Search results for: Concentration fluctuations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1484

Search results for: Concentration fluctuations

134 Entropy Generation and Heat Transfer of Cu–Water Nanofluid Mixed Convection in a Cavity

Authors: Mliki Bouchmel, Belgacem Nabil, Abbassi Mohamed Ammar, Geudri Kamel, Omri Ahmed

Abstract:

In this numerical work, mixed convection and entropy generation of Cu–water nanofluid in a lid-driven square cavity have been investigated numerically using the Lattice Boltzmann Method. Horizontal walls of the cavity are adiabatic and vertical walls have constant temperature but different values. The top wall has been considered as moving from left to right at a constant speed, U0. The effects of different parameters such as nanoparticle volume concentration (0–0.05), Rayleigh number (104–106) and Reynolds numbers (1, 10 and 100) on the entropy generation, flow and temperature fields are studied. The results have shown that addition of nanoparticles to the base fluid affects the entropy generation, flow pattern and thermal behavior especially at higher Rayleigh and low Reynolds numbers. For pure fluid as well as nanofluid, the increase of Reynolds number increases the average Nusselt number and the total entropy generation, linearly. The maximum entropy generation occurs in nanofluid at low Rayleigh number and at high Reynolds number. The minimum entropy generation occurs in pure fluid at low Rayleigh and Reynolds numbers. Also at higher Reynolds number, the effect of Cu nanoparticles on enhancement of heat transfer was decreased because the effect of lid-driven cavity was increased. The present results are validated by favorable comparisons with previously published results. The results of the problem are presented in graphical and tabular forms and discussed.

Keywords: Entropy generation, mixed convection, nanofluid, lattice Boltzmann method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1951
133 Methods and Algorithms of Ensuring Data Privacy in AI-Based Healthcare Systems and Technologies

Authors: Omar Farshad Jeelani, Makaire Njie, Viktoriia M. Korzhuk

Abstract:

Recently, the application of AI-powered algorithms in healthcare continues to flourish. Particularly, access to healthcare information, including patient health history, diagnostic data, and PII (Personally Identifiable Information) is paramount in the delivery of efficient patient outcomes. However, as the exchange of healthcare information between patients and healthcare providers through AI-powered solutions increases, protecting a person’s information and their privacy has become even more important. Arguably, the increased adoption of healthcare AI has resulted in a significant concentration on the security risks and protection measures to the security and privacy of healthcare data, leading to escalated analyses and enforcement. Since these challenges are brought by the use of AI-based healthcare solutions to manage healthcare data, AI-based data protection measures are used to resolve the underlying problems. Consequently, these projects propose AI-powered safeguards and policies/laws to protect the privacy of healthcare data. The project present the best-in-school techniques used to preserve data privacy of AI-powered healthcare applications. Popular privacy-protecting methods like Federated learning, cryptography techniques, differential privacy methods, and hybrid methods are discussed together with potential cyber threats, data security concerns, and prospects. Also, the project discusses some of the relevant data security acts/laws that govern the collection, storage, and processing of healthcare data to guarantee owners’ privacy is preserved. This inquiry discusses various gaps and uncertainties associated with healthcare AI data collection procedures, and identifies potential correction/mitigation measures.

Keywords: Data privacy, artificial intelligence, healthcare AI, data sharing, healthcare organizations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 127
132 Contribution of Vitaton (Β-Carotene) to the Rearing Factors Survival Rate and Visual Flesh Color of Rainbow Trout Fish in Comparison With Astaxanthin

Authors: M.Ghotbi, M.Ghotbi, Gh. Azari Takami

Abstract:

In this study Vitaton (an organic supplement which contains fermentative β-carotene) and synthetic astaxanthin (CAROPHYLL® Pink) were evaluated as pro-growth factors in Rainbow trout diet. An 8 week feeding trial was conducted to determine the effects of Vitaton versus astaxanthin on rearing factors, survival rate and visual flesh color of Rainbow trout (Oncorhnchynchus mykiss) with initial weight of 196±5. Four practical diets were formulated to contain 50 and 80 (ppm) of β- carotene and astaxanthin and also a control diet was prepared without any pigment. Each diet was fed to triplicate groups of fish rearing in fresh water. Fish were fed twice daily. The water temperature fluctuated from 12 to 15 (C˚) and also dissolved oxygen content was between 7 to 7.5 (mg/lit) during the experimental period. At the end of the experiment, growth and food utilization parameters and survival rate were unaffected by dietary treatments (p>0.05). Also, there was no significant difference between carcass yield within treatments (p>0.05). No significant difference recognized between visual flesh color (SalmoFan score) of fish fed Vitaton-containing diets. On the contrary, feeding on diets containing 50 and 80 (ppm) of astaxanthin, increased SalmoFan score (flesh astaxanthin concentration) from <20 (<1 mg/kg) to 23.33 (2.03 mg/kg) and 27.67 (5.74 mg/kg), respectively. Ultimately, a significant difference was seen between flesh carotenoid concentrations of fish feeding on astaxanthin containing treatments and control treatment (P<0.05). It should be mentioned that just raw fillet color of fish belonged to 80 (ppm) of astaxanthin treatment was seen to be close to color targets (SalmoFan scores) adopted for harvest-size fish.

Keywords: Astaxanthin, Flesh color, Rainbow trout, Vitaton, β- carotene,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3431
131 Unsteady Flow Simulations for Microchannel Design and Its Fabrication for Nanoparticle Synthesis

Authors: Mrinalini Amritkar, Disha Patil, Swapna Kulkarni, Sukratu Barve, Suresh Gosavi

Abstract:

Micro-mixers play an important role in the lab-on-a-chip applications and micro total analysis systems to acquire the correct level of mixing for any given process. The mixing process can be classified as active or passive according to the use of external energy. Literature of microfluidics reports that most of the work is done on the models of steady laminar flow; however, the study of unsteady laminar flow is an active area of research at present. There are wide applications of this, out of which, we consider nanoparticle synthesis in micro-mixers. In this work, we have developed a model for unsteady flow to study the mixing performance of a passive micro mixer for reactants used for such synthesis. The model is developed in Finite Volume Method (FVM)-based software, OpenFOAM. The model is tested by carrying out the simulations at Re of 0.5. Mixing performance of the micro-mixer is investigated using simulated concentration values of mixed species across the width of the micro-mixer and calculating the variance across a line profile. Experimental validation is done by passing dyes through a Y shape micro-mixer fabricated using polydimethylsiloxane (PDMS) polymer and comparing variances with the simulated ones. Gold nanoparticles are later synthesized through the micro-mixer and collected at two different times leading to significantly different size distributions. These times match with the time scales over which reactant concentrations vary as obtained from simulations. Our simulations could thus be used to create design aids for passive micro-mixers used in nanoparticle synthesis.

