Search results for: Variable substrate thickness.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1657

Search results for: Variable substrate thickness.

337 Performance Evaluation of Minimum Quantity Lubrication on EN3 Mild Steel Turning

Authors: Swapnil Rajan Jadhav, Ajay Vasantrao Kashikar

Abstract:

Lubrication, cooling and chip removal are the desired functions of any cutting fluid. Conventional or flood lubrication requires high volume flow rate and cost associated with this is higher. In addition, flood lubrication possesses health risks to machine operator. To avoid these consequences, dry machining and minimum quantity are two alternatives. Dry machining cannot be a suited alternative as it can generate greater heat and poor surface finish. Here, turning work is carried out on a Lathe machine using EN3 Mild steel. Variable cutting speeds and depth of cuts are provided and corresponding temperatures and surface roughness values were recorded. Experimental results are analyzed by Minitab software. Regression analysis, main effect plot, and interaction plot conclusion are drawn by using ANOVA. There is a 95.83% reduction in the use of cutting fluid. MQL gives a 9.88% reduction in tool temperature, this will improve tool life. MQL produced a 17.64% improved surface finish. MQL appears to be an economical and environmentally compatible lubrication technique for sustainable manufacturing.

Keywords: ANOVA, MQL, regression analysis, surface roughness

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 431
336 Performance Evaluation of Minimum Quantity Lubrication on EN3 Mild Steel Turning

Authors: Swapnil Rajan Jadhav, Ajay Vasantrao Kashikar

Abstract:

Lubrication, cooling and chip removal are the desired functions of any cutting fluid. Conventional or flood lubrication requires high volume flow rate and cost associated with this is higher. In addition, flood lubrication possesses health risks to machine operator. To avoid these consequences, dry machining and minimum quantity are two alternatives. Dry machining cannot be a suited alternative as it can generate greater heat and poor surface finish. Here, turning work is carried out on a Lathe machine using EN3 Mild steel. Variable cutting speeds and depth of cuts are provided and corresponding temperatures and surface roughness values were recorded. Experimental results are analyzed by Minitab software. Regression analysis, main effect plot, and interaction plot conclusion are drawn by using ANOVA. There is a 95.83% reduction in the use of cutting fluid. MQL gives a 9.88% reduction in tool temperature, this will improve tool life. MQL produced a 17.64% improved surface finish. MQL appears to be an economical and environmentally compatible lubrication technique for sustainable manufacturing.

Keywords: ANOVA, MQL, regression analysis, surface roughness

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 328
335 Shape Optimization of Impeller Blades for a Bidirectional Axial Flow Pump using Polynomial Surrogate Model

Authors: I. S. Jung, W. H. Jung, S. H. Baek, S. Kang

Abstract:

This paper describes the shape optimization of impeller blades for a anti-heeling bidirectional axial flow pump used in ships. In general, a bidirectional axial pump has an efficiency much lower than the classical unidirectional pump because of the symmetry of the blade type. In this paper, by focusing on a pump impeller, the shape of blades is redesigned to reach a higher efficiency in a bidirectional axial pump. The commercial code employed in this simulation is CFX v.13. CFD result of pump torque, head, and hydraulic efficiency was compared. The orthogonal array (OA) and analysis of variance (ANOVA) techniques and surrogate model based optimization using orthogonal polynomial, are employed to determine the main effects and their optimal design variables. According to the optimal design, we confirm an effective design variable in impeller blades and explain the optimal solution, the usefulness for satisfying the constraints of pump torque and head.

Keywords: Bidirectional axial flow pump, Impeller blade, CFD, Analysis of variance, Polynomial surrogate model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3733
334 Sensitivity Analysis of Principal Stresses in Concrete Slab of Rigid Pavement Made From Recycled Materials

Authors: Aleš Florian, Lenka Ševelová

Abstract:

Complex sensitivity analysis of stresses in a concrete slab of the real type of rigid pavement made from recycled materials is performed. The computational model of the pavement is designed as a spatial (3D) model, is based on a nonlinear variant of the finite element method that respects the structural nonlinearity, enables to model different arrangements of joints, and the entire model can be loaded by the thermal load. Interaction of adjacent slabs in joints and contact of the slab and the subsequent layer are modeled with the help of special contact elements. Four concrete slabs separated by transverse and longitudinal joints and the additional structural layers and soil to the depth of about 3m are modeled. The thickness of individual layers, physical and mechanical properties of materials, characteristics of joints, and the temperature of the upper and lower surface of slabs are supposed to be random variables. The modern simulation technique Updated Latin Hypercube Sampling with 20 simulations is used. For sensitivity analysis the sensitivity coefficient based on the Spearman rank correlation coefficient is utilized. As a result, the estimates of influence of random variability of individual input variables on the random variability of principal stresses s1 and s3 in 53 points on the upper and lower surface of the concrete slabs are obtained.

