Search results for: target extraction.
155 A Framework for Enhancing Mobile Development Software for Rangsit University, Thailand
Authors: Thossaporn Thossansin
Abstract:
This paper presents the development of a mobile application for students at the Faculty of Information Technology, Rangsit University (RSU), Thailand. RSU upgrades an enrollment process by improving its information systems. Students can download the RSU APP easily in order to access the RSU substantial information. The reason of having a mobile application is to help students to access the system regardless of time and place. The objectives of this paper include: 1. To develop an application on iOS platform for those students at the Faculty of Information Technology, Rangsit University, Thailand. 2. To obtain the students’ perception towards the new mobile app. The target group is those from the freshman year till the senior year of the faculty of Information Technology, Rangsit University. The new mobile application, called as RSU APP, is developed by the department of Information Technology, Rangsit University. It contains useful features and various functionalities particularly on those that can give support to students. The core contents of the app consist of RSU’s announcement, calendar, events, activities, and ebook. The mobile app is developed on the iOS platform. The user satisfaction is analyzed from the interview data from 81 interviewees as well as a Google application like a Google form which 122 interviewees are involved. The result shows that users are satisfied with the application as they score it the most satisfaction level at 4.67 SD 0.52. The score for the question if users can learn and use the application quickly is high which is 4.82 SD 0.71. On the other hand, the lowest satisfaction rating is in the app’s form, apps lists, with the satisfaction level as 4.01 SD 0.45.Keywords: Mobile application, development of mobile application, framework of mobile development, software development for mobile devices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1696154 Identifying Knowledge Gaps in Incorporating Toxicity of Particulate Matter Constituents for Developing Regulatory Limits on Particulate Matter
Authors: Ananya Das, Arun Kumar, Gazala Habib, Vivekanandan Perumal
Abstract:
Regulatory bodies has proposed limits on Particulate Matter (PM) concentration in air; however, it does not explicitly indicate the incorporation of effects of toxicities of constituents of PM in developing regulatory limits. This study aimed to provide a structured approach to incorporate toxic effects of components in developing regulatory limits on PM. A four-step human health risk assessment framework consists of - (1) hazard identification (parameters: PM and its constituents and their associated toxic effects on health), (2) exposure assessment (parameters: concentrations of PM and constituents, information on size and shape of PM; fate and transport of PM and constituents in respiratory system), (3) dose-response assessment (parameters: reference dose or target toxicity dose of PM and its constituents), and (4) risk estimation (metric: hazard quotient and/or lifetime incremental risk of cancer as applicable). Then parameters required at every step were obtained from literature. Using this information, an attempt has been made to determine limits on PM using component-specific information. An example calculation was conducted for exposures of PM2.5 and its metal constituents from Indian ambient environment to determine limit on PM values. Identified data gaps were: (1) concentrations of PM and its constituents and their relationship with sampling regions, (2) relationship of toxicity of PM with its components.Keywords: Air, component-specific toxicity, human health risks, particulate matter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1188153 Fluorescence Quenching as an Efficient Tool for Sensing Application: Study on the Fluorescence Quenching of Naphthalimide Dye by Graphene Oxide
Authors: Sanaz Seraj, Shohre Rouhani
Abstract:
Recently, graphene has gained much attention because of its unique optical, mechanical, electrical, and thermal properties. Graphene has been used as a key material in the technological applications in various areas such as sensors, drug delivery, super capacitors, transparent conductor, and solar cell. It has a superior quenching efficiency for various fluorophores. Based on these unique properties, the optical sensors with graphene materials as the energy acceptors have demonstrated great success in recent years. During quenching, the emission of a fluorophore is perturbed by a quencher which can be a substrate or biomolecule, and due to this phenomenon, fluorophore-quencher has been used for selective detection of target molecules. Among fluorescence dyes, 1,8-naphthalimide is well known for its typical intramolecular charge transfer (ICT) and photo-induced charge transfer (PET) fluorophore, strong absorption and emission in the visible region, high photo stability, and large Stokes shift. Derivatives of 1,8-naphthalimides have found applications in some areas, especially fluorescence sensors. Herein, the fluorescence quenching of graphene oxide has been carried out on a naphthalimide dye as a fluorescent probe model. The quenching ability of graphene oxide on naphthalimide dye was studied by UV-VIS and fluorescence spectroscopy. This study showed that graphene is an efficient quencher for fluorescent dyes. Therefore, it can be used as a suitable candidate sensing platform. To the best of our knowledge, studies on the quenching and absorption of naphthalimide dyes by graphene oxide are rare.