Keywords: Lab-on-chip, micro-mixer, OpenFOAM, PDMS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 790
130 The Impact of Surface Roughness and PTFE/TiF3/FeF3 Additives in Plain ZDDP Oil on the Friction and Wear Behavior Using Thermal and Tribological Analysis under Extreme Pressure Condition

Authors: Gabi N. Nehme, Saeed Ghalambor

Abstract:

The use of titanium fluoride and iron fluoride (TiF3/FeF3) catalysts in combination with polutetrafluoroethylene (PTFE) in plain zinc- dialkyldithiophosphate (ZDDP) oil is important for the study of engine tribocomponents and is increasingly a strategy to improve the formation of tribofilm and provide low friction and excellent wear protection in reduced phosphorus plain ZDDP oil. The influence of surface roughness and the concentration of TiF3/FeF3/PTFE were investigated using bearing steel samples dipped in lubricant solution at 100°C for two different heating time durations. This paper addresses the effects of water drop contact angle using different surface; finishes after treating them with different lubricant combination. The calculated water drop contact angles were analyzed using Design of Experiment software (DOE) and it was determined that a 0.05 μm Ra surface roughness would provide an excellent TiF3/FeF3/PTFE coating for antiwear resistance as reflected in the Scanning electron microscopy (SEM) images and the tribological testing under extreme pressure conditions. Both friction and wear performance depend greatly on the PTFE/and catalysts in plain ZDDP oil with 0.05 % phosphorous and on the surface finish of bearing steel. The friction and wear reducing effects, which was observed in the tribological tests, indicated a better micro lubrication effect of the 0.05 μm Ra surface roughness treated at 100°C for 24 hours when compared to the 0.1 μm Ra surface roughness with the same treatment.

Keywords: Scanning Electron Microscopy (SEM), ZDDP, catalysts, PTFE, friction, wear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1630
129 Bridging the Mental Gap between Convolution Approach and Compartmental Modeling in Functional Imaging: Typical Embedding of an Open Two-Compartment Model into the Systems Theory Approach of Indicator Dilution Theory

Authors: Gesine Hellwig

Abstract:

Functional imaging procedures for the non-invasive assessment of tissue microcirculation are highly requested, but require a mathematical approach describing the trans- and intercapillary passage of tracer particles. Up to now, two theoretical, for the moment different concepts have been established for tracer kinetic modeling of contrast agent transport in tissues: pharmacokinetic compartment models, which are usually written as coupled differential equations, and the indicator dilution theory, which can be generalized in accordance with the theory of lineartime- invariant (LTI) systems by using a convolution approach. Based on mathematical considerations, it can be shown that also in the case of an open two-compartment model well-known from functional imaging, the concentration-time course in tissue is given by a convolution, which allows a separation of the arterial input function from a system function being the impulse response function, summarizing the available information on tissue microcirculation. Due to this reason, it is possible to integrate the open two-compartment model into the system-theoretic concept of indicator dilution theory (IDT) and thus results known from IDT remain valid for the compartment approach. According to the long number of applications of compartmental analysis, even for a more general context similar solutions of the so-called forward problem can already be found in the extensively available appropriate literature of the seventies and early eighties. Nevertheless, to this day, within the field of biomedical imaging – not from the mathematical point of view – there seems to be a trench between both approaches, which the author would like to get over by exemplary analysis of the well-known model.

Keywords: Functional imaging, Tracer kinetic modeling, LTIsystem, Indicator dilution theory / convolution approach, Two-Compartment model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1419
128 Spatio-temporal Variations in Heavy Metal Concentrations in Sediment of Qua Iboe River Estuary, Nigeria

Authors: Justina I. R. Udotong, Ime R. Udotong, Offiong U. Eka

Abstract:

The concentrations of heavy metals in sediments of Qua Iboe River Estuary (QIRE) were monitored at four different sampling locations in wet and dry seasons. A preliminary survey to determine the four sampling stations along the river continuum showed that the area spanned between <0.1‰ salinity at the control station and 21.5‰ at the fourth station along the river continuum. A preliminary survey to determine the four sampling locations along the river estuary showed variations in salinity and other physicochemical parameters. The estuary was found to be polluted with heavy metals from point and nonpoint sources at varying degrees. Mean values of 7.80 mg/kg, 4.97 mg/kg and 2.80 mg/kg of nickel were obtained for sediment samples from Douglas creek, Qua Iboe and Atlantic sampling locations, respectively in the dry season. The wet season nickel concentrations were however lower. The entire study area was grossly contaminated by iron. At Douglas creek, the concentration of iron in sediment was 9274 ± 9.54mg/kg while copper, nickel, lead and vanadium were <0.5mg/kg each as compared to iron. Bioaccumulation was therefore suspected within the study area as values of 31.00 ± 0.79, 36.00 ± 0.10 and 55.00 ± 0.05 mg/kg of zinc were recorded in sediment at Douglas creek, Atlantic and the control sampling locations. The results from this study showed that the source of these heavy metals were from point sources like the corrosion of metal steel pipes from old bridges as well as oily sludge wastes from the Qua Iboe Terminal / tank farm located within the vicinity of the study area.

Keywords: Heavy metal, Qua Iboe River Estuary, seasonal variations, sediment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2122
127 Effect of Mixing Process on Polypropylene Modified Bituminous Concrete Mix Properties

Authors: Noor Zainab Habib, Ibrahim Kamaruddin, Madzalan Napiah, Isa Mohd Tan

Abstract:

This paper presents a research conducted to investigate the effect of mixing process on polypropylene (PP) modified bitumen mixed with well graded aggregate to form modified bituminous concrete mix. Two mode of mixing, namely dry and wet with different concentration of polymer polypropylene was used with 80/100 pen bitumen, to evaluate the bituminous concrete mix properties. Three percentages of polymer varying from 1-3% by the weight of bitumen was used in this study. Three mixes namely control mix, wet mix and dry mix were prepared. Optimum binder content was calculated considering Marshall Stability, flow, air voids and Marshall Quotient at different bitumen content varying from 4% - 6.5% for control, dry and wet mix. Engineering properties thus obtained at the calculated optimum bitumen content revealed that wet mixing process is advantageous in comparison to dry mixing as it increases the stiffness of the mixture with the increase in polymer content in bitumen. Stiffness value for wet mix increases with the increase in polymer content which is beneficial in terms of rutting. 1% PP dry mix also shows enhanced stiffness, with the air void content limited to 4%.The flow behaviour of dry mix doesn't indicate any major difference with the increase in polymer content revealing that polymer acting as an aggregate only without affecting the viscosity of the binder in the mix. Polypropylene (PP) when interacted with 80 pen base bitumen enhances its performance characteristics which were brought about by altered rheological properties of the modified bitumen. The decrease in flow with the increase in binder content reflects the increase in viscosity of binder which induces the plastic flow in the mix. Workability index indicates that wet mix were easy to compact up to desired void ratio in comparison to dry mix samples.

