Search results for: aerodynamic simulation
2222 Thermal Analysis of Toroidal Transformers Using Finite Element Method
Authors: Adrian T.
Abstract:
In this paper a three dimensional thermal model of a power toroidal transformer is proposed for both steady-state or transient conditions. The influence of electric current and ambient temperature on the temperature distribution, has been investigated. To validate the three dimensional thermal model, some experimental tests have been done. There is a good correlation between experimental and simulation results.Keywords: Temperature distribution, thermal analysis, toroidal transformer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35782221 Development of Effective Cooling Schemes of Gas Turbine Blades Based on Computer Simulation
Authors: Pasayev, A., C. Askerov, R. Sadiqov, C. Ardil
Abstract:
In contrast to existing of calculation of temperature field of a profile part a blade with convective cooling which are not taking into account multi connective in a broad sense of this term, we develop mathematical models and highly effective combination (BIEM AND FDM) numerical methods from the point of view of a realization on the PC. The theoretical substantiation of these methods is proved by the appropriate theorems.
Keywords: multi coherent systems, method of the boundary integrated equations, singular operators, gas turbines
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16492220 An Intelligent Controller Augmented with Variable Zero Lag Compensation for Antilock Braking System
Authors: Benjamin C. Agwah, Paulinus C. Eze
Abstract:
Antilock braking system (ABS) is one of the important contributions by the automobile industry, designed to ensure road safety in such way that vehicles are kept steerable and stable when during emergency braking. This paper presents a wheel slip-based intelligent controller with variable zero lag compensation for ABS. It is required to achieve a very fast perfect wheel slip tracking during hard braking condition and eliminate chattering with improved transient and steady state performance, while shortening the stopping distance using effective braking torque less than maximum allowable torque to bring a braking vehicle to a stop. The dynamic of a vehicle braking with a braking velocity of 30 ms⁻¹ on a straight line was determined and modelled in MATLAB/Simulink environment to represent a conventional ABS system without a controller. Simulation results indicated that system without a controller was not able to track desired wheel slip and the stopping distance was 135.2 m. Hence, an intelligent control based on fuzzy logic controller (FLC) was designed with a variable zero lag compensator (VZLC) added to enhance the performance of FLC control variable by eliminating steady state error, provide improve bandwidth to eliminate the effect of high frequency noise such as chattering during braking. The simulation results showed that FLC-VZLC provided fast tracking of desired wheel slip, eliminated chattering, and reduced stopping distance by 70.5% (39.92 m), 63.3% (49.59 m), 57.6% (57.35 m) and 50% (69.13 m) on dry, wet, cobblestone and snow road surface conditions respectively. Generally, the proposed system used effective braking torque that is less than the maximum allowable braking torque to achieve efficient wheel slip tracking and overall robust control performance on different road surfaces.
Keywords: ABS, Fuzzy Logic Controller, Variable Zero Lag Compensator, Wheel Slip Tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3422219 Introductory Design Optimisation of a Machine Tool using a Virtual Machine Concept
Authors: Johan Wall, Johan Fredin, Anders Jönsson, Göran Broman
Abstract:
Designing modern machine tools is a complex task. A simulation tool to aid the design work, a virtual machine, has therefore been developed in earlier work. The virtual machine considers the interaction between the mechanics of the machine (including structural flexibility) and the control system. This paper exemplifies the usefulness of the virtual machine as a tool for product development. An optimisation study is conducted aiming at improving the existing design of a machine tool regarding weight and manufacturing accuracy at maintained manufacturing speed. The problem can be categorised as constrained multidisciplinary multiobjective multivariable optimisation. Parameters of the control and geometric quantities of the machine are used as design variables. This results in a mix of continuous and discrete variables and an optimisation approach using a genetic algorithm is therefore deployed. The accuracy objective is evaluated according to international standards. The complete systems model shows nondeterministic behaviour. A strategy to handle this based on statistical analysis is suggested. The weight of the main moving parts is reduced by more than 30 per cent and the manufacturing accuracy is improvement by more than 60 per cent compared to the original design, with no reduction in manufacturing speed. It is also shown that interaction effects exist between the mechanics and the control, i.e. this improvement would most likely not been possible with a conventional sequential design approach within the same time, cost and general resource frame. This indicates the potential of the virtual machine concept for contributing to improved efficiency of both complex products and the development process for such products. Companies incorporating such advanced simulation tools in their product development could thus improve its own competitiveness as well as contribute to improved resource efficiency of society at large.Keywords: Machine tools, Mechatronics, Non-deterministic, Optimisation, Product development, Virtual machine