Keywords: Fluorescence, graphene oxide, naphthalimide dye, quenching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 757152 Space Telemetry Anomaly Detection Based on Statistical PCA Algorithm
Authors: B. Nassar, W. Hussein, M. Mokhtar
Abstract:
The critical concern of satellite operations is to ensure the health and safety of satellites. The worst case in this perspective is probably the loss of a mission, but the more common interruption of satellite functionality can result in compromised mission objectives. All the data acquiring from the spacecraft are known as Telemetry (TM), which contains the wealth information related to the health of all its subsystems. Each single item of information is contained in a telemetry parameter, which represents a time-variant property (i.e. a status or a measurement) to be checked. As a consequence, there is a continuous improvement of TM monitoring systems to reduce the time required to respond to changes in a satellite's state of health. A fast conception of the current state of the satellite is thus very important to respond to occurring failures. Statistical multivariate latent techniques are one of the vital learning tools that are used to tackle the problem above coherently. Information extraction from such rich data sources using advanced statistical methodologies is a challenging task due to the massive volume of data. To solve this problem, in this paper, we present a proposed unsupervised learning algorithm based on Principle Component Analysis (PCA) technique. The algorithm is particularly applied on an actual remote sensing spacecraft. Data from the Attitude Determination and Control System (ADCS) was acquired under two operation conditions: normal and faulty states. The models were built and tested under these conditions, and the results show that the algorithm could successfully differentiate between these operations conditions. Furthermore, the algorithm provides competent information in prediction as well as adding more insight and physical interpretation to the ADCS operation.Keywords: Space telemetry monitoring, multivariate analysis, PCA algorithm, space operations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2062151 Management Prospects of Winery By-Products Based on Phenolic Compounds and Antioxidant Activity of Grape Skins: The Case of Greek Ionian Islands
Authors: Marinos Xagoraris, Iliada K. Lappa, Charalambos Kanakis, Dimitra Daferera, Christina Papadopoulou, Georgios Sourounis, Charilaos Giotis, Pavlos Bouchagier, Christos S. Pappas, Petros A. Tarantilis, Efstathia Skotti
Abstract:
The aim of this work was to recover phenolic compounds from grape skins produced in Greek varieties of the Ionian Islands in order to form the basis of calculations for their further utilization in the context of the circular economy. Isolation and further utilization of phenolic compounds is an important issue in winery by-products. For this purpose, 37 samples were collected, extracted, and analyzed in an attempt to provide the appropriate basis for their sustainable exploitation. Extraction of the bioactive compounds was held using an eco-friendly, non-toxic, and highly effective water-glycerol solvent system. Then, extracts were analyzed using UV-Vis, liquid chromatography-mass spectrometry (LC-MS), FTIR, and Raman spectroscopy. Also, total phenolic content and antioxidant activity were measured. LC-MS chromatography showed qualitative differences between different varieties. Peaks were attributed to monomeric 3-flavanols as well as monomeric, dimeric, and trimeric proanthocyanidins. The FT-IR and Raman spectra agreed with the chromatographic data and contributed to identifying phenolic compounds. Grape skins exhibited high total phenolic content (TPC), and it was proved that during vinification, a large number of polyphenols remained in the pomace. This study confirmed that grape skins from Ionian Islands are a promising source of bioactive compounds, suggesting their utilization under a bio-economic and environmental strategic framework.
Keywords: Antioxidant activity, grape skin, phenolic compounds, waste recovery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 502150 Passive and Active Spatial Pendulum Tuned Mass Damper with Two Tuning Frequencies
Authors: W. T. A. Mohammed, M. Eltaeb, R. Kashani
Abstract:
The first bending modes of tall asymmetric structures in the two lateral X and Y-directions have two different natural frequencies. To add tuned damping to these bending modes, one needs to either a) use two pendulum-tuned mass dampers (PTMDs) with one tuning frequency, each PTMD targeting one of the bending modes, or b) use one PTMD with two tuning frequencies (one in each lateral directions). Option (a), being more massive, requiring more space, and being more expensive, is less attractive than option (b). Considering that the tuning frequency of a pendulum depends mainly on the pendulum length, one way of realizing option (b) is by constraining the swinging length of the pendulum in one direction but not in the other; such PTMD is dubbed passive Bi-PTMD. Alternatively, option (b) can be realized by actively setting the tuning frequencies of the PTMD in the two directions. In this work, accurate physical models of passive Bi-PTMD and active PTMD are developed and incorporated into the numerical model of a tall asymmetric structure. The model of PTMDs plus structure is used for a) synthesizing such PTMDs for particular applications and b) evaluating their damping effectiveness in mitigating the dynamic lateral responses of their target asymmetric structures, perturbed by wind load in X and Y-directions. Depending on how elaborate the control scheme is, the active PTMD can either be made to yield the same damping effectiveness as the passive Bi-PTMD of the same size or the passive Bi-TMD twice as massive as the active PTMD.
Keywords: Active tuned mass damper, high-rise building, multi-frequency tuning, vibration control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 130149 An Algorithm Proposed for FIR Filter Coefficients Representation
Authors: Mohamed Al Mahdi Eshtawie, Masuri Bin Othman
Abstract:
Finite impulse response (FIR) filters have the advantage of linear phase, guaranteed stability, fewer finite precision errors, and efficient implementation. In contrast, they have a major disadvantage of high order need (more coefficients) than IIR counterpart with comparable performance. The high order demand imposes more hardware requirements, arithmetic operations, area usage, and power consumption when designing and fabricating the filter. Therefore, minimizing or reducing these parameters, is a major goal or target in digital filter design task. This paper presents an algorithm proposed for modifying values and the number of non-zero coefficients used to represent the FIR digital pulse shaping filter response. With this algorithm, the FIR filter frequency and phase response can be represented with a minimum number of non-zero coefficients. Therefore, reducing the arithmetic complexity needed to get the filter output. Consequently, the system characteristic i.e. power consumption, area usage, and processing time are also reduced. The proposed algorithm is more powerful when integrated with multiplierless algorithms such as distributed arithmetic (DA) in designing high order digital FIR filters. Here the DA usage eliminates the need for multipliers when implementing the multiply and accumulate unit (MAC) and the proposed algorithm will reduce the number of adders and addition operations needed through the minimization of the non-zero values coefficients to get the filter output.
