datasets to linearly separable datasets. Pima Indians Diabetes dataset has two classes including normal subjects (500 instances) and diabetes subjects (268 instances). Fuzzy C-means clustering is an improved version of K-means clustering method and is one of most used clustering methods in data mining and machine learning applications. In this study, as the first stage, fuzzy C-means clustering process has been used for finding the centers of attributes in Pima Indians diabetes dataset and then weighted the dataset according to the ratios of the means of attributes to centers of theirs. Secondly, after weighting process, the classifier algorithms including support vector machine (SVM) and k-NN (k- nearest neighbor) classifiers have been used for classifying weighted Pima Indians diabetes dataset. Experimental results show that the proposed attribute weighting method (FCMAW) has obtained very promising results in the classification of Pima Indians diabetes dataset.

Keywords: Fuzzy C-means clustering, Fuzzy C-means clustering based attribute weighting, Pima Indians diabetes dataset, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1763
8449 A Fuzzy-Rough Feature Selection Based on Binary Shuffled Frog Leaping Algorithm

Authors: Javad Rahimipour Anaraki, Saeed Samet, Mahdi Eftekhari, Chang Wook Ahn

Abstract:

Feature selection and attribute reduction are crucial problems, and widely used techniques in the field of machine learning, data mining and pattern recognition to overcome the well-known phenomenon of the Curse of Dimensionality. This paper presents a feature selection method that efficiently carries out attribute reduction, thereby selecting the most informative features of a dataset. It consists of two components: 1) a measure for feature subset evaluation, and 2) a search strategy. For the evaluation measure, we have employed the fuzzy-rough dependency degree (FRFDD) of the lower approximation-based fuzzy-rough feature selection (L-FRFS) due to its effectiveness in feature selection. As for the search strategy, a modified version of a binary shuffled frog leaping algorithm is proposed (B-SFLA). The proposed feature selection method is obtained by hybridizing the B-SFLA with the FRDD. Nine classifiers have been employed to compare the proposed approach with several existing methods over twenty two datasets, including nine high dimensional and large ones, from the UCI repository. The experimental results demonstrate that the B-SFLA approach significantly outperforms other metaheuristic methods in terms of the number of selected features and the classification accuracy.

Keywords: Binary shuffled frog leaping algorithm, feature selection, fuzzy-rough set, minimal reduct.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 731
8448 Parallel 2-Opt Local Search on GPU

Authors: Wen-Bao Qiao, Jean-Charles Créput

Abstract:

To accelerate the solution for large scale traveling salesman problems (TSP), a parallel 2-opt local search algorithm with simple implementation based on Graphics Processing Unit (GPU) is presented and tested in this paper. The parallel scheme is based on technique of data decomposition by dynamically assigning multiple K processors on the integral tour to treat K edges’ 2-opt local optimization simultaneously on independent sub-tours, where K can be user-defined or have a function relationship with input size N. We implement this algorithm with doubly linked list on GPU. The implementation only requires O(N) memory. We compare this parallel 2-opt local optimization against sequential exhaustive 2-opt search along integral tour on TSP instances from TSPLIB with more than 10000 cities.

Keywords: Doubly linked list, parallel 2-opt, tour division, GPU.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1223
8447 Influence of Parameters of Modeling and Data Distribution for Optimal Condition on Locally Weighted Projection Regression Method

Authors: Farhad Asadi, Mohammad Javad Mollakazemi, Aref Ghafouri

Abstract:

Recent research in neural networks science and neuroscience for modeling complex time series data and statistical learning has focused mostly on learning from high input space and signals. Local linear models are a strong choice for modeling local nonlinearity in data series. Locally weighted projection regression is a flexible and powerful algorithm for nonlinear approximation in high dimensional signal spaces. In this paper, different learning scenario of one and two dimensional data series with different distributions are investigated for simulation and further noise is inputted to data distribution for making different disordered distribution in time series data and for evaluation of algorithm in locality prediction of nonlinearity. Then, the performance of this algorithm is simulated and also when the distribution of data is high or when the number of data is less the sensitivity of this approach to data distribution and influence of important parameter of local validity in this algorithm with different data distribution is explained.