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19672218 Stress Analysis of Hexagonal Element for Precast Concrete Pavements
Authors: J. Novak, A. Kohoutkova, V. Kristek, J. Vodicka, M. Sramek
Abstract:
While the use of cast-in-place concrete for an airfield and highway pavement overlay is very common, the application of precast concrete elements is very limited today. The main reasons consist of high production costs and complex structural behavior. Despite that, several precast concrete systems have been developed and tested with the aim to provide a system with rapid construction. The contribution deals with the reinforcement design of a hexagonal element developed for a proposed airfield pavement system. The sub-base course of the system is composed of compacted recycled concrete aggregates and fiber reinforced concrete with recycled aggregates place on top of it. The selected element belongs to a group of precast concrete elements which are being considered for the construction of a surface course. Both high costs of full-scale experiments and the need to investigate various elements force to simulate their behavior in a numerical analysis software by using finite element method instead of performing expensive experiments. The simulation of the selected element was conducted on a nonlinear model in order to obtain such results which could fully compensate results from experiments. The main objective was to design reinforcement of the precast concrete element subject to quasi-static loading from airplanes with respect to geometrical imperfections, manufacturing imperfections, tensile stress in reinforcement, compressive stress in concrete and crack width. The obtained findings demonstrate that the position and the presence of imperfection in a pavement highly affect the stress distribution in the precast concrete element. The precast concrete element should be heavily reinforced to fulfill all the demands. Using under-reinforced concrete elements would lead to the formation of wide cracks and cracks permanently open.
Keywords: Imperfection, numerical simulation, pavement, precast concrete element, reinforcement design, stress analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7612217 Survivability of Verhulst-free Populations under Mutation Accumulation
Authors: Chrysline Margus N. Piñol, Jenifer DP. De Maligaya, Ahl G. Balitaon
Abstract:
Stable nonzero populations without random deaths caused by the Verhulst factor (Verhulst-free) are a rarity. Majority either grow without bounds or die of excessive harmful mutations. To delay the accumulation of bad genes or diseases, a new environmental parameter Γ is introduced in the simulation. Current results demonstrate that stability may be achieved by setting Γ = 0.1. These steady states approach a maximum size that scales inversely with reproduction age.Keywords: Aging, mutation accumulation, population dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12752216 Design and Development of Constant Stress Composite Cantilever Beam
Authors: Vinod B. Suryawanshi, Ajit D. Kelkar
Abstract:
Composite materials, due to their unique properties such as high strength to weight ratio, corrosion resistance, and impact resistance have huge potential as structural materials in automotive, construction and transportation applications. However, these properties often come at higher cost owing to complex design methods, difficult manufacturing processes and raw material cost. Traditionally, tapered laminated composite structures are manufactured using autoclave manufacturing process by ply drop off technique. Autoclave manufacturing though very powerful suffers from high capital investment and higher energy consumption. As per the current trends in composite manufacturing, Out of Autoclave (OoA) processes are looked as emerging technologies for manufacturing the structural composite components for aerospace and defense applications. However, there is a need for improvement among these processes to make them reliable and consistent. In this paper, feasibility of using out of autoclave process to manufacture the variable thickness cantilever beam is discussed. The minimum weight design for the composite beam is obtained using constant stress beam concept by tailoring the thickness of the beam. Ply drop off techniques was used to fabricate the variable thickness beam from glass/epoxy prepregs. Experiments were conducted to measure bending stresses along the span of the cantilever beam at different intervals by applying the concentrated load at the free end. Experimental results showed that the stresses in the bean at different intervals were constant. This proves the ability of OoA process to manufacture the constant stress beam. Finite element model for the constant stress beam was developed using commercial finite element simulation software. It was observed that the simulation results agreed very well with the experimental results and thus validated design and manufacturing approach used.