Keywords: Marshall Flow, Marshall Stability, Polymer modified bitumen, Polypropylene, Stiffness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4500
126 Biomethanation of Palm Oil Mill Effluent (POME) by Membrane Anaerobic System (MAS) using POME as a Substrate

Authors: N.H. Abdurahman, Y. M. Rosli, N. H. Azhari, S. F. Tam

Abstract:

The direct discharge of palm oil mill effluent (POME) wastewater causes serious environmental pollution due to its high chemical oxygen demand (COD) and biochemical oxygen demand (BOD). Traditional ways for POME treatment have both economical and environmental disadvantages. In this study, a membrane anaerobic system (MAS) was used as an alternative, cost effective method for treating POME. Six steady states were attained as a part of a kinetic study that considered concentration ranges of 8,220 to 15,400 mg/l for mixed liquor suspended solids (MLSS) and 6,329 to 13,244 mg/l for mixed liquor volatile suspended solids (MLVSS). Kinetic equations from Monod, Contois and Chen & Hashimoto were employed to describe the kinetics of POME treatment at organic loading rates ranging from 2 to 13 kg COD/m3/d. throughout the experiment, the removal efficiency of COD was from 94.8 to 96.5% with hydraulic retention time, HRT from 400.6 to 5.7 days. The growth yield coefficient, Y was found to be 0.62gVSS/g COD the specific microorganism decay rate was 0.21 d-1 and the methane gas yield production rate was between 0.25 l/g COD/d and 0.58 l/g COD/d. Steady state influent COD concentrations increased from 18,302 mg/l in the first steady state to 43,500 mg/l in the sixth steady state. The minimum solids retention time, which was obtained from the three kinetic models ranged from 5 to 12.3 days. The k values were in the range of 0.35 – 0.519 g COD/ g VSS • d and values were between 0.26 and 0.379 d-1. The solids retention time (SRT) decreased from 800 days to 11.6 days. The complete treatment reduced the COD content to 2279 mg/l equivalent to a reduction of 94.8% reduction from the original.

Keywords: COD reduction, POME, kinetics, membrane, anaerobic, monod, contois equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2568
125 Evaluation of Produced Water Treatment Using Advanced Oxidation Processes and Sodium Ferrate(VI)

Authors: Erica T. R. Mendonça, Caroline M. B. de Araujo, Filho, Osvaldo Chiavone, Sobrinho, Maurício A. da Motta

Abstract:

Oil and gas exploration is an essential activity for modern society, although the supply of its global demand has caused enough damage to the environment, mainly due to produced water generation, which is an effluent associated with the oil and gas produced during oil extraction. It is the aim of this study to evaluate the treatment of produced water, in order to reduce its oils and greases content (OG), by using flotation as a pre-treatment, combined with oxidation for the remaining organic load degradation. Thus, there has been tested Advanced Oxidation Process (AOP) using both Fenton and photo-Fenton reactions, as well as a chemical oxidation treatment using sodium ferrate(VI), Na2[FeO4], as a strong oxidant. All the studies were carried out using real samples of produced water from petroleum industry. The oxidation process using ferrate(VI) ion was studied based on factorial experimental designs. The factorial design was used in order to study how the variables pH, temperature and concentration of Na2[FeO4] influences the O&G levels. For the treatment using ferrate(VI) ion, the results showed that the best operating point is obtained when the temperature is 28 °C, pH 3, and a 2000 mg.L-1 solution of Na2[FeO4] is used. This experiment has achieved a final O&G level of 4.7 mg.L-1, which means 94% percentage removal efficiency of oils and greases. Comparing Fenton and photo-Fenton processes, it was observed that the Fenton reaction did not provide good reduction of O&G (around 20% only). On the other hand, a degradation of approximately 80.5% of oil and grease was obtained after a period of seven hours of treatment using photo-Fenton process, which indicates that the best process combination has occurred between the flotation and the photo-Fenton reaction using solar radiation, with an overall removal efficiency of O&G of approximately 89%.

Keywords: Advanced oxidation process, ferrate(VI) ion, oils and greases removal, produced water treatment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1794
124 Analysis and Remediation of Fecal Coliform Bacteria Pollution in Selected Surface Water Bodies of Enugu State of Nigeria

Authors: Chime Charles C., Ikechukwu Alexander Okorie, Ekanem E.J., Kagbu J. A.

Abstract:

The assessment of surface waters in Enugu metropolis for fecal coliform bacteria was undertaken. Enugu urban was divided into three areas (A1, A2 and A3), and fecal coliform bacteria analysed in the surface waters found in these areas for four years (2005-2008). The plate count method was used for the analyses. Data generated were subjected to statistical tests involving; Normality test, Homogeneity of variance test, correlation test, and tolerance limit test. The influence of seasonality and pollution trends were investigated using time series plots. Results from the tolerance limit test at 95% coverage with 95% confidence, and with respect to EU maximum permissible concentration show that the three areas suffer from fecal coliform pollution. To this end, remediation procedure involving the use of saw-dust extracts from three woods namely; Chlorophora-Excelsa (C-Excelsa),Khayan-Senegalensis,(CSenegalensis) and Erythrophylum-Ivorensis (E-Ivorensis) in controlling the coliforms was studied. Results show that mixture of the acetone extracts of the woods show the most effective antibacterial inhibitory activities (26.00mm zone of inhibition) against E-coli. Methanol extract mixture of the three woods gave best inhibitory activity (26.00mm zone of inhibition) against S-areus, and 25.00mm zones of inhibition against E-Aerogenes. The aqueous extracts mixture gave acceptable zones of inhibitions against the three bacteria organisms.