Keywords: Pulse shaping Filter, Distributed Arithmetic, Optimization algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3175148 A Visual Analytics Tool for the Structural Health Monitoring of an Aircraft Panel
Authors: F. M. Pisano, M. Ciminello
Abstract:
Aerospace, mechanical, and civil engineering infrastructures can take advantages from damage detection and identification strategies in terms of maintenance cost reduction and operational life improvements, as well for safety scopes. The challenge is to detect so called “barely visible impact damage” (BVID), due to low/medium energy impacts, that can progressively compromise the structure integrity. The occurrence of any local change in material properties, that can degrade the structure performance, is to be monitored using so called Structural Health Monitoring (SHM) systems, in charge of comparing the structure states before and after damage occurs. SHM seeks for any "anomalous" response collected by means of sensor networks and then analyzed using appropriate algorithms. Independently of the specific analysis approach adopted for structural damage detection and localization, textual reports, tables and graphs describing possible outlier coordinates and damage severity are usually provided as artifacts to be elaborated for information extraction about the current health conditions of the structure under investigation. Visual Analytics can support the processing of monitored measurements offering data navigation and exploration tools leveraging the native human capabilities of understanding images faster than texts and tables. Herein, a SHM system enrichment by integration of a Visual Analytics component is investigated. Analytical dashboards have been created by combining worksheets, so that a useful Visual Analytics tool is provided to structural analysts for exploring the structure health conditions examined by a Principal Component Analysis based algorithm.
Keywords: Interactive dashboards, optical fibers, structural health monitoring, visual analytics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 830147 Earth Station Neural Network Control Methodology and Simulation
Authors: Hanaa T. El-Madany, Faten H. Fahmy, Ninet M. A. El-Rahman, Hassen T. Dorrah
Abstract:
Renewable energy resources are inexhaustible, clean as compared with conventional resources. Also, it is used to supply regions with no grid, no telephone lines, and often with difficult accessibility by common transport. Satellite earth stations which located in remote areas are the most important application of renewable energy. Neural control is a branch of the general field of intelligent control, which is based on the concept of artificial intelligence. This paper presents the mathematical modeling of satellite earth station power system which is required for simulating the system.Aswan is selected to be the site under consideration because it is a rich region with solar energy. The complete power system is simulated using MATLAB–SIMULINK.An artificial neural network (ANN) based model has been developed for the optimum operation of earth station power system. An ANN is trained using a back propagation with Levenberg–Marquardt algorithm. The best validation performance is obtained for minimum mean square error. The regression between the network output and the corresponding target is equal to 96% which means a high accuracy. Neural network controller architecture gives satisfactory results with small number of neurons, hence better in terms of memory and time are required for NNC implementation. The results indicate that the proposed control unit using ANN can be successfully used for controlling the satellite earth station power system.
Keywords: Satellite, neural network, MATLAB, power system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1868146 Biokinetics of Coping Mechanism of Freshwater tilapia following Exposure to Waterborne and Dietary Copper
Authors: Jeng-Wei Tsai
Abstract:
The purpose of this study was to understand the main sources of copper (Cu) accumulation in target organs of tilapia (Oreochromis mossambicus) and to investigate how the organism mediate the process of Cu accumulation under prolonged conditions. By measuring both dietary and waterborne Cu accumulation and total concentrations in tilapia with biokinetic modeling approach, we were able to clarify the biokinetic coping mechanisms for the long term Cu accumulation. This study showed that water and food are both the major source of Cu for the muscle and liver of tilapia. This implied that control the Cu concentration in these two routes will be correlated to the Cu bioavailability for tilapia. We found that exposure duration and level of waterborne Cu drove the Cu accumulation in tilapia. The ability for Cu biouptake and depuration in organs of tilapia were actively mediated under prolonged exposure conditions. Generally, the uptake rate, depuration rate and net bioaccumulation ability in all selected organs decreased with the increasing level of waterborne Cu and extension of exposure duration.Muscle tissues accounted for over 50%of the total accumulated Cu and played a key role in buffering the Cu burden in the initial period of exposure, alternatively, the liver acted a more important role in the storage of Cu with the extension of exposures. We concluded that assumption of the constant biokinetic rates could lead to incorrect predictions with overestimating the long-term Cu accumulation in ecotoxicological risk assessments.Keywords: Biokinetics, Chronic exposure, Copper, Coping mechanism, Tilapia
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1621145 Assessment of the Vulnerability and Risk of Climate Change on Water Supply and Demand in Taijiang Area
Authors: Yu-Chen Lin, Tzong-Yeang Lee, Hung-Chih Shih
Abstract:
The development of sustainable utilization water resources is crucial. The ecological environment and water resources systems form the foundation of the existence and development of the social economy. The urban ecological support system depends on these resources as well. This research studies the vulnerability, criticality, and risk of climate change on water supply and demand in the main administrative district of the Taijiang Area (Tainan City). Based on the two situations set in this paper and various factors (indexes), this research adopts two kinds of weights (equal and AHP) to conduct the calculation and establish the water supply and demand risk map for the target year 2039. According to the risk analysis result, which is based on equal weight, only one district belongs to a high-grade district (Grade 4). Based on the AHP weight, 16 districts belong to a high-grade or higher-grade district (Grades 4 and 5), and from among them, two districts belong to the highest grade (Grade 5). These results show that the risk level of water supply and demand in cities is higher than that in towns. The government generally gives more attention to the adjustment strategy in the “cities." However, it should also provide proper adjustment strategies for the “towns" to be able to cope with the risks of water supply and demand.
Keywords: Climate change, risk, vulnerability, water supply and demand.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 57133144 Comparative Study of Seismic Isolation as Retrofit Method for Historical Constructions
Authors: Carlos H. Cuadra
Abstract:
Seismic isolation can be used as a retrofit method for historical buildings with the advantage that minimum intervention on super-structure is required. However, selection of isolation devices depends on weight and stiffness of upper structure. In this study, two buildings are considered for analyses to evaluate the applicability of this retrofitting methodology. Both buildings are located at Akita prefecture in the north part of Japan. One building is a wooden structure that corresponds to the old council meeting hall of Noshiro city. The second building is a brick masonry structure that was used as house of a foreign mining engineer and it is located at Ani town. Ambient vibration measurements were performed on both buildings to estimate their dynamic characteristics. Then, target period of vibration of isolated systems is selected as 3 seconds is selected to estimate required stiffness of isolation devices. For wooden structure, which is a light construction, it was found that natural rubber isolators in combination with friction bearings are suitable for seismic isolation. In case of masonry building elastomeric isolator can be used for its seismic isolation. Lumped mass systems are used for seismic response analysis and it is verified in both cases that seismic isolation can be used as retrofitting method of historical construction. However, in the case of the light building, most of the weight corresponds to the reinforced concrete slab that is required to install isolation devices.