Keywords: Beams, Composites, Constant Stress, Structures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 43932215 Analysis of a Secondary Autothermal Reformer Using a Thermodynamic POX Model
Authors: Akbar Zamaniyan, Alireza Behroozsarand, Hadi Ebrahimi
Abstract:
Partial oxidation (POX) of light hydrocarbons (e.g. methane) is occurred in the first part of the autothermal reformer (ATR). The results of the detailed modeling of the reformer based on the thermodynamic model of the POX and 1D heterogeneous catalytic model for the fixed bed section are considered here. According to the results, the overall performance of the ATR can be improved by changing the important feed parameters.Keywords: Autothermal Reformer, Partial Oxidation, Mathematical Modeling, Process Simulation, Syngas.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22092214 Simulation of Hamming Coding and Decoding for Microcontroller Radiation Hardening
Authors: Rehab I. Abdul Rahman, Mazhar B. Tayel
Abstract:
This paper presents a method of hardening the 8051 micro-controller, able to assure reliable operation in the presence of bit flips caused by radiation. Aiming at avoiding such faults in the 8051 micro-controller, Hamming code protection was used in its SRAM memory and registers. A VHDL code has been used for this hamming code protection.
Keywords: Radiation, hardening, bitflip, hamming code.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29842213 Detection of Clipped Fragments in Speech Signals
Authors: Sergei Aleinik, Yuri Matveev
Abstract:
In this paper a novel method for the detection of clipping in speech signals is described. It is shown that the new method has better performance than known clipping detection methods, is easy to implement, and is robust to changes in signal amplitude, size of data, etc. Statistical simulation results are presented.
Keywords: Clipping, clipped signal, speech signal processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26732212 The Application of Line Balancing Technique and Simulation Program to Increase Productivity in Hard Disk Drive Components
Authors: Alonggot Limcharoen, Jintana Wannarat, Vorawat Panich
Abstract:
This study aims to investigate the balancing of the number of operators (Line Balancing technique) in the production line of hard disk drive components in order to increase efficiency. At present, the trend of using hard disk drives has continuously declined leading to limits in a company’s revenue potential. It is important to improve and develop the production process to create market share and to have the ability to compete with competitors with a higher value and quality. Therefore, an effective tool is needed to support such matters. In this research, the Arena program was applied to analyze the results both before and after the improvement. Finally, the precedent was used before proceeding with the real process. There were 14 work stations with 35 operators altogether in the RA production process where this study was conducted. In the actual process, the average production time was 84.03 seconds per product piece (by timing 30 times in each work station) along with a rating assessment by implementing the Westinghouse principles. This process showed that the rating was 123% underlying an assumption of 5% allowance time. Consequently, the standard time was 108.53 seconds per piece. The Takt time was calculated from customer needs divided by working duration in one day; 3.66 seconds per piece. Of these, the proper number of operators was 30 people. That meant five operators should be eliminated in order to increase the production process. After that, a production model was created from the actual process by using the Arena program to confirm model reliability; the outputs from imitation were compared with the original (actual process) and this comparison indicated that the same output meaning was reliable. Then, worker numbers and their job responsibilities were remodeled into the Arena program. Lastly, the efficiency of production process enhanced from 70.82% to 82.63% according to the target.
Keywords: Hard disk drive, line balancing, simulation, Arena program.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11862211 Development of Wave-Dissipating Block Installation Simulation for Inexperienced Worker Training
Authors: Hao Min Chuah, Tatsuya Yamazaki, Ryosui Iwasawa, Tatsumi Suto
Abstract:
In recent years, with the advancement of digital technology, the movement to introduce so-called ICT (Information and Communication Technology), such as computer technology and network technology, to civil engineering construction sites and construction sites is accelerating. As part of this movement, attempts are being made in various situations to reproduce actual sites inside computers and use them for designing and construction planning, as well as for training inexperienced engineers. The installation of wave-dissipating blocks on coasts, etc., is a type of work that has been carried out by skilled workers based on their years of experience and is one of the tasks that is difficult for inexperienced workers to carry out on site. Wave-dissipating blocks are structures that are designed to protect coasts, beaches, and so on from erosion by reducing the energy of ocean waves. Wave-dissipating blocks usually weigh more than 1 t and are installed by being suspended by a crane, so it would be time-consuming and costly for inexperienced workers to train on-site. In this paper, therefore, a block installation simulator is developed based on Unity 3D, a game development engine. The simulator computes porosity. Porosity is defined as the ratio of the total volume of the wave breaker blocks inside the structure to the final shape of the ideal structure. Using the evaluation of porosity, the simulator can determine how well the user is able to install the blocks. The voxelization technique is used to calculate the porosity of the structure, simplifying the calculations. Other techniques, such as raycasting and box overlapping, are employed for accurate simulation. In the near future, the simulator will install an automatic block installation algorithm based on combinatorial optimization solutions and compare the user-demonstrated block installation and the appropriate installation solved by the algorithm.