Keywords: Coliform bacteria, Pollution, Remediation, Saw-dust

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2042
123 Some Physiological Effects of Momordica charantia and Trigonella foenum-graecum Extracts in Diabetic Rats as Compared with Cidophage®

Authors: Wehash, F. E., Ismail I. Abo-Ghanema, Rasha Mohamed Saleh

Abstract:

This study was conducted to evaluate the anti-diabetic properties of ethanolic extract of two plants commonly used in folk medicine, Mormodica charantia (bitter melon) and Trigonella foenum-graecum (fenugreek). The study was performed on STZinduced diabetic rats (DM type-I). Plant extracts of these two plants were given to STZ diabetic rats at the concentration of 500 mg/kg body weight ,50 mg/kg body weight respectively. Cidophage® (metformin HCl) were administered to another group to support the results at a dose of 500 mg/kg body weight, the ethanolic extracts and Cidophage administered orally once a day for four weeks using a stomach tube and; serum samples were obtained for biochemical analysis. The extracts caused significant decreases in glucose levels compared with diabetic control rats. Insulin secretions were increased after 4 weeks of treatment with Cidophage® compared with the control non-diabetic rats. Levels of AST and ALT liver enzymes were normalized by all treatments. Decreases in liver cholesterol, triglycerides, and LDL in diabetic rats were observed with all treatments. HDL levels were increased by the treatments in the following order: bitter melon, Cidophage®, and fenugreek. Creatinine levels were reduced by all treatments. Serum nitric oxide and malonaldehyde levels were reduced by all extracts. GSH levels were increased by all extracts. Extravasation as measured by the Evans Blue test increased significantly in STZ-induced diabetic animals. This effect was reversed by ethanolic extracts of bitter melon or fenugreek.

Keywords: Cidophage®, Diabetic rats, Mormodica charantia, Trigonella foenum-graecum

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2267
122 Estimation and Removal of Chlorophenolic Compounds from Paper Mill Waste Water by Electrochemical Treatment

Authors: R. Sharma, S. Kumar, C. Sharma

Abstract:

A number of toxic chlorophenolic compounds are formed during pulp bleaching. The nature and concentration of these chlorophenolic compounds largely depends upon the amount and nature of bleaching chemicals used. These compounds are highly recalcitrant and difficult to remove but are partially removed by the biochemical treatment processes adopted by the paper industry. Identification and estimation of these chlorophenolic compounds has been carried out in the primary and secondary clarified effluents from the paper mill by GCMS. Twenty-six chorophenolic compounds have been identified and estimated in paper mill waste waters. Electrochemical treatment is an efficient method for oxidation of pollutants and has successfully been used to treat textile and oil waste water. Electrochemical treatment using less expensive anode material, stainless steel electrodes has been tried to study their removal. The electrochemical assembly comprised a DC power supply, a magnetic stirrer and stainless steel (316 L) electrode. The optimization of operating conditions has been carried out and treatment has been performed under optimized treatment conditions. Results indicate that 68.7% and 83.8% of cholorphenolic compounds are removed during 2 h of electrochemical treatment from primary and secondary clarified effluent respectively. Further, there is a reduction of 65.1, 60 and 92.6% of COD, AOX and color, respectively for primary clarified and 83.8%, 75.9% and 96.8% of COD, AOX and color, respectively for secondary clarified effluent. EC treatment has also been found to increase significantly the biodegradability index of wastewater because of conversion of non- biodegradable fraction into biodegradable fraction. Thus, electrochemical treatment is an efficient method for the degradation of cholorophenolic compounds, removal of color, AOX and other recalcitrant organic matter present in paper mill waste water.

Keywords: Chlorophenolics, effluent, electrochemical treatment, wastewater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1898
121 The Importance of Erythrocyte Parameters in Obese Children

Authors: Orkide Donma, M. Metin Donma, Burcin Nalbantoglu, Birol Topcu, Feti Tulubas, Murat Aydin, Tuba Gokkus, Ahmet Gurel

Abstract:

Increasing prevalence of childhood obesity has increased the interest in early and late indicators of gaining weight. Cell blood counts may be indicators of pro-inflammatory states. The aim was to evaluate associations of hematological parameters, including hematocrit (HTC), hemoglobin, blood cell counts and their indices with the degree of obesity in pediatric population. A total of 249; -139 morbidly obese (MO), 82 healthy normal weight (NW) and 28 overweight (OW) children were included into the scope of the study. WHO BMI-for age percentiles were used to form age- and sexmatched groups. Informed consent forms and the Ethics Committee approval were obtained. Anthropometric measurements were performed. Hematological parameters were determined. Statistical analyses were performed using SPSS. The degree for statistical significance was p≤0.05. Significant differences (p=0.000) between waist-to-hip ratios and head-to- neck ratios (hnrs) of MO and NW children were detected. A significant difference between hnrs of OW and MO children (p=0.000) was observed. Red cell distribution width (RDW) was higher in OW children than NW group (p=0.030). Such finding couldn’t be detected between MO and NW groups. Increased RDW was prominent in OW children. The decrease in mean corpuscular hemoglobin concentration (MCHC) values in MO children was sharper than the values in OW children (p=0.006 vs p=0.042) compared to those in NW group. Statistically higher HTC levels were observed between MO-NW (p=0.014), but none between OW-NW. Though the cause-effect relationship between obesity and erythrocyte indices still needs further investigation, alterations in RDW, HTC, MCHC during obesity may be of significance in the early life.

Keywords: Anthropometry, children, erythrocytes, obesity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2462
120 Rare Earth Elements in Soils of Jharia Coal Field

Authors: R. E. Masto, L. C. Ram, S. K. Verma, V. A. Selvi, J. George, R. C. Tripathi, N. K. Srivastava, D. Mohanty, S. K.Jha, A. K. Sinha, A. Sinha

Abstract:

There are many sources trough which the soil get enriched and contaminated with REEs. The determination of REEs in environmental samples has been limited because of the lack of sensitive analytical techniques. Soil samples were collected from four sites including open cast coal mine, natural coal burning, coal washery and control in the coal field located in Dhanbad, India. Total concentrations of rare earth elements (REEs) were determined using the inductively coupled plasma atomic absorption spectrometry in order to assess enrichment status in the coal field. Results showed that the mean concentrations of La, Pr, Eu, Tb, Ho, and Tm in open cast mine and natural coal burning sites were elevated compared to the reference concentrations, while Ce, Nd, Sm, and Gd were elevated in coal washery site. When compared to reference soil, heavy REEs (HREEs) were enriched in open cast mines and natural coal burning affected soils, however, the HREEs were depleted in the coal washery sites. But, the Chondrite-normalization diagram showed significant enrichment for light REEs (LREEs) in all the soils. High concentration of Pr, Eu, Tb, Ho, Tm, and Lu in coal mining and coal burning sites may pose human health risks. Factor analysis showed that distribution and relative abundance of REEs of the coal washery site is comparable with the control. Eventually washing or cleaning of coal could significantly decrease the emission of REEs from coal into the environment.