Keywords: Historical building, finite element method, masonry structure, seismic isolation, wooden structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 725143 Energy Conscious Builder Design Pattern with C# and Intermediate Language
Authors: Kayun Chantarasathaporn, Chonawat Srisa-an
Abstract:
Design Patterns have gained more and more acceptances since their emerging in software development world last decade and become another de facto standard of essential knowledge for Object-Oriented Programming developers nowadays. Their target usage, from the beginning, was for regular computers, so, minimizing power consumption had never been a concern. However, in this decade, demands of more complicated software for running on mobile devices has grown rapidly as the much higher performance portable gadgets have been supplied to the market continuously. To get along with time to market that is business reason, the section of software development for power conscious, battery, devices has shifted itself from using specific low-level languages to higher level ones. Currently, complicated software running on mobile devices are often developed by high level languages those support OOP concepts. These cause the trend of embracing Design Patterns to mobile world. However, using Design Patterns directly in software development for power conscious systems is not recommended because they were not originally designed for such environment. This paper demonstrates the adapted Design Pattern for power limitation system. Because there are numerous original design patterns, it is not possible to mention the whole at once. So, this paper focuses only in creating Energy Conscious version of existing regular "Builder Pattern" to be appropriated for developing low power consumption software.Keywords: Design Patterns, Builder Pattern, Low Power Consumption, Object Oriented Programming, Power Conscious System, Software.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1999142 A Study of Dose Distribution and Image Quality under an Automatic Tube Current Modulation (ATCM) System for a Toshiba Aquilion 64 CT Scanner Using a New Design of Phantom
Authors: S. Sookpeng, C. J. Martin, D. J. Gentle
Abstract:
Automatic tube current modulation (ATCM) systems are available for all CT manufacturers and are used for the majority of patients. Understanding how the systems work and their influence on patient dose and image quality is important for CT users, in order to gain the most effective use of the systems. In the present study, a new phantom was used for evaluating dose distribution and image quality under the ATCM operation for the Toshiba Aquilion 64 CT scanner using different ATCM options and a fixed mAs technique. A routine chest, abdomen and pelvis (CAP) protocol was selected for study and Gafchromic film was used to measure entrance surface dose (ESD), peripheral dose and central axis dose in the phantom. The results show the dose reductions achievable with various ATCM options, in relation with the target noise. The doses and image noise distribution were more uniform when the ATCM system was implemented compared with the fixed mAs technique. The lower limit set for the tube current will affect the modulations especially for the lower dose option. This limit prevented the tube current being reduced further and therefore the lower dose ATCM setting resembled a fixed mAs technique. Selection of a lower tube current limit is likely to reduce doses for smaller patients in scans of chest and neck regions.
Keywords: Computed Tomography (CT), Automatic Tube Current Modulation (ATCM), Automatic Exposure Control (AEC).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2623141 Design of a 5-Joint Mechanical Arm with User-Friendly Control Program
Authors: Amon Tunwannarux, Supanunt Tunwannarux
Abstract:
This paper describes the design concepts and implementation of a 5-Joint mechanical arm for a rescue robot named CEO Mission II. The multi-joint arm is a five degree of freedom mechanical arm with a four bar linkage, which can be stretched to 125 cm. long. It is controlled by a teleoperator via the user-friendly control and monitoring GUI program. With Inverse Kinematics principle, we developed the method to control the servo angles of all arm joints to get the desired tip position. By clicking the determined tip position or dragging the tip of the mechanical arm on the computer screen to the desired target point, the robot will compute and move its multi-joint arm to the pose as seen on the GUI screen. The angles of each joint are calculated and sent to all joint servos simultaneously in order to move the mechanical arm to the desired pose at once. The operator can also use a joystick to control the movement of this mechanical arm and the locomotion of the robot. Many sensors are installed at the tip of this mechanical arm for surveillance from the high level and getting the vital signs of victims easier and faster in the urban search and rescue tasks. It works very effectively and easy to control. This mechanical arm and its software were developed as a part of the CEO Mission II Rescue Robot that won the First Runner Up award and the Best Technique award from the Thailand Rescue Robot Championship 2006. It is a low cost, simple, but functioning 5-Jiont mechanical arm which is built from scratch, and controlled via wireless LAN 802.11b/g. This 5-Jiont mechanical arm hardware concept and its software can also be used as the basic mechatronics to many real applications.Keywords: Multi-joint, mechanical arm, inverse kinematics, rescue robot, GUI control program.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1816140 Transformation of Vocal Characteristics: A Review of Literature
Authors: Dong-Yan Huang, Ee Ping Ong, Susanto Rahardja, Minghui Dong, Haizhou Li
Abstract:
The transformation of vocal characteristics aims at modifying voice such that the intelligibility of aphonic voice is increased or the voice characteristics of a speaker (source speaker) to be perceived as if another speaker (target speaker) had uttered it. In this paper, the current state-of-the-art voice characteristics transformation methodology is reviewed. Special emphasis is placed on voice transformation methodology and issues for improving the transformed speech quality in intelligibility and naturalness are discussed. In particular, it is suggested to use the modulation theory of speech as a base for research on high quality voice transformation. This approach allows one to separate linguistic, expressive, organic and perspective information of speech, based on an analysis of how they are fused when speech is produced. Therefore, this theory provides the fundamentals not only for manipulating non-linguistic, extra-/paralinguistic and intra-linguistic variables for voice transformation, but also for paving the way for easily transposing the existing voice transformation methods to emotion-related voice quality transformation and speaking style transformation. From the perspectives of human speech production and perception, the popular voice transformation techniques are described and classified them based on the underlying principles either from the speech production or perception mechanisms or from both. In addition, the advantages and limitations of voice transformation techniques and the experimental manipulation of vocal cues are discussed through examples from past and present research. Finally, a conclusion and road map are pointed out for more natural voice transformation algorithms in the future.Keywords: Voice transformation, Voice Quality, Emotion, Individuality, Speaking Style, Speech Production, Speech Perception.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2043139 Stochastic Edge Based Anomaly Detection for Supervisory Control and Data Acquisitions Systems: Considering the Zambian Power Grid
Authors: Lukumba Phiri, Simon Tembo, Kumbuso Joshua Nyoni
Abstract:
In Zambia, recent initiatives by various power operators like ZESCO, CEC, and consumers like the mines, to upgrade power systems into smart grids, target an even tighter integration with information technologies to enable the integration of renewable energy sources, local and bulk generation, and demand response. Thus, for the reliable operation of smart grids, its information infrastructure must be secure and reliable in the face of both failures and cyberattacks. Due to the nature of the systems, ICS/SCADA cybersecurity and governance face additional challenges compared to the corporate networks, and critical systems may be left exposed. There exist control frameworks internationally such as the NIST framework, however, they are generic and do not meet the domain-specific needs of the SCADA systems. Zambia is also lagging in cybersecurity awareness and adoption, and therefore there is a concern about securing ICS controlling key infrastructure critical to the Zambian economy as there are few known facts about the true posture. In this paper, we present a stochastic Edged-based Anomaly Detection for SCADA systems (SEADS) framework for threat modeling and risk assessment. SEADS enables the calculation of steady-steady probabilities that are further applied to establish metrics like system availability, maintainability, and reliability.
Keywords: Anomaly detection, SmartGrid, edge, maintainability, reliability, stochastic process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 323138 A Sentence-to-Sentence Relation Network for Recognizing Textual Entailment
Authors: Isaac K. E. Ampomah, Seong-Bae Park, Sang-Jo Lee
Abstract:
Over the past decade, there have been promising developments in Natural Language Processing (NLP) with several investigations of approaches focusing on Recognizing Textual Entailment (RTE). These models include models based on lexical similarities, models based on formal reasoning, and most recently deep neural models. In this paper, we present a sentence encoding model that exploits the sentence-to-sentence relation information for RTE. In terms of sentence modeling, Convolutional neural network (CNN) and recurrent neural networks (RNNs) adopt different approaches. RNNs are known to be well suited for sequence modeling, whilst CNN is suited for the extraction of n-gram features through the filters and can learn ranges of relations via the pooling mechanism. We combine the strength of RNN and CNN as stated above to present a unified model for the RTE task. Our model basically combines relation vectors computed from the phrasal representation of each sentence and final encoded sentence representations. Firstly, we pass each sentence through a convolutional layer to extract a sequence of higher-level phrase representation for each sentence from which the first relation vector is computed. Secondly, the phrasal representation of each sentence from the convolutional layer is fed into a Bidirectional Long Short Term Memory (Bi-LSTM) to obtain the final sentence representations from which a second relation vector is computed. The relations vectors are combined and then used in then used in the same fashion as attention mechanism over the Bi-LSTM outputs to yield the final sentence representations for the classification. Experiment on the Stanford Natural Language Inference (SNLI) corpus suggests that this is a promising technique for RTE.Keywords: Deep neural models, natural language inference, recognizing textual entailment, sentence-to-sentence relation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1454137 Financing Decision and Productivity Growth for the Venture Capital Industry Using High-Order Fuzzy Time Series
Authors: Shang-En Yu
Abstract:
Human society, there are many uncertainties, such as economic growth rate forecast of the financial crisis, many scholars have, since the the Song Chissom two scholars in 1993 the concept of the so-called fuzzy time series (Fuzzy Time Series)different mode to deal with these problems, a previous study, however, usually does not consider the relevant variables selected and fuzzy process based solely on subjective opinions the fuzzy semantic discrete, so can not objectively reflect the characteristics of the data set, in addition to carrying outforecasts are often fuzzy rules as equally important, failed to consider the importance of each fuzzy rule. For these reasons, the variable selection (Factor Selection) through self-organizing map (Self-Organizing Map, SOM) and proposed high-end weighted multivariate fuzzy time series model based on fuzzy neural network (Fuzzy-BPN), and using the the sequential weighted average operator (Ordered Weighted Averaging operator, OWA) weighted prediction. Therefore, in order to verify the proposed method, the Taiwan stock exchange (Taiwan Stock Exchange Corporation) Taiwan Weighted Stock Index (Taiwan Stock Exchange Capitalization Weighted Stock Index, TAIEX) as experimental forecast target, in order to filter the appropriate variables in the experiment Finally, included in other studies in recent years mode in conjunction with this study, the results showed that the predictive ability of this study further improve.