Keywords: 3D simulator, porosity, user interface, voxelization, wave-dissipating blocks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 692210 Optimal Straight Line Trajectory Generation in 3D Space using Deviation Algorithm
Authors: T. C. Manjunath, C. Ardil
Abstract:
This paper presents an efficient method of obtaining a straight-line motion in the tool configuration space using an articulated robot between two specified points. The simulation results & the implementation results show the effectiveness of the method.Keywords: Bounded deviation algorithm, Straight line motion, Tool configuration space, Joint space, TCV.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26202209 Efficiency Validation of Hybrid Cooling Application in Hot and Humid Climate Houses of KSA
Authors: Jamil Hijazi, Stirling Howieson
Abstract:
Reducing energy consumption and CO2 emissions are probably the greatest challenge now facing mankind. From considerations surrounding global warming and CO2 production, it has to be recognized that oil is a finite resource and the KSA like many other oil-rich countries will have to start to consider a horizon where hydro-carbons are not the dominant energy resource. The employment of hybrid ground-cooling pipes in combination with the black body solar collection and radiant night cooling systems may have the potential to displace a significant proportion of oil currently used to run conventional air conditioning plant. This paper presents an investigation into the viability of such hybrid systems with the specific aim of reducing cooling load and carbon emissions while providing all year-round thermal comfort in a typical Saudi Arabian urban housing block. Soil temperatures were measured in the city of Jeddah. A parametric study then was carried out by computational simulation software (DesignBuilder) that utilized the field measurements and predicted the cooling energy consumption of both a base case and an ideal scenario (typical block retro-fitted with insulation, solar shading, ground pipes integrated with hypocaust floor slabs/stack ventilation and radiant cooling pipes embed in floor). Initial simulation results suggest that careful ‘ecological design’ combined with hybrid radiant and ground pipe cooling techniques can displace air conditioning systems, producing significant cost and carbon savings (both capital and running) without appreciable deprivation of amenity.
Keywords: Cooling load, energy efficiency, ground pipe cooling, hybrid cooling strategy, hydronic radiant systems, low carbon emission, passive designs, thermal comfort.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9462208 Systems with Queueing and their Simulation
Authors: Miloš Šeda, Pavel Ošmera, Jindřich Petrucha
Abstract:
In the queueing theory, it is assumed that customer arrivals correspond to a Poisson process and service time has the exponential distribution. Using these assumptions, the behaviour of the queueing system can be described by means of Markov chains and it is possible to derive the characteristics of the system. In the paper, these theoretical approaches are presented on several types of systems and it is also shown how to compute the characteristics in a situation when these assumptions are not satisfiedKeywords: Queueing theory, Poisson process, Markov chains.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12872207 Fuzzy Power Controller Design for Purdue University Research Reactor-1
Authors: Oktavian Muhammad Rizki, Appiah Rita, Lastres Oscar, Miller True, Chapman Alec, Tsoukalas Lefteri H.