Keywords: Rare earth elements, coal, soil, factor analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2830
119 The Effects of Feeding Dried Fermented Cassava Peel on Milk Production and Composition of Etawah Crossedbred Goat

Authors: Y. Suranindyah, A. Astuti

Abstract:

Twelve lactating Etawah Crossedbred goats were used in this study. Goat feed consisted of Cally andra callothyrsus, Pennisetum purpureum, wheat bran and dried fermented cassava peel. The cassava peels were fermented with a traditional culture called “ragi tape" (mixed culture of Saccharomyces cerevisae, Aspergillus sp, Candida, Hasnula and Acetobacter). The goats were divided into 2 groups (Control and Treated) of six does. The experimental diet of the Control group consisted of 70% of roughage (fresh Callyandra callothyrsus and Pennisetum purpureum 60:40) and 30% of wheat bran on dry matter (DM) base. In the Treated group 30% of wheat bran was replaced with dried fermented cassava peels. Data were statistically analyzed using analysis of variance followed SPSS program. The concentration of HCN in fermented cassava peel decreased to non toxic level. Nutrient composition of dried fermented cassava peel consisted of 85.75% dry matter; 5.80% crude protein and 82.51% total digestible nutrien (TDN). Substitution of 30% of wheat bran with dried fermented cassava peel in the diet had no effect on dry matter and organic matter intake but significantly (P< 0.05) decreased crude protein and TDN consumption as well as milk yields and milk composition. The study recommended to reduced the level of substitution to less than 30% of concentrates in the diet in order to avoid low nutrient intake and milk production of goats.

Keywords: Fermented Cassava Peel, Milk Production, Composition, Etawah Crossedbred Goat.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3328
118 Simplified Stress Gradient Method for Stress-Intensity Factor Determination

Authors: Jeries J. Abou-Hanna

Abstract:

Several techniques exist for determining stress-intensity factors in linear elastic fracture mechanics analysis. These techniques are based on analytical, numerical, and empirical approaches that have been well documented in literature and engineering handbooks. However, not all techniques share the same merit. In addition to overly-conservative results, the numerical methods that require extensive computational effort, and those requiring copious user parameters hinder practicing engineers from efficiently evaluating stress-intensity factors. This paper investigates the prospects of reducing the complexity and required variables to determine stress-intensity factors through the utilization of the stress gradient and a weighting function. The heart of this work resides in the understanding that fracture emanating from stress concentration locations cannot be explained by a single maximum stress value approach, but requires use of a critical volume in which the crack exists. In order to understand the effectiveness of this technique, this study investigated components of different notch geometry and varying levels of stress gradients. Two forms of weighting functions were employed to determine stress-intensity factors and results were compared to analytical exact methods. The results indicated that the “exponential” weighting function was superior to the “absolute” weighting function. An error band +/- 10% was met for cases ranging from a steep stress gradient in a sharp v-notch to the less severe stress transitions of a large circular notch. The incorporation of the proposed method has shown to be a worthwhile consideration.

Keywords: Fracture mechanics, finite element method, stress intensity factor, stress gradient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 767
117 Development of Electrospun Membranes with Defined Polyethylene Collagen and Oxide Architectures Reinforced with Medium and High Intensity Statins

Authors: S. Jaramillo, Y. Montoya, W. Agudelo, J. Bustamante

Abstract:

Cardiovascular diseases (CVD) are related to affectations of the heart and blood vessels, within these are pathologies such as coronary or peripheral heart disease, caused by the narrowing of the vessel wall (atherosclerosis), which is related to the accumulation of Low-Density Lipoproteins (LDL) in the arterial walls that leads to a progressive reduction of the lumen of the vessel and alterations in blood perfusion. Currently, the main therapeutic strategy for this type of alteration is drug treatment with statins, which inhibit the enzyme 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-CoA reductase), responsible for modulating the rate of cholesterol production and other isoprenoids in the mevalonate pathway. This enzyme induces the expression of LDL receptors in the liver, increasing their number on the surface of liver cells, reducing the plasma concentration of cholesterol. On the other hand, when the blood vessel presents stenosis, a surgical procedure with vascular implants is indicated, which are used to restore circulation in the arterial or venous bed. Among the materials used for the development of vascular implants are Dacron® and Teflon®, which perform the function of re-waterproofing the circulatory circuit, but due to their low biocompatibility, they do not have the ability to promote remodeling and tissue regeneration processes. Based on this, the present research proposes the development of a hydrolyzed collagen and polyethylene oxide electrospun membrane reinforced with medium and high-intensity statins, so that in future research it can favor tissue remodeling processes from its microarchitecture.

Keywords: atherosclerosis, medium and high-intensity statins, microarchitecture, electrospun membrane

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 648
116 Using the Minnesota Multiphasic Personality Inventory-2 and Mini Mental State Examination-2 in Cognitive Behavioral Therapy: Case Studies

Authors: Cornelia-Eugenia Munteanu

Abstract:

From a psychological perspective, psychopathology is the area of clinical psychology that has at its core psychological assessment and psychotherapy. In day-to-day clinical practice, psychodiagnosis and psychotherapy are used independently, according to their intended purpose and their specific methods of application. The paper explores how the Minnesota Multiphasic Personality Inventory-2 (MMPI-2) and Mini Mental State Examination-2 (MMSE-2) psychological tools contribute to enhancing the effectiveness of cognitive behavioral psychotherapy (CBT). This combined approach, psychotherapy in conjunction with assessment of personality and cognitive functions, is illustrated by two cases, a severe depressive episode with psychotic symptoms and a mixed anxiety-depressive disorder. The order in which CBT, MMPI-2, and MMSE-2 were used in the diagnostic and therapeutic process was determined by the particularities of each case. In the first case, the sequence started with psychotherapy, followed by the administration of blue form MMSE-2, MMPI-2, and red form MMSE-2. In the second case, the cognitive screening with blue form MMSE-2 led to a personality assessment using MMPI-2, followed by red form MMSE-2; reapplication of the MMPI-2 due to the invalidation of the first profile, and finally, psychotherapy. The MMPI-2 protocols gathered useful information that directed the steps of therapeutic intervention: a detailed symptom picture of potentially self-destructive thoughts and behaviors otherwise undetected during the interview. The memory loss and poor concentration were confirmed by MMSE-2 cognitive screening. This combined approach, psychotherapy with psychological assessment, aligns with the trend of adaptation of the psychological services to the everyday life of contemporary man and paves the way for deepening and developing the field.