Keywords: Heterogeneity, residential mortgage loans, foreclosure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1388136 Data Mining for Cancer Management in Egypt Case Study: Childhood Acute Lymphoblastic Leukemia
Authors: Nevine M. Labib, Michael N. Malek
Abstract:
Data Mining aims at discovering knowledge out of data and presenting it in a form that is easily comprehensible to humans. One of the useful applications in Egypt is the Cancer management, especially the management of Acute Lymphoblastic Leukemia or ALL, which is the most common type of cancer in children. This paper discusses the process of designing a prototype that can help in the management of childhood ALL, which has a great significance in the health care field. Besides, it has a social impact on decreasing the rate of infection in children in Egypt. It also provides valubale information about the distribution and segmentation of ALL in Egypt, which may be linked to the possible risk factors. Undirected Knowledge Discovery is used since, in the case of this research project, there is no target field as the data provided is mainly subjective. This is done in order to quantify the subjective variables. Therefore, the computer will be asked to identify significant patterns in the provided medical data about ALL. This may be achieved through collecting the data necessary for the system, determimng the data mining technique to be used for the system, and choosing the most suitable implementation tool for the domain. The research makes use of a data mining tool, Clementine, so as to apply Decision Trees technique. We feed it with data extracted from real-life cases taken from specialized Cancer Institutes. Relevant medical cases details such as patient medical history and diagnosis are analyzed, classified, and clustered in order to improve the disease management.Keywords: Data Mining, Decision Trees, Knowledge Discovery, Leukemia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2215135 Sperm Whale Signal Analysis: Comparison using the Auto Regressive model and the Daubechies 15 Wavelets Transform
Authors: Olivier Adam, Maciej Lopatka, Christophe Laplanche, Jean-François Motsch
Abstract:
This article presents the results using a parametric approach and a Wavelet Transform in analysing signals emitting from the sperm whale. The extraction of intrinsic characteristics of these unique signals emitted by marine mammals is still at present a difficult exercise for various reasons: firstly, it concerns non-stationary signals, and secondly, these signals are obstructed by interfering background noise. In this article, we compare the advantages and disadvantages of both methods: Auto Regressive models and Wavelet Transform. These approaches serve as an alternative to the commonly used estimators which are based on the Fourier Transform for which the hypotheses necessary for its application are in certain cases, not sufficiently proven. These modern approaches provide effective results particularly for the periodic tracking of the signal's characteristics and notably when the signal-to-noise ratio negatively effects signal tracking. Our objectives are twofold. Our first goal is to identify the animal through its acoustic signature. This includes recognition of the marine mammal species and ultimately of the individual animal (within the species). The second is much more ambitious and directly involves the intervention of cetologists to study the sounds emitted by marine mammals in an effort to characterize their behaviour. We are working on an approach based on the recordings of marine mammal signals and the findings from this data result from the Wavelet Transform. This article will explore the reasons for using this approach. In addition, thanks to the use of new processors, these algorithms once heavy in calculation time can be integrated in a real-time system.Keywords: Autoregressive model, Daubechies Wavelet, Fourier Transform, marine mammals, signal processing, spectrogram, sperm whale, Wavelet Transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2005134 A Static Android Malware Detection Based on Actual Used Permissions Combination and API Calls
Authors: Xiaoqing Wang, Junfeng Wang, Xiaolan Zhu
Abstract:
Android operating system has been recognized by most application developers because of its good open-source and compatibility, which enriches the categories of applications greatly. However, it has become the target of malware attackers due to the lack of strict security supervision mechanisms, which leads to the rapid growth of malware, thus bringing serious safety hazards to users. Therefore, it is critical to detect Android malware effectively. Generally, the permissions declared in the AndroidManifest.xml can reflect the function and behavior of the application to a large extent. Since current Android system has not any restrictions to the number of permissions that an application can request, developers tend to apply more than actually needed permissions in order to ensure the successful running of the application, which results in the abuse of permissions. However, some traditional detection methods only consider the requested permissions and ignore whether it is actually used, which leads to incorrect identification of some malwares. Therefore, a machine learning detection method based on the actually used permissions combination and API calls was put forward in this paper. Meanwhile, several experiments are conducted to evaluate our methodology. The result shows that it can detect unknown malware effectively with higher true positive rate and accuracy while maintaining a low false positive rate. Consequently, the AdaboostM1 (J48) classification algorithm based on information gain feature selection algorithm has the best detection result, which can achieve an accuracy of 99.8%, a true positive rate of 99.6% and a lowest false positive rate of 0.Keywords: Android, permissions combination, API calls, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1915133 Water Security in Rural Areas through Solar Energy in Baja California Sur, Mexico
Authors: Luis F. Beltrán-Morales, Dalia Bali Cohen, Enrique Troyo-Diéguez, Gerzaín Avilés Polanco, Victor Sevilla Unda
Abstract:
This study aims to assess the potential of solar energy technology for improving access to water and hence the livelihood strategies of rural communities in Baja California Sur, Mexico. It focuses on livestock ranches and photovoltaic water-pumptechnology as well as other water extraction methods. The methodology used are the Sustainable Livelihoods and the Appropriate Technology approaches. A household survey was applied in June of 2006 to 32 ranches in the municipality, of which 22 used PV pumps; and semi-structured interviews were conducted. Findings indicate that solar pumps have in fact helped people improve their quality of life by allowing them to pursue a different livelihood strategy and that improved access to water -not necessarily as more water but as less effort to extract and collect it- does not automatically imply overexploitation of the resource; consumption is based on basic needs as well as on storage and pumping capacity. Justification for such systems lies in the avoidance of logistical problems associated to fossil fuels, PV pumps proved to be the most beneficial when substituting gasoline or diesel equipment but of dubious advantage if intended to replace wind or gravity systems. Solar water pumping technology-s main obstacle to dissemination are high investment and repairs costs and it is therefore not suitable for all cases even when insolation rates and water availability are adequate. In cases where affordability is not an obstacle it has become an important asset that contributes –by means of reduced expenses, less effort and saved time- to the improvement of livestock, the main livelihood provider for these ranches.