Abstract:
The Purdue University Research Reactor-1 (PUR-1) is a 10 kWth pool-type research reactor located at Purdue University’s West Lafayette campus. The reactor was recently upgraded to use entirely digital instrumentation and control systems. However, currently, there is no automated control system to regulate the power in the reactor. We propose a fuzzy logic controller as a form of digital twin to complement the existing digital instrumentation system to monitor and stabilize power control using existing experimental data. This work assesses the feasibility of a power controller based on a Fuzzy Rule-Based System (FRBS) by modelling and simulation with a MATLAB algorithm. The controller uses power error and reactor period as inputs and generates reactivity insertion as output. The reactivity insertion is then converted to control rod height using a logistic function based on information from the recorded experimental reactor control rod data. To test the capability of the proposed fuzzy controller, a point-kinetic reactor model is utilized based on the actual PUR-1 operation conditions and a Monte Carlo N-Particle simulation result of the core to numerically compute the neutronics parameters of reactor behavior. The Point Kinetic Equation (PKE) was employed to model dynamic characteristics of the research reactor since it explains the interactions between the spatial and time varying input and output variables efficiently. The controller is demonstrated computationally using various cases: startup, power maneuver, and shutdown. From the test results, it can be proved that the implemented fuzzy controller can satisfactorily regulate the reactor power to follow demand power without compromising nuclear safety measures.
Keywords: Fuzzy logic controller, power controller, reactivity, research reactor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4212206 Development of State Model Theory for External Exclusive NOR Type LFSR Structures
Authors: Afaq Ahmad
Abstract:
Using state space technique and GF(2) theory, a simulation model for external exclusive NOR type LFSR structures is developed. Through this tool a systematic procedure is devised for computing pseudo-random binary sequences from such structures.Keywords: LFSR, external exclusive NOR type, recursivebinary sequence, initial state - next state, state transition matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15972205 Hydrodynamic Performance of a Moored Barge in Irregular Wave
Authors: Srinivasan Chandrasekaran, Shihas A. Khader
Abstract:
Motion response of floating structures is of great concern in marine engineering. Nonlinearity is an inherent property of any floating bodies subjected to irregular waves. These floating structures are continuously subjected to environmental loadings from wave, current, wind etc. This can result in undesirable motions of the vessel which may challenge the operability. For a floating body to remain in its position, it should be able to induce a restoring force when displaced. Mooring is provided to enable this restoring force. This paper discusses the hydrodynamic performance and motion characteristics of an 8 point spread mooring system applied to a pipe laying barge operating in the West African sea. The modelling of the barge is done using a computer aided-design (CAD) software RHINOCEROS. Irregular waves are generated using a suitable wave spectrum. Both frequency domain and time domain analysis is done. Numerical simulations based on potential theory are carried out to find the responses and hydrodynamic performance of the barge in both free floating as well as moored conditions. Initially, potential flow frequency domain analysis is done to obtain the Response Amplitude Operator (RAO) which gives an idea about the structural motion in free floating state. RAOs for different wave headings are analyzed. In the following step, a time domain analysis is carried out to obtain the responses of the structure in the moored condition. In this study, wave induced motions are only taken into consideration. Wind and current loads are ruled out and shall be included in further studies. For the current study, 2000 seconds simulation is taken. The results represent wave induced motion responses, mooring line tensions and identify critical mooring lines.
Keywords: Irregular wave, moored barge, time domain analysis, numerical simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27632204 Analysis of Mathematical Models and Their Application to Extreme Events
Authors: Avellino I. Mondlane, Karin Hansson, Oliver Popov
Abstract:
This paper discusses the application of extreme events distribution taking the Limpopo River Basin at Xai-Xai station, in Mozambique, as a case analysis. We analyze the extreme value concepts, namely Gumbel, Fréchet, Weibull and Generalized Extreme Value Distributions and then extrapolate the original data to 1000, 5000 and 10000 figures for further simulations and we compare their outcomes based on these three main distributions.
Keywords: Catastrophes, extreme event, disasters, mathematical models, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25212203 A New Hardware Implementation of Manchester Line Decoder
Authors: Ibrahim A. Khorwat, Nabil Naas
Abstract:
In this paper, we present a simple circuit for Manchester decoding and without using any complicated or programmable devices. This circuit can decode 90kbps of transmitted encoded data; however, greater than this transmission rate can be decoded if high speed devices were used. We also present a new method for extracting the embedded clock from Manchester data in order to use it for serial-to-parallel conversion. All of our experimental measurements have been done using simulation.Keywords: High threshold level, level segregation, lowthreshold level, smoothing circuit synchronization..