Keywords: Assessment, cognitive behavioral psychotherapy, MMPI-2, MMSE-2, psychopathology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2106
115 PeliGRIFF: A Parallel DEM-DLM/FD Method for DNS of Particulate Flows with Collisions

Authors: Anthony Wachs, Guillaume Vinay, Gilles Ferrer, Jacques Kouakou, Calin Dan, Laurence Girolami

Abstract:

An original Direct Numerical Simulation (DNS) method to tackle the problem of particulate flows at moderate to high concentration and finite Reynolds number is presented. Our method is built on the framework established by Glowinski and his coworkers [1] in the sense that we use their Distributed Lagrange Multiplier/Fictitious Domain (DLM/FD) formulation and their operator-splitting idea but differs in the treatment of particle collisions. The novelty of our contribution relies on replacing the simple artificial repulsive force based collision model usually employed in the literature by an efficient Discrete Element Method (DEM) granular solver. The use of our DEM solver enables us to consider particles of arbitrary shape (at least convex) and to account for actual contacts, in the sense that particles actually touch each other, in contrast with the simple repulsive force based collision model. We recently upgraded our serial code, GRIFF 1 [2], to full MPI capabilities. Our new code, PeliGRIFF 2, is developed under the framework of the full MPI open source platform PELICANS [3]. The new MPI capabilities of PeliGRIFF open new perspectives in the study of particulate flows and significantly increase the number of particles that can be considered in a full DNS approach: O(100000) in 2D and O(10000) in 3D. Results on the 2D/3D sedimentation/fluidization of isometric polygonal/polyedral particles with collisions are presented.

Keywords: Particulate flow, distributed lagrange multiplier/fictitious domain method, discrete element method, polygonal shape, sedimentation, distributed computing, MPI

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2129
114 Development and Optimization of Colon Targeted Drug Delivery System of Ayurvedic Churna Formulation Using Eudragit L100 and Ethyl Cellulose as Coating Material

Authors: Anil Bhandari, Imran Khan Pathan, Peeyush K. Sharma, Rakesh K. Patel, Suresh Purohit

Abstract:

The purpose of this study was to prepare time and pH dependent release tablets of Ayurvedic Churna formulation and evaluate their advantages as colon targeted drug delivery system. The Vidangadi Churna was selected for this study which contains Embelin and Gallic acid. Embelin is used in Helminthiasis as therapeutic agent. Embelin is insoluble in water and unstable in gastric environment so it was formulated in time and pH dependent tablets coated with combination of two polymers Eudragit L100 and ethyl cellulose. The 150mg of core tablet of dried extract and lactose were prepared by wet granulation method. The compression coating was used in the polymer concentration of 150mg for both the layer as upper and lower coating tablet was investigated. The results showed that no release was found in 0.1 N HCl and pH 6.8 phosphate buffers for initial 5 hours and about 98.97% of the drug was released in pH 7.4 phosphate buffer in total 17 Hours. The in vitro release profiles of drug from the formulation could be best expressed first order kinetics as highest linearity (r2= 0.9943). The results of the present study have demonstrated that the time and pH dependent tablets system is a promising vehicle for preventing rapid hydrolysis in gastric environment and improving oral bioavailability of Embelin and Gallic acid for treatment of Helminthiasis.

Keywords: Embelin, Gallic acid, Vidangadi Churna, Colon targeted drug delivery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2388
113 Nitrification Efficiency and Community Structure of Municipal Activated Sewage Sludge

Authors: Oluyemi O. Awolusi, Abimbola M. Enitan, Sheena Kumari, Faizal Bux

Abstract:

Nitrification is essential to biological processes designed to remove ammonia and/or total nitrogen. It removes excess nitrogenous compound in wastewater which could be very toxic to the aquatic fauna or cause serious imbalance of such aquatic ecosystem. Efficient nitrification is linked to an in-depth knowledge of the structure and dynamics of the nitrifying community structure within the wastewater treatment systems. In this study, molecular technique was employed for characterizing the microbial structure of activated sludge [ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB)] in a municipal wastewater treatment with intention of linking it to the plant efficiency. PCR based phylogenetic analysis was also carried out. The average operating and environmental parameters as well as specific nitrification rate of plant was investigated during the study. During the investigation the average temperature was 23±1.5oC. Other operational parameters such as mixed liquor suspended solids and chemical oxygen demand inversely correlated with ammonia removal. The dissolved oxygen level in the plant was constantly lower than the optimum (between 0.24 and 1.267 mg/l) during this study. The plant was treating wastewater with influent ammonia concentration of 31.69 and 24.47 mg/L. The influent flow rates (ML/Day) was 96.81 during period. The dominant nitrifiers include: Nitrosomonas spp. Nitrobacter spp. and Nitrospira spp. The AOB had correlation with nitrification efficiency and temperature. This study shows that the specific ammonia oxidizing rate and the specific nitrate formation rates can serve as good indicator of the plant overall nitrification performance.

Keywords: Ammonia monooxygenase α-subunit (amoA) gene, ammonia-oxidizing bacteria (AOB), nitrite-oxidizing bacteria (NOB), specific nitrification rate, PCR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2324
112 Pharmaceutical Microencapsulation Technology for Development of Controlled Release Drug Delivery systems

Authors: Mahmood Ahmad, Asadullah Madni, Muhammad Usman, Abubakar Munir, Naveed Akhtar, Haji M. Shoaib Khan

Abstract:

This article demonstrated development of controlled release system of an NSAID drug, Diclofenac sodium employing different ratios of Ethyl cellulose. Diclofenac sodium and ethyl cellulose in different proportions were processed by microencapsulation based on phase separation technique to formulate microcapsules. The prepared microcapsules were then compressed into tablets to obtain controlled release oral formulations. In-vitro evaluation was performed by dissolution test of each preparation was conducted in 900 ml of phosphate buffer solution of pH 7.2 maintained at 37 ± 0.5 °C and stirred at 50 rpm. At predetermined time intervals (0, 0.5, 1.0, 1.5, 2, 3, 4, 6, 8, 10, 12, 16, 20 and 24 hrs). The drug concentration in the collected samples was determined by UV spectrophotometer at 276 nm. The physical characteristics of diclofenac sodium microcapsules were according to accepted range. These were off-white, free flowing and spherical in shape. The release profile of diclofenac sodium from microcapsules was found to be directly proportional to the proportion of ethylcellulose and coat thickness. The in-vitro release pattern showed that with ratio of 1:1 and 1:2 (drug: polymer), the percentage release of drug at first hour was 16.91 and 11.52 %, respectively as compared to 1:3 which is only 6.87 % with in this time. The release mechanism followed higuchi model for its release pattern. Tablet Formulation (F2) of present study was found comparable in release profile the marketed brand Phlogin-SR, microcapsules showed an extended release beyond 24 h. Further, a good correlation was found between drug release and proportion of ethylcellulose in the microcapsules. Microencapsulation based on coacervation found as good technique to control release of diclofenac sodium for making the controlled release formulations.

Keywords: Diclofenac sodium, Microencapsulationtechnology, Ethylcellulose, In-Vitro Release Profile

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3162
111 The Potential Use of Nanofilters to Supply Potable Water in Persian Gulf and Oman Sea Watershed Basin

Authors: Sara Zamani, Mojtaba Fazeli, Abdollah Rashidi Mehrabadi

Abstract:

In a world worried about water resources with the shadow of drought and famine looming all around, the quality of water is as important as its quantity. The source of all concerns is the constant reduction of per capita quality water for different uses. Iran With an average annual precipitation of 250 mm compared to the 800 mm world average, Iran is considered a water scarce country and the disparity in the rainfall distribution, the limitations of renewable resources and the population concentration in the margins of desert and water scarce areas have intensified the problem. The shortage of per capita renewable freshwater and its poor quality in large areas of the country, which have saline, brackish or hard water resources, and the profusion of natural and artificial pollutant have caused the deterioration of water quality. Among methods of treatment and use of these waters one can refer to the application of membrane technologies, which have come into focus in recent years due to their great advantages. This process is quite efficient in eliminating multi-capacity ions; and due to the possibilities of production at different capacities, application as treatment process in points of use, and the need for less energy in comparison to Reverse Osmosis processes, it can revolutionize the water and wastewater sector in years to come. The article studied the different capacities of water resources in the Persian Gulf and Oman Sea watershed basins, and processes the possibility of using nanofiltration process to treat brackish and non-conventional waters in these basins.

Keywords: Membrane processes, saline waters, brackish waters, hard waters, zoning water quality in the Persian Gulf and the Oman Sea Watershed area, nanofiltration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1955
110 Soil Quality Status under Dryland Vegetation of Yabello District, Southern Ethiopia

Authors: Mohammed Abaoli, Omer Kara

Abstract:

The current research has investigated the soil quality status under dryland vegetation of Yabello district, Southern Ethiopia in which we should identify the nature and extent of salinity problem of the area for further research bases. About 48 soil samples were taken from 0-30, 31-60, 61-90 and 91-120 cm soil depths by opening 12 representative soil profile pits at 1.5 m depth. Soil color, texture, bulk density, Soil Organic Carbon (SOC), Cation Exchange Capacity (CEC), Na, K, Mg, Ca, CaCO3, gypsum (CaSO4), pH, Sodium Adsorption Ratio (SAR), Exchangeable Sodium Percentage (ESP) were analyzed. The dominant soil texture was silty-clay-loam.  Bulk density varied from 1.1 to 1.31 g/cm3. High SOC content was observed in 0-30 cm. The soil pH ranged from 7.1 to 8.6. The electrical conductivity shows indirect relationship with soil depth while CaCO3 and CaSO4 concentrations were observed in a direct relationship with depth. About 41% are non-saline, 38.31% saline, 15.23% saline-sodic and 5.46% sodic soils. Na concentration in saline soils was greater than Ca and Mg in all the soil depths. Ca and Mg contents were higher above 60 cm soil depth in non-saline soils. The concentrations of SO2-4 and HCO-3 were observed to be higher at the most lower depth than upper. SAR value tends to be higher at lower depths in saline and saline-sodic soils, but decreases at lower depth of the non-saline soils. The distribution of ESP above 60 cm depth was in an increasing order in saline and saline-sodic soils. The result of the research has shown the direction to which extent of salinity we should consider for the Commiphora plant species we want to grow on the area. 

Keywords: Commiphora species, dryland vegetation, ecological significance, soil quality, salinity problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 616
109 Efficient Compact Micro DBD Plasma Reactor for Ozone Generation for Industrial Application in Liquid and Gas Phase Systems

Authors: Kuvshinov, D., Siswanto, A., Lozano-Parada, J., Zimmerman, W. B.

Abstract:

Ozone is well known as a powerful, fast reacting oxidant. Ozone based processes produce no by-product residual as non-reacted ozone decomposes to molecular oxygen. Therefore an application of ozone is widely accepted as one of the main approaches for a Sustainable and Clean Technologies development.

There are number of technologies which require ozone to be delivered to specific points of a production network or reactors construction. Due to space constraints, high reactivity and short life time of ozone the use of ozone generators even of a bench top scale is practically limited. This requires development of mini/micro scale ozone generator which can be directly incorporated into production units.

Our report presents a feasibility study of a new micro scale rector for ozone generation (MROG). Data on MROG calibration and indigo decomposition at different operation conditions are presented.

At selected operation conditions with residence time of 0.25 s the process of ozone generation is not limited by reaction rate and the amount of ozone produced is a function of power applied. It was shown that the MROG is capable to produce ozone at voltage level starting from 3.5kV with ozone concentration of 5.28*10-6 (mol/L) at 5kV. This is in line with data presented on numerical investigation for a MROG. It was shown that in compare to a conventional ozone generator, MROG has lower power consumption at low voltages and atmospheric pressure.

The MROG construction makes it applicable for both submerged and dry systems. With a robust compact design MROG can be used as an integrated module for production lines of high complexity.