Keywords: Local nonlinear estimation, LWPR algorithm, Online training method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1601
8446 Relevance Feedback within CBIR Systems

Authors: Mawloud Mosbah, Bachir Boucheham

Abstract:

We present here the results for a comparative study of some techniques, available in the literature, related to the relevance feedback mechanism in the case of a short-term learning. Only one method among those considered here is belonging to the data mining field which is the K-nearest neighbors algorithm (KNN) while the rest of the methods is related purely to the information retrieval field and they fall under the purview of the following three major axes: Shifting query, Feature Weighting and the optimization of the parameters of similarity metric. As a contribution, and in addition to the comparative purpose, we propose a new version of the KNN algorithm referred to as an incremental KNN which is distinct from the original version in the sense that besides the influence of the seeds, the rate of the actual target image is influenced also by the images already rated. The results presented here have been obtained after experiments conducted on the Wang database for one iteration and utilizing color moments on the RGB space. This compact descriptor, Color Moments, is adequate for the efficiency purposes needed in the case of interactive systems. The results obtained allow us to claim that the proposed algorithm proves good results; it even outperforms a wide range of techniques available in the literature.

Keywords: CBIR, Category Search, Relevance Feedback (RFB), Query Point Movement, Standard Rocchio’s Formula, Adaptive Shifting Query, Feature Weighting, Optimization of the Parameters of Similarity Metric, Original KNN, Incremental KNN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2342
8445 ParkedGuard: An Efficient and Accurate Parked Domain Detection System Using Graphical Locality Analysis and Coarse-To-Fine Strategy

Authors: Chia-Min Lai, Wan-Ching Lin, Hahn-Ming Lee, Ching-Hao Mao

Abstract:

As world wild internet has non-stop developments, making profit by lending registered domain names emerges as a new business in recent years. Unfortunately, the larger the market scale of domain lending service becomes, the riskier that there exist malicious behaviors or malwares hiding behind parked domains will be. Also, previous work for differentiating parked domain suffers two main defects: 1) too much data-collecting effort and CPU latency needed for features engineering and 2) ineffectiveness when detecting parked domains containing external links that are usually abused by hackers, e.g., drive-by download attack. Aiming for alleviating above defects without sacrificing practical usability, this paper proposes ParkedGuard as an efficient and accurate parked domain detector. Several scripting behavioral features were analyzed, while those with special statistical significance are adopted in ParkedGuard to make feature engineering much more cost-efficient. On the other hand, finding memberships between external links and parked domains was modeled as a graph mining problem, and a coarse-to-fine strategy was elaborately designed by leverage the graphical locality such that ParkedGuard outperforms the state-of-the-art in terms of both recall and precision rates.

Keywords: Coarse-to-fine strategy, domain parking service, graphical locality analysis, parked domain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1250
8444 Tracking Objects in Color Image Sequences: Application to Football Images

Authors: Mourad Moussa, Ali Douik, Hassani Messaoud

Abstract:

In this paper, we present a comparative study between two computer vision systems for objects recognition and tracking, these algorithms describe two different approach based on regions constituted by a set of pixels which parameterized objects in shot sequences. For the image segmentation and objects detection, the FCM technique is used, the overlapping between cluster's distribution is minimized by the use of suitable color space (other that the RGB one). The first technique takes into account a priori probabilities governing the computation of various clusters to track objects. A Parzen kernel method is described and allows identifying the players in each frame, we also show the importance of standard deviation value research of the Gaussian probability density function. Region matching is carried out by an algorithm that operates on the Mahalanobis distance between region descriptors in two subsequent frames and uses singular value decomposition to compute a set of correspondences satisfying both the principle of proximity and the principle of exclusion.