Keywords: Concrete, FEM, pavement, sensitivity, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2098
333 Supersonic Flow around a Dihedral Airfoil: Modeling and Experimentation Investigation

Authors: A. Naamane, M. Hasnaoui

Abstract:

Numerical modeling of fluid flows, whether compressible or incompressible, laminar or turbulent presents a considerable contribution in the scientific and industrial fields. However, the development of an approximate model of a supersonic flow requires the introduction of specific and more precise techniques and methods. For this purpose, the object of this paper is modeling a supersonic flow of inviscid fluid around a dihedral airfoil. Based on the thin airfoils theory and the non-dimensional stationary Steichen equation of a two-dimensional supersonic flow in isentropic evolution, we obtained a solution for the downstream velocity potential of the oblique shock at the second order of relative thickness that characterizes a perturbation parameter. This result has been dealt with by the asymptotic analysis and characteristics method. In order to validate our model, the results are discussed in comparison with theoretical and experimental results. Indeed, firstly, the comparison of the results of our model has shown that they are quantitatively acceptable compared to the existing theoretical results. Finally, an experimental study was conducted using the AF300 supersonic wind tunnel. In this experiment, we have considered the incident upstream Mach number over a symmetrical dihedral airfoil wing. The comparison of the different Mach number downstream results of our model with those of the existing theoretical data (relative margin between 0.07% and 4%) and with experimental results (concordance for a deflection angle between 1° and 11°) support the validation of our model with accuracy.

Keywords: Asymptotic modelling, dihedral airfoil, supersonic flow, supersonic wind tunnel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 675
332 Potential of Henna Leaves as Dye and Its Fastness Properties on Fabric

Authors: Nkem Angela Udeani

Abstract:

Despite the wide spread use of synthetic dyes, natural dyes are still exploited and used to enhance its inherent aesthetic qualities as a major material for beautification of the body. Centuries before the discovery of synthetic dyes, natural dyes were the only source of dye open to mankind. Dyes are extracted from plant - leaves, roots and barks, insect secretions, and minerals. However, research findings have made it clear that of all, plants- leaves, roots, barks or flowers are the most explored and exploited in which henna (Lawsonia innermis L.) is one of those plants. Experiment has also shown that henna is used in body painting in conjunction with an alkaline (Ammonium Sulphate) as a fixing agent. This of course gives a clue that if colour derived from henna is properly investigated, it may not only be used for body decoration but possibly, may have affinity to fiber substrate. This paper investigates the dyeing potentials – dye ability and fastness qualities of henna dye extracts on cotton and linen fibers using mordants like ammonium sulphate and other alkalis (hydrosulphate and caustic soda, potash, common salt, potassium alum). Hot and cold water and ethanol solvent were used in the extraction of the dye to investigate the most effective method, dye ability, and fastness qualities of these extracts under room temperature. The results of the experiment show that cotton have a high rate of dye intake than other fiber. On a similar note, the colours obtained depend most on the solvent used. In conclusion, hot water extraction appears more effective. While the colours obtained from ethanol and both cold hot methods of extraction range from light to dark yellow, light green to army green and to some extent shades of brown hues.

Keywords: Dye, fabrics, henna leaves, potential.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4063
331 Fatigue Crack Growth Behavior in Dissimilar Metal Weldment of Stainless Steel and Carbon Steel

Authors: K. Krishnaprasad, Raghu V. Prakash

Abstract:

Constant amplitude fatigue crack growth (FCG) tests were performed on dissimilar metal welded plates of Type 316L Stainless Steel (SS) and IS 2062 Grade A Carbon steel (CS). The plates were welded by TIG welding using SS E309 as electrode. FCG tests were carried on the Side Edge Notch Tension (SENT) specimens of 5 mm thickness, with crack initiator (notch) at base metal region (BM), weld metal region (WM) and heat affected zones (HAZ). The tests were performed at a test frequency of 10 Hz and at load ratios (R) of 0.1 & 0.6. FCG rate was found to increase with stress ratio for weld metals and base metals, where as in case of HAZ, FCG rates were almost equal at high ΔK. FCG rate of HAZ of stainless steel was found to be lowest at low and high ΔK. At intermediate ΔK, WM showed the lowest FCG rate. CS showed higher crack growth rate at all ΔK. However, the scatter band of data was found to be narrow. Fracture toughness (Kc) was found to vary in different locations of weldments. Kc was found lowest for the weldment and highest for HAZ of stainless steel. A novel method of characterizing the FCG behavior using an Infrared thermography (IRT) camera was attempted. By monitoring the temperature rise at the fast moving crack tip region, the amount of plastic deformation was estimated.

Keywords: Dissimilar metal weld, Fatigue Crack Growth, fracture toughness, Infrared thermography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2862
330 Factors Influence Depositors- Withdrawal Behavior in Islamic Banks: A Theory of Reasoned Action

Authors: Muhamad Abduh, Jarita Duasa, Mohd. Azmi Omar

Abstract:

Unlike its conventional counterpart, Islamic principles forbid Islamic banks to take any interest-related income and thus makes deposits from depositors as an important source of fund for its operational and financing. Consequently, the risk of deposit withdrawal by depositors is an important aspect that should be wellmanaged in Islamic banking. This paper aims to investigate factors that influence depositors- withdrawal behavior in Islamic banks, particularly in Malaysia, using the framework of theory of reasoned action. A total of 368 respondents from Klang valley are involved in the analysis. The paper finds that all the constructs variable i.e. normative beliefs, subjective norms, behavioral beliefs, and attitude towards behavior are perceived to be distinct by the respondents. In addition, the structural equation model is able to verify the structural relationships between subjective norms, attitude towards behavior and behavioral intention. Subjective norms gives more influence to depositors- decision on deposit withdrawal compared to attitude towards behavior.