Keywords: Solar Pumps, Water Security, Livestock Ranches, Sustainable Livelihoods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1573132 Physicochemical Properties of Microemulsions and their uses in Enhanced Oil Recovery
Authors: T. Kumar, Achinta Bera, Ajay Mandal
Abstract:
Use of microemulsion in enhanced oil recovery has become more attractive in recent years because of its high level of extraction efficiency. Experimental investigations have been made on characterization of microemulsions of oil-brinesurfactant/ cosurfactant system for its use in enhanced oil recovery (EOR). Sodium dodecyl sulfate, propan-1-ol and heptane were selected as surfactant, cosurfactant and oil respectively for preparation of microemulsion. The effects of salinity on the relative phase volumes and solubilization parameters have also been studied. As salinity changes from low to high value, phase transition takes place from Winsor I to Winsor II via Winsor III. Suitable microemulsion composition has been selected based on its stability and ability to reduce interfacial tension. A series of flooding experiments have been performed using the selected microemulsion. The flooding experiments were performed in a core flooding apparatus using uniform sand pack. The core holder was tightly packed with uniform sands (60-100 mesh) and saturated with brines of different salinities. It was flooded with the brine at 25 psig and the absolute permeability was calculated from the flow rate of the through sand pack. The sand pack was then flooded with the crude oil at 800 psig to irreducible water saturation. The initial water saturation was determined on the basis of mass balance. Waterflooding was conducted by placing the coreholder horizontally at a constant injection pressure at 200 pisg. After water flooding, when water-cut reached above 95%, around 0.5 pore volume (PV) of the above microemulsion slug was injected followed by chasing water. The experiments were repeated using different composition of microemulsion slug. The additional recoveries were calculated by material balance. Encouraging results with additional recovery more than 20% of original oil in place above the conventional water flooding have been observed.
Keywords: Microemulsion Flooding, Enhanced Oil Recovery, Phase Behavior, Optimal salinity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3258131 Differential Sensitivity of Nitrogen-Fixing, Filamentous Cyanobacterial Species to an Organochlorine Insecticide - 6, 7, 8, 9, 10, 10- Hexachloro-1, 5, 5a, 6, 9, 9a-Hexahydro-6, 9- Methano-2, 4, 3-Benzodioxathiepine-3-Oxide
Authors: Nirmal J.I. Kumar, Anubhuti A. Bora, Manmeet K. Amb
Abstract:
Application of pesticides in the paddy fields has deleterious effects on non-target organisms including cyanobacteria which are photosynthesizing and nitrogen fixing micro-organisms contributing significantly towards soil fertility and crop yield. Pesticide contamination in the paddy fields has manifested into a serious global environmental concern. To study the effect of one such pesticide, three cyanobacterial strains; Anabaena fertilissima, Aulosira fertilissima and Westiellopsis prolifica were selected for their stress responses to an Organochlorine insecticide - 6, 7, 8, 9, 10, 10-hexachloro-1, 5, 5a, 6, 9, 9a-hexahydro-6, 9-methano-2, 4, 3- benzodioxathiepine-3-oxide, with reference to their photosynthesic pigments-chlorophyll-a and carotenoids as well as accessory pigments-phycobiliproteins (phycocyanin, allophycocyanin and phycoerythrin), stress induced biochemical metabolites like carbohydrates, proteins, amino acids, phenols and enzymes-nitrate reductase, glutamine synthetase and succinate dehydrogenase. All the three cyanobacterial strains were adversely affected by the insecticide doses and inhibition was dose dependent. Reduction in photosynthetic and accessory pigments, metabolites, nitrogen fixing and respiratory enzymes of the test organisms were accompanied with an initial increase in their total protein at lower Organochlorine doses. On the other hand, increased amount of phenols in all the insecticide treated concentrations was indicative of stressed activities of the organisms.Keywords: biochemical metabolites, endosulfan, enzymes, pigments
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2106130 Concrete Mix Design Using Neural Network
Authors: Rama Shanker, Anil Kumar Sachan
Abstract:
Basic ingredients of concrete are cement, fine aggregate, coarse aggregate and water. To produce a concrete of certain specific properties, optimum proportion of these ingredients are mixed. The important factors which govern the mix design are grade of concrete, type of cement and size, shape and grading of aggregates. Concrete mix design method is based on experimentally evolved empirical relationship between the factors in the choice of mix design. Basic draw backs of this method are that it does not produce desired strength, calculations are cumbersome and a number of tables are to be referred for arriving at trial mix proportion moreover, the variation in attainment of desired strength is uncertain below the target strength and may even fail. To solve this problem, a lot of cubes of standard grades were prepared and attained 28 days strength determined for different combination of cement, fine aggregate, coarse aggregate and water. An artificial neural network (ANN) was prepared using these data. The input of ANN were grade of concrete, type of cement, size, shape and grading of aggregates and output were proportions of various ingredients. With the help of these inputs and outputs, ANN was trained using feed forward back proportion model. Finally trained ANN was validated, it was seen that it gave the result with/ error of maximum 4 to 5%. Hence, specific type of concrete can be prepared from given material properties and proportions of these materials can be quickly evaluated using the proposed ANN.