Keywords: Image segmentation, objects tracking, Parzen window, singular value decomposition, target recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1985
8443 IIR Filter design with Craziness based Particle Swarm Optimization Technique

Authors: Suman Kumar Saha, Rajib Kar, Durbadal Mandal, S. P. Ghoshal

Abstract:

This paper demonstrates the application of craziness based particle swarm optimization (CRPSO) technique for designing the 8th order low pass Infinite Impulse Response (IIR) filter. CRPSO, the much improved version of PSO, is a population based global heuristic search algorithm which finds near optimal solution in terms of a set of filter coefficients. Effectiveness of this algorithm is justified with a comparative study of some well established algorithms, namely, real coded genetic algorithm (RGA) and particle swarm optimization (PSO). Simulation results affirm that the proposed algorithm CRPSO, outperforms over its counterparts not only in terms of quality output i.e. sharpness at cut-off, pass band ripple, stop band ripple, and stop band attenuation but also in convergence speed with assured stability.

Keywords: IIR Filter, RGA, PSO, CRPSO, Evolutionary Optimization Techniques, Low Pass (LP) Filter, Magnitude Response, Pole-Zero Plot, Stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2576
8442 Edge Detection in Digital Images Using Fuzzy Logic Technique

Authors: Abdallah A. Alshennawy, Ayman A. Aly

Abstract:

The fuzzy technique is an operator introduced in order to simulate at a mathematical level the compensatory behavior in process of decision making or subjective evaluation. The following paper introduces such operators on hand of computer vision application. In this paper a novel method based on fuzzy logic reasoning strategy is proposed for edge detection in digital images without determining the threshold value. The proposed approach begins by segmenting the images into regions using floating 3x3 binary matrix. The edge pixels are mapped to a range of values distinct from each other. The robustness of the proposed method results for different captured images are compared to those obtained with the linear Sobel operator. It is gave a permanent effect in the lines smoothness and straightness for the straight lines and good roundness for the curved lines. In the same time the corners get sharper and can be defined easily.

Keywords: Fuzzy logic, Edge detection, Image processing, computer vision, Mechanical parts, Measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4768
8441 Noise Reduction in Web Data: A Learning Approach Based on Dynamic User Interests

Authors: Julius Onyancha, Valentina Plekhanova

Abstract:

One of the significant issues facing web users is the amount of noise in web data which hinders the process of finding useful information in relation to their dynamic interests. Current research works consider noise as any data that does not form part of the main web page and propose noise web data reduction tools which mainly focus on eliminating noise in relation to the content and layout of web data. This paper argues that not all data that form part of the main web page is of a user interest and not all noise data is actually noise to a given user. Therefore, learning of noise web data allocated to the user requests ensures not only reduction of noisiness level in a web user profile, but also a decrease in the loss of useful information hence improves the quality of a web user profile. Noise Web Data Learning (NWDL) tool/algorithm capable of learning noise web data in web user profile is proposed. The proposed work considers elimination of noise data in relation to dynamic user interest. In order to validate the performance of the proposed work, an experimental design setup is presented. The results obtained are compared with the current algorithms applied in noise web data reduction process. The experimental results show that the proposed work considers the dynamic change of user interest prior to elimination of noise data. The proposed work contributes towards improving the quality of a web user profile by reducing the amount of useful information eliminated as noise.

Keywords: Web log data, web user profile, user interest, noise web data learning, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1734
8440 Identification of Arglecins B and C and Actinofuranosin A from a Termite Gut-Associated Streptomyces Species

Authors: Christian A. Romero, Tanja Grkovic, John. R. J. French, D. İpek. Kurtböke, Ronald J. Quinn

Abstract:

A high-throughput and automated 1H NMR metabolic fingerprinting dereplication approach was used to accelerate the discovery of unknown bioactive secondary metabolites. The applied dereplication strategy accelerated the discovery of new natural products, provided rapid and competent identification and quantification of the known secondary metabolites and avoided time-consuming isolation procedures. The effectiveness of the technique was demonstrated by the isolation and elucidation of arglecins B (1), C (2) and actinofuranosin A (3) from a termite-gut associated Streptomyces sp. (USC 597) grown under solid state fermentation. The structures of these compounds were elucidated by extensive interpretation of 1H, 13C and 2D NMR spectroscopic data. These represent the first report of arglecin analogues isolated from a termite gut-associated Streptomyces species.

