In this study, optimization is carried out to find the optimized design of a foam-filled column for the best Specific Energy Absorption (SEA) and Crush Force Efficiency (CFE). In order to maximize SEA, the optimization gives the value of 2.3 for column thickness and 151.7 for foam length. On the other hand to maximize CFE, the optimization gives the value of 1.1 for column thickness and 200 for foam length. Finite Element simulation is run by using this value and the SEA and CFE obtained 1237.76 J\/kg and 0.92.<\/p>\r\n","references":"[1] J. Bi, H. Fang, Q. Wang, and X. Ren, \"Modeling and optimization of\r\nfoam-filled thin-walled columns for crashworthiness designs,\" Finite\r\nElements in Analysis and Design, vol. 46, pp. 698-709, 2010.\r\n[2] A. G. Hanssen, M. Langseth, and O. S. Hopperstad, \"Optimum design\r\nfor energy absorption of square aluminium columns with aluminium\r\nfoam filler,\" International Journal of Mechanical Sciences, vol. 43, pp.\r\n153-176, 2001.\r\n[3] H. R. Zarei and M. Kroger, \"Crashworthiness optimization of empty and filled aluminum crash boxes,\" International Journal of Crashworthiness,\r\nvol. 12, pp. 255 - 264, 2007.\r\n[4] H. R. Zarei and M. Kr\u00f6ger, \"Bending behavior of empty and foam-filled beams: Structural optimization,\" International Journal of Impact\r\nEngineering, vol. 35, pp. 521-529, 2008.\r\n[5] H. R. Zarei and M. Kr\u00f6ger, \"Optimization of the foam-filled aluminum\r\ntubes for crush box application,\" Thin-Walled Structures, vol. 46, pp.\r\n214-221, 2008.\r\n[6] H. S. Kim, W. Chen, and T. Wierzbicki, \"Weight and crash optimization\r\nof foam-filled three-dimensional \"S\" frame,\" Computational Mechanics,\r\nvol. 28, pp. 417-424, 2002.\r\n[7] W. Chen, T. Wierzbicki, and S. Santosa, \"Bending collapse of thinwalled\r\nbeams with ultralight filler: numerical simulation and weight\r\noptimization,\" Acta Mechanica, vol. 153, pp. 183-206, 2002.\r\n[8] E. Acar, M. A. Guler, B. Ger\u251c\u00baeker, M. E. Cerit, and B. Bayram, \"Multiobjective\r\ncrashworthiness optimization of tapered thin-walled tubes with axisymmetric indentations,\" Thin-Walled Structures, vol. 49, pp. 94-\r\n105, 2011.\r\n[9] H. Fang, M. Rais-Rohani, Z. Liu, and M. F. Horstemeyer, \"A\r\ncomparative study of metamodeling methods for multiobjective\r\ncrashworthiness optimization,\" Computers & Structures, vol. 83, pp. 2121-2136, 2005.\r\n[10] J. P. Dias and M. S. Pereira, \"Optimization methods for crashworthiness\r\ndesign using multibody models,\" Computers & Structures, vol. 82, pp.\r\n1371-1380, 2004.\r\n[11] S. Hou, Q. Li, S. Long, X. Yang, and W. Li, \"Crashworthiness design\r\nfor foam filled thin-wall structures,\" Materials & Design, vol. 30, pp.\r\n2024-2032, 2009.\r\n[12] A. Khakhali, N. Nariman-zadeh, A. Darvizeh, A. Masoumi, and B.\r\nNotghi, \"Reliability-based robust multi-objective crashworthiness\r\noptimisation of S-shaped box beams with parametric uncertainties,\"\r\nInternational Journal of Crashworthiness, vol. 15, pp. 443 - 456, 2010.\r\n[13] A. Reyes, M. Langseth, and O. S. Hopperstad, \"Crashworthiness of\r\naluminum extrusions subjected to oblique loading: experiments and\r\nnumerical analyses,\" International Journal of Mechanical Sciences, vol.\r\n44, pp. 1965-1984, 2002.\r\n[14] A. Reyes, O. S. Hopperstad, and M. Langseth, \"Aluminum foam-filled\r\nextrusions subjected to oblique loading: experimental and numerical\r\nstudy,\" International Journal of Solids and Structures, vol. 41, pp. 1645-\r\n1675, 2004.\r\n[15] S. Hou, Q. Li, S. Long, X. Yang, and W. Li, \"Multiobjective\r\noptimization of multi-cell sections for the crashworthiness design,\"\r\nInternational Journal of Impact Engineering, vol. 35, pp. 1355-1367, 2008.","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 70, 2012"}