Keywords: Islamic bank, structural equation model, theory of reasoned action, withdrawal behavior

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3923
329 Current-Mode Resistorless SIMO Universal Filter and Four-Phase Quadrature Oscillator

Authors: Jie Jin

Abstract:

In this paper, a new CMOS current-mode single input and multi-outputs (SIMO) universal filter and quadrature oscillator with a similar circuit are proposed. The circuits only consist of three Current differencing transconductance amplifiers (CDTA) and two grounded capacitors, which are resistorless, and they are suitable for monolithic integration. The universal filter uses minimum CDTAs and passive elements to realize SIMO type low-pass (LP), high-pass (HP), band-pass (BP) band-stop (BS) and all-pass (AP) filter functions simultaneously without any component matching conditions. The angular frequency (ω0) and the quality factor (Q) of the proposed filter can be electronically controlled and tuned orthogonal. By some modifications of the filter, a new current-mode four-phase quadrature oscillator (QO) can be obtained easily. The condition of oscillation (CO) and frequency of oscillation (FO) of the QO can be controlled electronically and independently through the bias current of the CDTAs, and it is suitable for variable frequency oscillator. Moreover, all the passive and active sensitivities of the circuits are low. SPICE simulation results are included to confirm the theory.

Keywords: Universal Filter, Quadrature Oscillator, Current mode, Current differencing transconductance amplifiers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1921
328 The Effect of Variable Incubation Temperatures on Hatchability and Survival of Goldlined Seabream, Rhabdosargus sarba (Forsskål,1775) Larvae

Authors: Fahad S. Ibrahim, Ewen Mclean, Mohammad M. Al Wahaibi, Ghazi .A. Al Shagaa, Adel H. Al Balushi

Abstract:

The effect of varying holding temperature on hatching success, occurrence of deformities and mortality rates were investigated for goldlined seabream eggs. Wild broodstock (600 g) were stocked at a 2:1 male-female ratio in a 2 m3 fiberglass tank supplied with filtered seawater (37 g L-1 salinity, temp. range 24±0.5 oC [day] and 22±1 oC [night], DO2 in excess of 5.0mg L-1). Females were injected with 200 IU kg-1 HCG between 08.00 and 10.00 h and returned to tanks to spawn following which eggs were collected by hand using a 100μm net. Fertilized eggs at the gastrulation stage (120 L-1) were randomly placed into one of 12 experimental 6 L aerated (DO2 5 mg L-1) plastic containers with water temperatures maintained at 24±0.5 oC (ambient), 26±0.5 oC, 28± 0.5 oC and 30±0.5 oC using thermostats. Each treatment was undertaken in triplicate using a 12:12 photophase:scotophase photoperiod. No differences were recorded between eggs reared at 24 and 26 oC with respect to viability, deformity, mortality or unhatched egg rates. Increasing temperature reduced the number of viable eggs with those at 30 oC returning poorest performance (P < 0.05). Mortality levels were lowest for eggs incubated at 24 and 26 oC. The greatest level of deformities recorded was that for eggs reared at 28 oC.

Keywords: Goldlined seabream, Oman, R. sarba, deformities.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3926
327 Massively-Parallel Bit-Serial Neural Networks for Fast Epilepsy Diagnosis: A Feasibility Study

Authors: Si Mon Kueh, Tom J. Kazmierski

Abstract:

There are about 1% of the world population suffering from the hidden disability known as epilepsy and major developing countries are not fully equipped to counter this problem. In order to reduce the inconvenience and danger of epilepsy, different methods have been researched by using a artificial neural network (ANN) classification to distinguish epileptic waveforms from normal brain waveforms. This paper outlines the aim of achieving massive ANN parallelization through a dedicated hardware using bit-serial processing. The design of this bit-serial Neural Processing Element (NPE) is presented which implements the functionality of a complete neuron using variable accuracy. The proposed design has been tested taking into consideration non-idealities of a hardware ANN. The NPE consists of a bit-serial multiplier which uses only 16 logic elements on an Altera Cyclone IV FPGA and a bit-serial ALU as well as a look-up table. Arrays of NPEs can be driven by a single controller which executes the neural processing algorithm. In conclusion, the proposed compact NPE design allows the construction of complex hardware ANNs that can be implemented in a portable equipment that suits the needs of a single epileptic patient in his or her daily activities to predict the occurrences of impending tonic conic seizures.