Keywords: Actinomycetes, actinofuranosin, antibiotics, arglecins, NMR spectroscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 223
8439 Assessment of Tourist and Community Perception with Regard to Tourism Sustainability Indicators: A Case Study of Sinharaja World Heritage Rainforest, Sri Lanka

Authors: L. P. K. Liyanage, N. R. P. Withana, A. L. Sandika

Abstract:

The purpose of this study was to determine tourist and community perception-based sustainable tourism indicators as well as Human Pressure Index (HPI) and Tourist Activity Index (TAI). Study was carried out in Sinharaja forest which is considered as one of the major eco-tourism destination in Sri Lanka. Data were gathered using a pre-tested semi-structured questionnaire as well as records from Forest department. Convenient sampling technique was applied. For the majority of issues, the responses were obtained on multi-point Likert-type scales. Visual portrayal was used for display analyzed data. The study revealed that the host community of the Kudawa gets many benefits from tourism. Also, tourism has caused negative impacts upon the environment and community. The study further revealed the need of proper waste management and involvement of local cultural events for the tourism business in the Kudawa conservation center. The TAI, which accounted to be 1.27 and monthly evolution of HPI revealed that congestion can be occurred in the Sinharaja rainforest during peak season. The results provide useful information to any party involved with tourism planning anywhere, since such attempts would be more effective once the people’s perceptions on these aspects are taken into account.

Keywords: Kudawa conservation center, Sinharaja world heritage rainforest, sustainability indicators.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1154
8438 An Efficiency Measurement of E-Government Performance for United Nation Ranking Index

Authors: Yassine Jadi, Lin Jie

Abstract:

In order to serve the society in an electronic manner, many developing countries have launched tremendous e-government projects. The strategies of development and implementation e-government system have reached different levels, and to ensure consistency of development, the governments need to evaluate e-government performance. The United nation has design e-government development ranking index (EGDI) that rely on three indexes, Online service index (OSI), Telecommunication Infrastructure index (TII), and human capital index( HCI) which are not reflecting the interaction between a government and their citizens. Based on data envelopment analyses (DEA) technique, we are using E-participating index (EPI) as an output of government effort to evaluate the performance of e-government system. Therefore, the ranking index can be achieved in efficiency manner.

Keywords: E-government, DEA, efficiency measurement, EGDI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1214
8437 Complex Energy Signal Model for Digital Human Fingerprint Matching

Authors: Jason Zalev, Reza Sedaghat

Abstract:

This paper describes a complex energy signal model that is isomorphic with digital human fingerprint images. By using signal models, the problem of fingerprint matching is transformed into the signal processing problem of finding a correlation between two complex signals that differ by phase-rotation and time-scaling. A technique for minutiae matching that is independent of image translation, rotation and linear-scaling, and is resistant to missing minutiae is proposed. The method was tested using random data points. The results show that for matching prints the scaling and rotation angles are closely estimated and a stronger match will have a higher correlation.

Keywords: Affine Invariant, Fingerprint Recognition, Matching, Minutiae.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1318
8436 Robust Coordinated Design of Multiple Power System Stabilizers Using Particle Swarm Optimization Technique

Authors: Sidhartha Panda, C. Ardil

Abstract:

Power system stabilizers (PSS) are now routinely used in the industry to damp out power system oscillations. In this paper, particle swarm optimization (PSO) technique is applied to coordinately design multiple power system stabilizers (PSS) in a multi-machine power system. The design problem of the proposed controllers is formulated as an optimization problem and PSO is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. The non-linear simulation results are presented for various severe disturbances and small disturbance at different locations as well as for various fault clearing sequences to show the effectiveness and robustness of the proposed controller and their ability to provide efficient damping of low frequency oscillations.

Keywords: Low frequency oscillations, Particle swarm optimization, power system stability, power system stabilizer, multimachine power system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 868
8435 Genetic Programming: Principles, Applications and Opportunities for Hydrological Modelling

Authors: Oluwaseun K. Oyebode, Josiah A. Adeyemo

Abstract:

Hydrological modelling plays a crucial role in the planning and management of water resources, most especially in water stressed regions where the need to effectively manage the available water resources is of critical importance. However, due to the complex, nonlinear and dynamic behaviour of hydro-climatic interactions, achieving reliable modelling of water resource systems and accurate projection of hydrological parameters are extremely challenging. Although a significant number of modelling techniques (process-based and data-driven) have been developed and adopted in that regard, the field of hydrological modelling is still considered as one that has sluggishly progressed over the past decades. This is majorly as a result of the identification of some degree of uncertainty in the methodologies and results of techniques adopted. In recent times, evolutionary computation (EC) techniques have been developed and introduced in response to the search for efficient and reliable means of providing accurate solutions to hydrological related problems. This paper presents a comprehensive review of the underlying principles, methodological needs and applications of a promising evolutionary computation modelling technique – genetic programming (GP). It examines the specific characteristics of the technique which makes it suitable to solving hydrological modelling problems. It discusses the opportunities inherent in the application of GP in water related-studies such as rainfall estimation, rainfall-runoff modelling, streamflow forecasting, sediment transport modelling, water quality modelling and groundwater modelling among others. Furthermore, the means by which such opportunities could be harnessed in the near future are discussed. In all, a case for total embracement of GP and its variants in hydrological modelling studies is made so as to put in place strategies that would translate into achieving meaningful progress as it relates to modelling of water resource systems, and also positively influence decision-making by relevant stakeholders.

Keywords: Computational modelling, evolutionary algorithms, genetic programming, hydrological modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3329
8434 A Monte Carlo Method to Data Stream Analysis

Authors: Kittisak Kerdprasop, Nittaya Kerdprasop, Pairote Sattayatham

Abstract:

Data stream analysis is the process of computing various summaries and derived values from large amounts of data which are continuously generated at a rapid rate. The nature of a stream does not allow a revisit on each data element. Furthermore, data processing must be fast to produce timely analysis results. These requirements impose constraints on the design of the algorithms to balance correctness against timely responses. Several techniques have been proposed over the past few years to address these challenges. These techniques can be categorized as either dataoriented or task-oriented. The data-oriented approach analyzes a subset of data or a smaller transformed representation, whereas taskoriented scheme solves the problem directly via approximation techniques. We propose a hybrid approach to tackle the data stream analysis problem. The data stream has been both statistically transformed to a smaller size and computationally approximated its characteristics. We adopt a Monte Carlo method in the approximation step. The data reduction has been performed horizontally and vertically through our EMR sampling method. The proposed method is analyzed by a series of experiments. We apply our algorithm on clustering and classification tasks to evaluate the utility of our approach.

Keywords: Data Stream, Monte Carlo, Sampling, DensityEstimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1417
8433 Signal Driven Sampling and Filtering a Promising Approach for Time Varying Signals Processing

Authors: Saeed Mian Qaisar, Laurent Fesquet, Marc Renaudin

Abstract:

The mobile systems are powered by batteries. Reducing the system power consumption is a key to increase its autonomy. It is known that mostly the systems are dealing with time varying signals. Thus, we aim to achieve power efficiency by smartly adapting the system processing activity in accordance with the input signal local characteristics. It is done by completely rethinking the processing chain, by adopting signal driven sampling and processing. In this context, a signal driven filtering technique, based on the level crossing sampling is devised. It adapts the sampling frequency and the filter order by analysing the input signal local variations. Thus, it correlates the processing activity with the signal variations. It leads towards a drastic computational gain of the proposed technique compared to the classical one.

Keywords: Level Crossing Sampling, Activity Selection, Adaptive Rate Filtering, Computational Complexity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1361
8432 Forecasting the Volatility of Geophysical Time Series with Stochastic Volatility Models

Authors: Maria C. Mariani, Md Al Masum Bhuiyan, Osei K. Tweneboah, Hector G. Huizar

Abstract:

This work is devoted to the study of modeling geophysical time series. A stochastic technique with time-varying parameters is used to forecast the volatility of data arising in geophysics. In this study, the volatility is defined as a logarithmic first-order autoregressive process. We observe that the inclusion of log-volatility into the time-varying parameter estimation significantly improves forecasting which is facilitated via maximum likelihood estimation. This allows us to conclude that the estimation algorithm for the corresponding one-step-ahead suggested volatility (with ±2 standard prediction errors) is very feasible since it possesses good convergence properties.

Keywords: Augmented Dickey Fuller Test, geophysical time series, maximum likelihood estimation, stochastic volatility model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 858