Keywords: DBD, micro reactor, ozone, plasma.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3004
108 Performance Evaluation of Filtration System for Groundwater Recharging Well in the Presence of Medium Sand-Mixed Storm Water

Authors: Krishna Kumar Singh, Praveen Jain

Abstract:

Collection of storm water runoff and forcing it into the groundwater is the need of the hour to sustain the ground water table. However, the runoff entraps various types of sediments and other floating objects whose removal are essential to avoid pollution of ground water and blocking of pores of aquifer. However, it requires regular cleaning and maintenance due to problem of clogging. To evaluate the performance of filter system consisting of coarse sand (CS), gravel (G) and pebble (P) layers, a laboratory experiment was conducted in a rectangular column. The effect of variable thickness of CS, G and P layers of the filtration unit of the recharge shaft on the recharge rate and the sediment concentration of effluent water were evaluated. Medium sand (MS) of three particle sizes, viz. 0.150–0.300 mm (T1), 0.300–0.425 mm (T2) and 0.425–0.600 mm of thickness 25 cm, 30 cm and 35 cm respectively in the top layer of the filter system and having seven influent sediment concentrations of 250–3,000 mg/l were used for experimental study. The performance was evaluated in terms of recharge rates and clogging time. The results indicated that 100 % suspended solids were entrapped in the upper 10 cm layer of MS, the recharge rates declined sharply for influent concentrations of more than 1,000 mg/l. All treatments with higher thickness of MS media indicated recharge rate slightly more than that of all treatment with lower thickness of MS media respectively. The performance of storm water infiltration systems was highly dependent on the formation of a clogging layer at the filter. An empirical relationship has been derived between recharge rates, inflow sediment load, size of MS and thickness of MS with using MLR.

Keywords: Groundwater, medium sand-mixed storm water filter, inflow sediment load.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2284
107 Apparent Temperature Distribution on Scaffoldings during Construction Works

Authors: I. Szer, J. Szer, K. Czarnocki, E. Błazik-Borowa

Abstract:

People on construction scaffoldings work in dynamically changing, often unfavourable climate. Additionally, this kind of work is performed on low stiffness structures at high altitude, which increases the risk of accidents. It is therefore desirable to define the parameters of the work environment that contribute to increasing the construction worker occupational safety level. The aim of this article is to present how changes in microclimate parameters on scaffolding can impact the development of dangerous situations and accidents. For this purpose, indicators based on the human thermal balance were used. However, use of this model under construction conditions is often burdened by significant errors or even impossible to implement due to the lack of precise data. Thus, in the target model, the modified parameter was used – apparent environmental temperature. Apparent temperature in the proposed Scaffold Use Risk Assessment Model has been a perceived outdoor temperature, caused by the combined effects of air temperature, radiative temperature, relative humidity and wind speed (wind chill index, heat index). In the paper, correlations between component factors and apparent temperature for facade scaffolding with a width of 24.5 m and a height of 42.3 m, located at south-west side of building are presented. The distribution of factors on the scaffolding has been used to evaluate fitting of the microclimate model. The results of the studies indicate that observed ranges of apparent temperature on the scaffolds frequently results in a worker’s inability to adapt. This leads to reduced concentration and increased fatigue, adversely affects health, and consequently increases the risk of dangerous situations and accidental injuries

Keywords: Apparent temperature, health, safety work, scaffoldings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 931
106 Infrared Lightbox and iPhone App for Improving Detection Limit of Phosphate Detecting Dip Strips

Authors: H. Heidari-Bafroui, B. Ribeiro, A. Charbaji, C. Anagnostopoulos, M. Faghri

Abstract:

In this paper, we report the development of a portable and inexpensive infrared lightbox for improving the detection limits of paper-based phosphate devices. Commercial paper-based devices utilize the molybdenum blue protocol to detect phosphate in the environment. Although these devices are easy to use and have a long shelf life, their main deficiency is their low sensitivity based on the qualitative results obtained via a color chart. To improve the results, we constructed a compact infrared lightbox that communicates wirelessly with a smartphone. The system measures the absorbance of radiation for the molybdenum blue reaction in the infrared region of the spectrum. It consists of a lightbox illuminated by four infrared light-emitting diodes, an infrared digital camera, a Raspberry Pi microcontroller, a mini-router, and an iPhone to control the microcontroller. An iPhone application was also developed to analyze images captured by the infrared camera in order to quantify phosphate concentrations. Additionally, the app connects to an online data center to present a highly scalable worldwide system for tracking and analyzing field measurements. In this study, the detection limits for two popular commercial devices were improved by a factor of 4 for the Quantofix devices (from 1.3 ppm using visible light to 300 ppb using infrared illumination) and a factor of 6 for the Indigo units (from 9.2 ppm to 1.4 ppm) with repeatability of less than or equal to 1.2% relative standard deviation (RSD). The system also provides more granular concentration information compared to the discrete color chart used by commercial devices and it can be easily adapted for use in other applications.

Keywords: Infrared lightbox, paper-based device, phosphate detection, smartphone colorimetric analyzer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 655
105 Physical-Mechanical Characteristics of Monocrystalline Si1-xGex (x≤0,02) Solid Solutions

Authors: I. Kurashvili, A. Sichinava, G. Bokuchava, G. Darsavelidze

Abstract:

Si-Ge solid solutions (bulk poly- and mono-crystalline samples, thin films) are characterized by high perspectives for application in semiconductor devices, in particular, optoelectronics and microelectronics. From this point of view, complex studying of structural state of the defects and structural-sensitive physical properties of Si-Ge solid solutions depending on the contents of Si and Ge components is very important. Present work deals with the investigations of microstructure, microhardness, internal friction and shear modulus of Si1-xGex(x≤0,02) bulk monocrystals conducted at room temperature. Si-Ge bulk crystals were obtained by Czochralski method in [111] crystallographic direction. Investigated monocrystalline Si-Ge samples are characterized by p-type conductivity and carriers’ concentration 5.1014-1.1015cm-3. Microhardness was studied on Dynamic Ultra Micro hardness Tester DUH-201S with Berkovich indenter. Investigate samples are characterized with 0,5x0,5x(10-15)mm3 sizes, oriented along [111] direction at torsion oscillations ≈1Hz, multistage changing of internal friction and shear modulus has been revealed in an interval of strain amplitude of 10-5-5.10-3. Critical values of strain amplitude have been determined at which hysteretic changes of inelastic characteristics and microplasticity are observed. The critical strain amplitude and elasticity limit values are also determined. Dynamic mechanical characteristics decreasing trend is shown with increasing Ge content in Si-Ge solid solutions. Observed changes are discussed from the point of view of interaction of various dislocations with point defects and their complexes in a real structure of Si-Ge solid solutions.

Keywords: Internal friction, microhardness, relaxation processes, shear modulus, Si-Ge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1569