Keywords: Artificial Neural Networks, bit-serial neural processor, FPGA, Neural Processing Element.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1536
326 Layer-by-Layer Deposition of Poly (Ethylene Imine) Nanolayers on Polypropylene Nonwoven Fabric. Electrostatic and Thermal Properties

Authors: Dawid Stawski, Silviya Halacheva, Dorota Zielińska

Abstract:

The surface properties of many materials can be readily and predictably modified by the controlled deposition of thin layers containing appropriate functional groups and this research area is now a subject of widespread interest. The layer-by-layer (lbl) method involves depositing oppositely charged layers of polyelectrolytes onto the substrate material which are stabilized due to strong electrostatic forces between adjacent layers. This type of modification affords products that combine the properties of the original material with the superficial parameters of the new external layers. Through an appropriate selection of the deposited layers, the surface properties can be precisely controlled and readily adjusted in order to meet the requirements of the intended application. In the presented paper a variety of anionic (poly(acrylic acid)) and cationic (linear poly(ethylene imine), polymers were successfully deposited onto the polypropylene nonwoven using the lbl technique. The chemical structure of the surface before and after modification was confirmed by reflectance FTIR spectroscopy, volumetric analysis and selective dyeing tests. As a direct result of this work, new materials with greatly improved properties have been produced. For example, following a modification process significant changes in the electrostatic activity of a range of novel nanocomposite materials were observed. The deposition of polyelectrolyte nanolayers was found to strongly accelerate the loss of electrostatically generated charges and to increase considerably the thermal resistance properties of the modified fabric (the difference in T50% is over 20oC). From our results, a clear relationship between the type of polyelectrolyte layer deposited onto the flat fabric surface and the properties of the modified fabric was identified.

Keywords: Layer-by-layer technique, polypropylene nonwoven, surface modification, surface properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2475
325 On the Exact Solution of Non-Uniform Torsion for Beams with Axial Symmetric Cross-Section

Authors: A.Campanile, M. Mandarino, V. Piscopo, A. Pranzitelli

Abstract:

In the traditional theory of non-uniform torsion the axial displacement field is expressed as the product of the unit twist angle and the warping function. The first one, variable along the beam axis, is obtained by a global congruence condition; the second one, instead, defined over the cross-section, is determined by solving a Neumann problem associated to the Laplace equation, as well as for the uniform torsion problem. So, as in the classical theory the warping function doesn-t punctually satisfy the first indefinite equilibrium equation, the principal aim of this work is to develop a new theory for non-uniform torsion of beams with axial symmetric cross-section, fully restrained on both ends and loaded by a constant torque, that permits to punctually satisfy the previous equation, by means of a trigonometric expansion of the axial displacement and unit twist angle functions. Furthermore, as the classical theory is generally applied with good results to the global and local analysis of ship structures, two beams having the first one an open profile, the second one a closed section, have been analyzed, in order to compare the two theories.

Keywords: Non-uniform torsion, Axial symmetric cross-section, Fourier series, Helmholtz equation, FE method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2323
324 Young’s Modulus Variability: Influence on Masonry Vault Behavior

Authors: A. Zanaz, S. Yotte, F. Fouchal, A. Chateauneuf

Abstract:

This paper presents a methodology for probabilistic assessment of bearing capacity and prediction of failure mechanism of masonry vaults at the ultimate state with consideration of the natural variability of Young’s modulus of stones. First, the computation model is explained. The failure mode corresponds to the four-hinge mechanism. Based on this consideration, the study of a vault composed of 16 segments is presented. The Young’s modulus of the segments is considered as random variable defined by a mean value and a coefficient of variation. A relationship linking the vault bearing capacity to the voussoirs modulus variation is proposed. The most probable failure mechanisms, in addition to that observed in the deterministic case, are identified for each variability level as well as their probability of occurrence. The results show that the mechanism observed in the deterministic case has decreasing probability of occurrence in terms of variability, while the number of other mechanisms and their probability of occurrence increases with the coefficient of variation of Young’s modulus. This means that if a significant change in the Young’s modulus of the segments is proven, taking it into account in computations becomes mandatory, both for determining the vault bearing capacity and for predicting its failure mechanism.

Keywords: Masonry, mechanism, probability, variability, vault.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1972
323 Harmonic Analysis and Performance Improvement of a Wind Energy Conversions System with Double Output Induction Generator

Authors: M. Sedighizadeh, A. Rezazadeh

Abstract:

Wind turbines with double output induction generators can operate at variable speed permitting conversion efficiency maximization over a wide range of wind velocities. This paper presents the performance analysis of a wind driven double output induction generator (DOIG) operating at varying shafts speed. A periodic transient state analysis of DOIG equipped with two converters is carried out using a hybrid induction machine model. This paper simulates the harmonic content of waveforms in various points of drive at different speeds, based on the hybrid model (dqabc). Then the sinusoidal and trapezoidal pulse-width–modulation control techniques are used in order to improve the power factor of the machine and to weaken the injected low order harmonics to the supply. Based on the frequency spectrum, total harmonics distortion, distortion factor and power factor. Finally advantages of sinusoidal and trapezoidal pulse width modulation techniques are compared.