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37862202 Simulation of the Extensional Flow Mixing of Molten Aluminium and Fly Ash Nanoparticles
Authors: O. Ualibek, C. Spitas, V. Inglezakis, G. Itskos
Abstract:
This study presents simulations of an aluminium melt containing an initially non-dispersed fly ash nanoparticle phase. Mixing is affected predominantly by means of forced extensional flow via either straight or slanted orifices. The sensitivity to various process parameters is determined. The simulated process is used for the production of cast fly ash-aluminium nanocomposites. The possibilities for rod and plate stock grading in the context of a continuous casting process implementation are discussed.Keywords: Metal matrix composites, fly ash nanoparticles, aluminium 2024, agglomeration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10022201 Performance Comparison and Analysis of Different Schemes and Limiters
Authors: Wang Wen-long, Li Hua, Pan Sha
Abstract:
Eight difference schemes and five limiters are applied to numerical computation of Riemann problem. The resolution of discontinuities of each scheme produced is compared. Numerical dissipation and its estimation are discussed. The result shows that the numerical dissipation of each scheme is vital to improve scheme-s accuracy and stability. MUSCL methodology is an effective approach to increase computational efficiency and resolution. Limiter should be selected appropriately by balancing compressive and diffusive performance.
Keywords: Scheme; Limiter, Numerical simulation, Riemannproblem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24842200 Optimization of Partially Filled Column Subjected to Oblique Loading
Authors: M. S. Salwani, B. B. Sahari, Aidy Ali, A. A. Nuraini
Abstract:
In this study, optimization is carried out to find the optimized design of a foam-filled column for the best Specific Energy Absorption (SEA) and Crush Force Efficiency (CFE). In order to maximize SEA, the optimization gives the value of 2.3 for column thickness and 151.7 for foam length. On the other hand to maximize CFE, the optimization gives the value of 1.1 for column thickness and 200 for foam length. Finite Element simulation is run by using this value and the SEA and CFE obtained 1237.76 J/kg and 0.92.
Keywords: Crash, foam, oblique loading.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15852199 Applicability of Linearized Model of Synchronous Generator for Power System Stability Analysis
Authors: J. Ritonja, B. Grcar
Abstract:
For the synchronous generator simulation and analysis and for the power system stabilizer design and synthesis a mathematical model of synchronous generator is needed. The model has to accurately describe dynamics of oscillations, while at the same time has to be transparent enough for an analysis and sufficiently simplified for design of control system. To study the oscillations of the synchronous generator against to the rest of the power system, the model of the synchronous machine connected to an infinite bus through a transmission line having resistance and inductance is needed. In this paper, the linearized reduced order dynamic model of the synchronous generator connected to the infinite bus is presented and analysed in details. This model accurately describes dynamics of the synchronous generator only in a small vicinity of an equilibrium state. With the digression from the selected equilibrium point the accuracy of this model is decreasing considerably. In this paper, the equations’ descriptions and the parameters’ determinations for the linearized reduced order mathematical model of the synchronous generator are explained and summarized and represent the useful origin for works in the areas of synchronous generators’ dynamic behaviour analysis and synchronous generator’s control systems design and synthesis. The main contribution of this paper represents the detailed analysis of the accuracy of the linearized reduced order dynamic model in the entire synchronous generator’s operating range. Borders of the areas where the linearized reduced order mathematical model represents accurate description of the synchronous generator’s dynamics are determined with the systemic numerical analysis. The thorough eigenvalue analysis of the linearized models in the entire operating range is performed. In the paper, the parameters of the linearized reduced order dynamic model of the laboratory salient poles synchronous generator were determined and used for the analysis. The theoretical conclusions were confirmed with the agreement of experimental and simulation results.
Keywords: Eigenvalue analysis, mathematical model, power system stability, synchronous generator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15902198 Sidecooler Flow Field Investigation
Authors: L. Manoch, J. Matěcha, J. Novotný
Abstract:
One of the aims of the paper is to make a comparison of experimental results with numerical simulation for a side cooler. Specifically, it was the amount of air to be delivered by the side cooler with fans running at 100%. This integral value was measured and evaluated within the plane parallel to the front side of the side cooler at a distance of 20mm from the front side. The flow field extending from the side cooler to the space was also evaluated. Another objective was to address the contribution of evaluated values to the increase of data center energy consumption.