Keywords: Aggregate Proportions, Artificial Neural Network, Concrete Grade, Concrete Mix Design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2638129 Trends in Competitiveness of the Thai Printing Industry
Authors: Amon Lasomboon
Abstract:
Since the world printing industry has to confront globalization with a constant change, the Thai printing industry, as a small but increasingly significant part of the world printing industry, cannot inevitably escape but has to encounter with the similar change and also the need to revamp its production processes, designs and technology to make them more appealing to both international and domestic market. The essential question is what is the Thai competitive edge in the printing industry in changing environment? This research is aimed to study the Thai level of competitive edge in terms of marketing, technology, environment friendly, and the level of satisfaction of the process of using printing machines. To access the extent to which is the trends in competitiveness of Thai printing industry, both quantitative and qualitative study were conducted. The quantitative analysis was restricted to 100 respondents. The qualitative analysis was restricted to a focus group of 10 individuals from various backgrounds in the Thai printing industry. The findings from the quantitative analysis revealed that the overall mean scores are 4.53, 4.10, and 3.50 for the competitiveness of marketing, the competitiveness of technology, and the competitiveness of being environment friendly respectively. However, the level of satisfaction for the process of using machines has a mean score only 3.20. The findings from the qualitative analysis have revealed that target customers have increasingly reordered due to their contentment in both low prices and the acceptable quality of the products. Moreover, the Thai printing industry has a tendency to convert to ambient green technology which is friendly to the environment. The Thai printing industry is choosing to produce or substitute with products that are less damaging to the environment. It is also found that the Thai printing industry has been transformed into a very competitive industry which bargaining power rests on consumers who have a variety of choices.Keywords: Competitiveness, Printing Industry
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2320128 A Multi-Science Study of Modern Synergetic War and Its Information Security Component
Authors: Alexander G. Yushchenko
Abstract:
From a multi-science point of view, we analyze threats to security resulting from globalization of international information space and information and communication aggression of Russia. A definition of Ruschism is formulated as an ideology supporting aggressive actions of modern Russia against the Euro-Atlantic community. Stages of the hybrid war Russia is leading against Ukraine are described, including the elements of subversive activity of the special services, the activation of the military phase and the gradual shift of the focus of confrontation to the realm of information and communication technologies. We reveal an emergence of a threat for democratic states resulting from the destabilizing impact of a target state’s mass media and social networks being exploited by Russian secret services under freedom-of-speech disguise. Thus, we underline the vulnerability of cyber- and information security of the network society in regard of hybrid war. We propose to define the latter a synergetic war. Our analysis is supported with a long-term qualitative monitoring of representation of top state officials on popular TV channels and Facebook. From the memetics point of view, we have detected a destructive psycho-information technology used by the Kremlin, a kind of information catastrophe, the essence of which is explained in detail. In the conclusion, a comprehensive plan for information protection of the public consciousness and mentality of Euro-Atlantic citizens from the aggression of the enemy is proposed.
Keywords: Cyber and information security, psycho-information technology, hybrid war, synergetic war, WWIII, Ruschism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1011127 Hands-off Parking: Deep Learning Gesture-Based System for Individuals with Mobility Needs
Authors: Javier Romera, Alberto Justo, Ignacio Fidalgo, Javier Araluce, Joshué Pérez
Abstract:
Nowadays, individuals with mobility needs face a significant challenge when docking vehicles. In many cases, after parking, they encounter insufficient space to exit, leading to two undesired outcomes: either avoiding parking in that spot or settling for improperly placed vehicles. To address this issue, this paper presents a parking control system employing gestural teleoperation. The system comprises three main phases: capturing body markers, interpreting gestures, and transmitting orders to the vehicle. The initial phase is centered around the MediaPipe framework, a versatile tool optimized for real-time gesture recognition. MediaPipe excels at detecting and tracing body markers, with a special emphasis on hand gestures. Hands detection is done by generating 21 reference points for each hand. Subsequently, after data capture, the project employs the MultiPerceptron Layer (MPL) for in-depth gesture classification. This tandem of MediaPipe’s extraction prowess and MPL’s analytical capability ensures that human gestures are translated into actionable commands with high precision. Furthermore, the system has been trained and validated within a built-in dataset. To prove the domain adaptation, a framework based on the Robot Operating System 2 (ROS2), as a communication backbone, alongside CARLA Simulator, is used. Following successful simulations, the system is transitioned to a real-world platform, marking a significant milestone in the project. This real-vehicle implementation verifies the practicality and efficiency of the system beyond theoretical constructs.
Keywords: Gesture detection, MediaPipe, MultiLayer Perceptron Layer, Robot Operating System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 137126 Dynamic Bayesian Networks Modeling for Inferring Genetic Regulatory Networks by Search Strategy: Comparison between Greedy Hill Climbing and MCMC Methods
Authors: Huihai Wu, Xiaohui Liu
Abstract:
Using Dynamic Bayesian Networks (DBN) to model genetic regulatory networks from gene expression data is one of the major paradigms for inferring the interactions among genes. Averaging a collection of models for predicting network is desired, rather than relying on a single high scoring model. In this paper, two kinds of model searching approaches are compared, which are Greedy hill-climbing Search with Restarts (GSR) and Markov Chain Monte Carlo (MCMC) methods. The GSR is preferred in many papers, but there is no such comparison study about which one is better for DBN models. Different types of experiments have been carried out to try to give a benchmark test to these approaches. Our experimental results demonstrated that on average the MCMC methods outperform the GSR in accuracy of predicted network, and having the comparable performance in time efficiency. By proposing the different variations of MCMC and employing simulated annealing strategy, the MCMC methods become more efficient and stable. Apart from comparisons between these approaches, another objective of this study is to investigate the feasibility of using DBN modeling approaches for inferring gene networks from few snapshots of high dimensional gene profiles. Through synthetic data experiments as well as systematic data experiments, the experimental results revealed how the performances of these approaches can be influenced as the target gene network varies in the network size, data size, as well as system complexity.
Keywords: Genetic regulatory network, Dynamic Bayesian network, GSR, MCMC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1886