Keywords: DOIG, Harmonic Analysis, Wind.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1763
322 Studding of Number of Dataset on Precision of Estimated Saturated Hydraulic Conductivity

Authors: M. Siosemarde, M. Byzedi

Abstract:

Saturated hydraulic conductivity of Soil is an important property in processes involving water and solute flow in soils. Saturated hydraulic conductivity of soil is difficult to measure and can be highly variable, requiring a large number of replicate samples. In this study, 60 sets of soil samples were collected at Saqhez region of Kurdistan province-IRAN. The statistics such as Correlation Coefficient (R), Root Mean Square Error (RMSE), Mean Bias Error (MBE) and Mean Absolute Error (MAE) were used to evaluation the multiple linear regression models varied with number of dataset. In this study the multiple linear regression models were evaluated when only percentage of sand, silt, and clay content (SSC) were used as inputs, and when SSC and bulk density, Bd, (SSC+Bd) were used as inputs. The R, RMSE, MBE and MAE values of the 50 dataset for method (SSC), were calculated 0.925, 15.29, -1.03 and 12.51 and for method (SSC+Bd), were calculated 0.927, 15.28,-1.11 and 12.92, respectively, for relationship obtained from multiple linear regressions on data. Also the R, RMSE, MBE and MAE values of the 10 dataset for method (SSC), were calculated 0.725, 19.62, - 9.87 and 18.91 and for method (SSC+Bd), were calculated 0.618, 24.69, -17.37 and 22.16, respectively, which shows when number of dataset increase, precision of estimated saturated hydraulic conductivity, increases.

Keywords: dataset, precision, saturated hydraulic conductivity, soil and statistics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1763
321 Experimental Investigation and Sensitivity Analysis for the Effects of Fracture Parameters to the Conductance Properties of Laterite

Authors: Bai Wei, Kong Ling-Wei, Guo Ai-Guo

Abstract:

This experiment discusses the effects of fracture parameters such as depth, length, width, angle and the number of the fracture to the conductance properties of laterite using the DUK-2B digital electrical measurement system combined with the method of simulating the fractures. The results of experiment show that the changes of fracture parameters produce effects to the conductance properties of laterite. There is a clear degressive period of the conductivity of laterite during increasing the depth, length, width, or the angle and the quantity of fracture gradually. When the depth of fracture exceeds the half thickness of the soil body, the conductivity of laterite shows evidently non-linear diminishing pattern and the amplitude of decrease tends to increase. The length of fracture has fewer effects than the depth to the conductivity. When the width of fracture reaches some fixed values, the change of the conductivity is less sensitive to the change of the width, and at this time, the conductivity of laterite maintains at a stable level. When the angle of fracture is less than 45°, the decrease of the conductivity is more clearly as the angle increases. But when angle is more than 45°, change of the conductivity is relatively gentle as the angle increases. The increasing quantity of the fracture causes the other fracture parameters having great impact on the change of conductivity. When moisture content and temperature were unchanged, depth and angle of fractures are the major factors affecting the conductivity of laterite soil; quantity, length, and width are minor influencing factors. The sensitivity of fracture parameters affect conductivity of laterite soil is: depth >angles >quantity >length >width.

Keywords: laterite, fracture parameters, conductance properties, conductivity, uniform design, sensitivity analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1396
320 Adaptability of ‘Monti Dauni’ Bean Ecotypes in Plain Areas

Authors: Disciglio G., Nardella E., Gatta G., Giuliani M.M., Tarantino A.

Abstract:

The bean (Phaseolus vulgaris L.) is one of the best known of the legumes, and it has a long cultivation tradition in Italy. The territory of “Subappennino Dauno” (southern Italy) is at around 700 m a.s.l. and is predominantly grown with cereals, olive trees and grapevines. Ecotypes of white beans to eat dry (such as cannellini beans) are also grown, which are sought for their palatability, high digestibility, and ease of cooking. However, these are not easy to find on the market due to their low production in relatively small areas and on small family farms that use seeds handed down from generation to generation. The introduction of these ecotypes in plain areas of the Puglia region would provide an opportunity to promote the diffusion of this type of bean. To investigate the adaptability of these ecotypes in plain environments (Cerignola, in southern Italy) a comparative trial was carried out between three ‘Monti Dauni’ ecotypes (E1, E2, E3) that are native to mountain areas and the similar commercial variety, ‘Cannellini’. The data provide useful information about the quantitative and qualitative characteristics of these ecotypes when grown in lowland environments. Ecotype E3 provided the greatest bean production (2.34 t ha-1) compared to ‘Cannellini’ (1.28 t ha-1) and the other ecotypes (0.55 and 0.40 t ha-1, for E1 and E2, respectively), due to its greater plant growth and the larger size of the seed (and thickness, in particular). Finally, ecotype E2 provided the greatest protein content (31.2%), although not significantly different from the commercial cultivar ‘Cannellini’ (32.1%).

Keywords: 'Monti Dauni' bean, ecotypes, adaptability in plain areas, quali-quantitive.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1517
319 Consumer Online Shopping Behavior: The Effect of Internet Marketing Environment, Product Characteristics, Familiarity and Confidence, and Promotional Offer

Authors: Norazah Mohd Suki, Norbayah Mohd Suki

Abstract:

Online shopping enables consumers to search for information and purchase products or services through direct interaction with online store. This study aims to examine the effect of Internet marketing environment, product characteristics, familiarity and confidence, and promotional offers on consumer online shopping behavior. 200 questionnaires were distributed to the respondents, who are students and staff at a public university in the Federal Territory of Labuan, Malaysia, following simple random sampling as a means of data collection. Multiple regression analysis was used as a statistical measure to determine the strength of the relationship between one dependent variable and a series of other independent variables. Results revealed that familiarity and confidence was found to greatly influence consumer online shopping behavior followed by promotional offers. A clear understanding of consumer online shopping behavior can help marketing managers predict the online shopping rate and evaluate the future growth of online commerce.