Keywords: CFD, Sidecooler, Stereo PIV.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17502197 Influence of Inhomogeneous Wind Fields on the Aerostatic Stability of a Cable-Stayed Pedestrian Bridge without Backstays: Experiments and Numerical Simulations
Abstract:
Sightseeing glass bridges located in steep valley area are being built on a large scale owing to the development of tourism. Consequently, their aerostatic stability is seriously affected by the wind field characteristics created by strong wind and special terrain, such as wind speed and wind attack angle. For instance, a cable-stayed pedestrian bridge without backstays comprised of a 60-m cantilever girder and the glass bridge deck is located in an abrupt valley, acting as a viewing platform. The bridge’s nonlinear aerostatic stability was analyzed by the segmental model test and numerical simulation in this paper. Based on aerostatic coefficients of the main girder measured in wind tunnel tests, nonlinear influences caused by the structure and aerostatic load, inhomogeneous distribution of torsion angle along the bridge axis, and the influence of initial attack angle were analyzed by using the incremental double iteration method. The results show that the aerostatic response varying with speed shows an obvious nonlinearity, and the aerostatic instability mode is of the characteristic of space deformation of bending-twisting coupling mode. The vertical and torsional deformation of the main girder is larger than its lateral deformation, with the wind speed approaching the critical wind speed. The flow of negative attack angle will reduce the bridges’ critical stability wind speed, but the influence of the negative attack angle on the aerostatic stability is more significant than that of the positive attack angle. The critical wind speeds of torsional divergence and lateral buckling are both larger than 200 m/s; namely, the bridge will not occur aerostatic instability under the action of various wind attack angles.
Keywords: Aerostatic nonlinearity, cable-stayed pedestrian bridge, numerical simulation, nonlinear aerostatic stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5772196 Simulation of Irregular Waves by CFD
Authors: Muniyandy Elangovan
Abstract:
Wave generation methodology has been developed and validated by simulating wave in CFD. In this analysis, Flap type wave maker has been modeled numerically with wave basin to generate waves for marine experimental analysis. Irregular waves are arrived from the wave spectrum, and this wave has been simulated in CFD. Generated irregular wave has been compared with an analytical wave. Simulated wave has been processed for FFT analysis, and the wave spectrum is validated with original wave spectrum.Keywords: Numerical wave tank, irregular wave, FFT, wavespectrum
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40442195 PR Current Control with Harmonic Compensation in Grid Connected PV Inverters
Authors: Daniel Zammit, Cyril Spiteri Staines, Maurice Apap
Abstract:
This paper presents a study on Proportional Resonant (PR) current control with additional PR harmonic compensators for Grid Connected Photovoltaic (PV) Inverters. Both simulation and experimental results will be presented. Testing was carried out on a 3kW Grid-Connected PV Inverter which was designed and constructed for this research.
Keywords: Inverters, Proportional-Resonant Controllers, Harmonic Compensation, Photovoltaic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33912194 Addressing Scheme for IOT Network Using IPV6
Authors: H. Zormati, J. Chebil, J. Bel Hadj Taher
Abstract:
The goal of this paper is to present an addressing scheme that allows for assigning a unique IPv6 address to each node in the Internet of Things (IoT) network. This scheme guarantees uniqueness by extracting the clock skew of each communication device and converting it into an IPv6 address. Simulation analysis confirms that the presented scheme provides reductions in terms of energy consumption, communication overhead and response time as compared to four studied addressing schemes Strong DAD, LEADS, SIPA and CLOSA.
Keywords: Addressing, IoT, IPv6, network, nodes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9662193 In silico Simulations for DNA Shuffling Experiments
Authors: Luciana Montera
Abstract:
DNA shuffling is a powerful method used for in vitro evolute molecules with specific functions and has application in areas such as, for example, pharmaceutical, medical and agricultural research. The success of such experiments is dependent on a variety of parameters and conditions that, sometimes, can not be properly pre-established. Here, two computational models predicting DNA shuffling results is presented and their use and results are evaluated against an empirical experiment. The in silico and in vitro results show agreement indicating the importance of these two models and motivating the study and development of new models.Keywords: Computer simulation, DNA shuffling, in silico andin vitro comparison.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1728