Keywords: Internet Marketing Environment, Product Characteristics, Multiple Regression Analysis, Malaysia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12026
318 Optimal Design of Airfoil with High Aspect Ratio in Unmanned Aerial Vehicles

Authors: Kyoungwoo Park, Ji-Won Han, Hyo-Jae Lim, Byeong-Sam Kim, Juhee Lee

Abstract:

Shape optimization of the airfoil with high aspect ratio of long endurance unmanned aerial vehicle (UAV) is performed by the multi-objective optimization technology coupled with computational fluid dynamics (CFD). For predicting the aerodynamic characteristics around the airfoil the high-fidelity Navier-Stokes solver is employed and SMOGA (Simple Multi-Objective Genetic Algorithm), which is developed by authors, is used for solving the multi-objective optimization problem. To obtain the optimal solutions of the design variable (i.e., sectional airfoil profile, wing taper ratio and sweep) for high performance of UAVs, both the lift and lift-to-drag ratio are maximized whereas the pitching moment should be minimized, simultaneously. It is found that the lift force and lift-to-drag ratio are linearly dependent and a unique and dominant solution are existed. However, a trade-off phenomenon is observed between the lift-to-drag ratio and pitching moment. As the result of optimization, sixty-five (65) non-dominated Pareto individuals at the cutting edge of design spaces that is decided by airfoil shapes can be obtained.

Keywords: Unmanned aerial vehicle (UAV), Airfoil, CFD, Shape optimization, Lift-to-drag ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6395
317 Multi-Rate Exact Discretization based on Diagonalization of a Linear System - A Multiple-Real-Eigenvalue Case

Authors: T. Sakamoto, N. Hori

Abstract:

A multi-rate discrete-time model, whose response agrees exactly with that of a continuous-time original at all sampling instants for any sampling periods, is developed for a linear system, which is assumed to have multiple real eigenvalues. The sampling rates can be chosen arbitrarily and individually, so that their ratios can even be irrational. The state space model is obtained as a combination of a linear diagonal state equation and a nonlinear output equation. Unlike the usual lifted model, the order of the proposed model is the same as the number of sampling rates, which is less than or equal to the order of the original continuous-time system. The method is based on a nonlinear variable transformation, which can be considered as a generalization of linear similarity transformation, which cannot be applied to systems with multiple eigenvalues in general. An example and its simulation result show that the proposed multi-rate model gives exact responses at all sampling instants.

Keywords: Multi-rate discretization, linear systems, triangularization, similarity transformation, diagonalization, exponential transformation, multiple eigenvalues

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1328
316 Automatic Map Simplification for Visualization on Mobile Devices

Authors: Hang Yu

Abstract:

The visualization of geographic information on mobile devices has become popular as the widespread use of mobile Internet. The mobility of these devices brings about much convenience to people-s life. By the add-on location-based services of the devices, people can have an access to timely information relevant to their tasks. However, visual analysis of geographic data on mobile devices presents several challenges due to the small display and restricted computing resources. These limitations on the screen size and resources may impair the usability aspects of the visualization applications. In this paper, a variable-scale visualization method is proposed to handle the challenge of small mobile display. By merging multiple scales of information into a single image, the viewer is able to focus on the interesting region, while having a good grasp of the surrounding context. This is essentially visualizing the map through a fisheye lens. However, the fisheye lens induces undesirable geometric distortion in the peripheral, which renders the information meaningless. The proposed solution is to apply map generalization that removes excessive information around the peripheral and an automatic smoothing process to correct the distortion while keeping the local topology consistent. The proposed method is applied on both artificial and real geographical data for evaluation.

Keywords: Map simplification, visualization, mobile devices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1400
315 A Mathematical Model for Predicting Isothermal Soil Moisture Profiles Using Finite Difference Method

Authors: Kasthurirangan Gopalakrishnan, Anshu Manik

Abstract:

Subgrade moisture content varies with environmental and soil conditions and has significant influence on pavement performance. Therefore, it is important to establish realistic estimates of expected subgrade moisture contents to account for the effects of this variable on predicted pavement performance during the design stage properly. The initial boundary soil suction profile for a given pavement is a critical factor in determining expected moisture variations in the subgrade for given pavement and climatic and soil conditions. Several numerical models have been developed for predicting water and solute transport in saturated and unsaturated subgrade soils. Soil hydraulic properties are required for quantitatively describing water and chemical transport processes in soils by the numerical models. The required hydraulic properties are hydraulic conductivity, water diffusivity, and specific water capacity. The objective of this paper was to determine isothermal moisture profiles in a soil fill and predict the soil moisture movement above the ground water table using a simple one-dimensional finite difference model.

Keywords: Fill, Hydraulic Conductivity, Pavement, Subgrade.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1833
314 An Inverse Approach for Determining Creep Properties from a Miniature Thin Plate Specimen under Bending

Authors: Y. Zheng, W. Sun

Abstract:

This paper describes a new approach which can be used to interpret the experimental creep deformation data obtained from miniaturized thin plate bending specimen test to the corresponding uniaxial data based on an inversed application of the reference stress method. The geometry of the thin plate is fully defined by the span of the support, l, the width, b, and the thickness, d. Firstly, analytical solutions for the steady-state, load-line creep deformation rate of the thin plates for a Norton’s power law under plane stress (b→0) and plane strain (b→∞) conditions were obtained, from which it can be seen that the load-line deformation rate of the thin plate under plane-stress conditions is much higher than that under the plane-strain conditions. Since analytical solution is not available for the plates with random b-values, finite element (FE) analyses are used to obtain the solutions. Based on the FE results obtained for various b/l ratios and creep exponent, n, as well as the analytical solutions under plane stress and plane strain conditions, an approximate, numerical solutions for the deformation rate are obtained by curve fitting. Using these solutions, a reference stress method is utilised to establish the conversion relationships between the applied load and the equivalent uniaxial stress and between the creep deformations of thin plate and the equivalent uniaxial creep strains. Finally, the accuracy of the empirical solution was assessed by using a set of “theoretical” experimental data.

Keywords: Bending, Creep, Miniature Specimen, Thin Plate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1871
313 Comparative Efficacy of Pomegranate Juice, Peel and Seed Extract in the Stabilization of Corn Oil under Accelerated Conditions

Authors: Zoi Konsoula

Abstract:

Antioxidant-rich extracts were prepared from pomegranate peels, seeds and juice using methanol and ethanol and their antioxidant activity was evaluated by the 1,1-diphenyl-2-picrylhydrazine (DPPH) radical scavenging and Ferric Reducing Antioxidant Power (FRAP) method. Both analytical methods indicated a higher antioxidant activity in extracts prepared from peels, which was comparable to that of butylated hydroxytoluene (BHT). Furthermore, the antioxidant activity was correlated to the phenolic and flavonoid content of the various extracts. The antioxidant effectiveness of the extracts was also assessed using corn oil as the oxidation substrate. More specifically, preheated corn oil samples stabilized with extracts at a concentration of 250 ppm, 500 ppm or 1,000 ppm were subjected to accelerated aging (100 oC, 10 days) and the extent of oxidative alteration was followed by the measurement of the peroxide, conjugated dienes and trienes, as well as p-aniside value. BHT at its legal limit (200 ppm) served as standard besides the control sample. Results from the different parameters were in agreement with each other suggesting that pomegranate extracts can stabilize corn oil effectively under accelerated conditions, at all concentrations tested. However, the magnitude of oil stabilization depended strongly on the amount of extract added and this was positively correlated with their phenolic content. Pomegranate peel extracts, which exhibited the highest not only phenolic and flavonoid content but also antioxidant activity, were more potent in inhibiting oxidative deterioration. Both methanolic and ethanolic peel extracts at a concentration of 500 ppm exerted a stabilizing effect comparable to that of BHT, while at a concentration of 1000 ppm they exhibited higher stabilization efficiency in comparison to BHT. Finally, heating oil samples resulted in a time dependent decrease in their antioxidant capacity. Samples containing peel extracts appeared to retain their antioxidant capacity for a longer period, indicating that these extracts contained active compounds that offered superior antioxidant protection to corn oil.

Keywords: Antioxidant activity, corn oil, oxidative deterioration, pomegranate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1906
312 Application of Computer Aided Engineering Tools in Performance Prediction and Fault Detection of Mechanical Equipment of Mining Process Line

Authors: K. Jahani, J. Razavi

Abstract:

Nowadays, to decrease the number of downtimes in the industries such as metal mining, petroleum and chemical industries, predictive maintenance is crucial. In order to have efficient predictive maintenance, knowing the performance of critical equipment of production line such as pumps and hydro-cyclones under variable operating parameters, selecting best indicators of this equipment health situations, best locations for instrumentation, and also measuring of these indicators are very important. In this paper, computer aided engineering (CAE) tools are implemented to study some important elements of copper process line, namely slurry pumps and cyclone to predict the performance of these components under different working conditions. These modeling and simulations can be used in predicting, for example, the damage tolerance of the main shaft of the slurry pump or wear rate and location of cyclone wall or pump case and impeller. Also, the simulations can suggest best-measuring parameters, measuring intervals, and their locations.

Keywords: Computer aided engineering, predictive maintenance, fault detection, mining process line, slurry pump, hydrocyclone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1803
311 The Relationship between Interpersonal Relationship and the Subjective Well-Being of Chinese Primary and Secondary Teachers: A Mediated Moderation Model

Authors: Xuling Zhang, Yong Wang, Xingyun Liu, Shuangxue Xu

Abstract:

Based on positive psychology, this study presented a mediated moderation model in which character strengths moderated the relationship between interpersonal relationship, job satisfaction and subjective well-being, with job satisfaction taking the mediation role among them. A total of 912 teachers participated in four surveys, which include the Oxford Happiness Questionnaire, Values in Action Inventory of Strengths, job satisfaction questionnaire, and the interpersonal relationship questionnaire. The results indicated that: (1) Taking interpersonal relationship as a typical work environmental variable, the result shows that it is significantly correlated to subjective well-being. (2) The character strengths of "kindness", “authenticity” moderated the effect of the teachers’ interpersonal relationship on subjective well-being. (3) The teachers’ job satisfaction mediated the above mentioned moderation effects. In general, this study shows that the teachers’ interpersonal relationship affects their subjective well-being, with their job satisfaction as mediation and character strengths of “kindness” and “authenticity” as moderation. The managerial implications were also discussed.

Keywords: Character strength, subjective well-being, job satisfaction, interpersonal relationship.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2098
310 Evolutionary Algorithms for Learning Primitive Fuzzy Behaviors and Behavior Coordination in Multi-Objective Optimization Problems

Authors: Li Shoutao, Gordon Lee

Abstract:

Evolutionary robotics is concerned with the design of intelligent systems with life-like properties by means of simulated evolution. Approaches in evolutionary robotics can be categorized according to the control structures that represent the behavior and the parameters of the controller that undergo adaptation. The basic idea is to automatically synthesize behaviors that enable the robot to perform useful tasks in complex environments. The evolutionary algorithm searches through the space of parameterized controllers that map sensory perceptions to control actions, thus realizing a specific robotic behavior. Further, the evolutionary algorithm maintains and improves a population of candidate behaviors by means of selection, recombination and mutation. A fitness function evaluates the performance of the resulting behavior according to the robot-s task or mission. In this paper, the focus is in the use of genetic algorithms to solve a multi-objective optimization problem representing robot behaviors; in particular, the A-Compander Law is employed in selecting the weight of each objective during the optimization process. Results using an adaptive fitness function show that this approach can efficiently react to complex tasks under variable environments.

Keywords: adaptive fuzzy neural inference, evolutionary tuning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1472
309 Experimental Investigation of Heat Pipe with Annular Fins under Natural Convection at Different Inclinations

Authors: Gangacharyulu Dasaroju, Sumeet Sharma, Sanjay Singh

Abstract:

Heat pipe is characterised as superconductor of heat because of its excellent heat removal ability. The operation of several engineering system results in generation of heat. This may cause several overheating problems and lead to failure of the systems. To overcome this problem and to achieve desired rate of heat dissipation, there is need to study the performance of heat pipe with annular fins under free convection at different inclinations. This study demonstrates the effect of different mass flow rate of hot fluid into evaporator section on the condenser side heat transfer coefficient with annular fins under natural convection at different inclinations. In this study annular fins are used for the experimental work having dimensions of length of fin, thickness of fin and spacing of fin as 10 mm, 1 mm and 6 mm, respectively. The main aim of present study is to discover at what inclination angles the maximum heat transfer coefficient shall be achieved. The heat transfer coefficient on the external surface of heat pipe condenser section is determined by experimental method and then predicted by empirical correlations. The results obtained from experimental and Churchill and Chu relation for laminar are in fair agreement with not more than 22% deviation. It is elucidated the maximum heat transfer coefficient of 31.2 W/(m2-K) at 25˚ tilt angle and minimal condenser heat transfer coefficient of 26.4 W/(m2-K) is seen at 45˚ tilt angle and 200 ml/min mass flow rate. Inclination angle also affects the thermal performance of heat pipe. Beyond 25o inclination, heat transport rate starts to decrease.

Keywords: Annular fins, condenser heat transfer coefficient, heat pipe, natural convection, tilt angle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 794
308 Nickel Electroplating in Post Supercritical CO2 Mixed Watts Bath under Different Agitations

Authors: Chun-Ying Lee, Kun-Hsien Lee, Bor-Wei Wang

Abstract:

The process of post-supercritical CO2 electroplating uses the electrolyte solution after being mixed with supercritical CO2 and released to atmospheric pressure. It utilizes the microbubbles that form when oversaturated CO2 in the electrolyte returns to gaseous state, which gives the similar effect of pulsed electroplating. Under atmospheric pressure, the CO2 bubbles gradually diffuse. Therefore, the introduction of ultrasound and/or other agitation can potentially excite the CO2 microbubbles to achieve an electroplated surface of even higher quality. In this study, during the electroplating process, three different modes of agitation: magnetic stirrer agitation, ultrasonic agitation and a combined mode (magnetic + ultrasonic) were applied, respectively, in order to obtain an optimal surface morphology and mechanical properties for the electroplated Ni coating. It is found that the combined agitation mode at a current density of 40 A/dm2 achieved the smallest grain size, lower surface roughness, and produced an electroplated Ni layer that achieved hardness of 320 HV, much higher when compared with conventional method, which were usually in the range of 160 to 300 HV. However, at the same time, the electroplating with combined agitation developed a higher internal stress of 320 MPa due to the lower current efficiency of the process and finer grain in the coating. Moreover, a new control methodology for tailoring the coating’s mechanical property through its thickness was demonstrated by the timely introduction of ultrasonic agitation during the electroplating process with post supercritical CO2 mixed electrolyte.

Keywords: Nickel electroplating, micro-bubbles, supercritical carbon dioxide, ultrasonic agitation, magnetic stirring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 832