
 

 

  

Abstract—This paper presents a methodology for probabilistic 

assessment of bearing capacity and prediction of failure mechanism 

of masonry vaults at the ultimate state with consideration of the 

natural variability of Young’s modulus of stones. First, the 

computation model is explained. The failure mode corresponds to the 

four-hinge mechanism. Based on this consideration, the study of a 

vault composed of 16 segments is presented. The Young’s modulus of 

the segments is considered as random variable defined by a mean 

value and a coefficient of variation. A relationship linking the vault 

bearing capacity to the voussoirs modulus variation is proposed. The 

most probable failure mechanisms, in addition to that observed in the 

deterministic case, are identified for each variability level as well as 

their probability of occurrence. The results show that the mechanism 

observed in the deterministic case has decreasing probability of 

occurrence in terms of variability, while the number of other 

mechanisms and their probability of occurrence increases with the 

coefficient of variation of Young’s modulus. This means that if a 

significant change in the Young’s modulus of the segments is proven, 

taking it into account in computations becomes mandatory, both for 

determining the vault bearing capacity and for predicting its failure 

mechanism. 

 

Keywords—Masonry, mechanism, probability, variability, vault.  

I. INTRODUCTION 

VER the last two decades, a large amount of researches 

on masonry structures or masonry structural elements 

behavior has been conducted. By introducing the concept of 

representative volume element (RVE) of the composite 

material (stone or brick and mortar), many authors have 

proposed homogenization models considering the masonry as 

a periodic structure [1]-[6] or non-periodic [7], [8] using the 

"test window" method coupled with a probabilistic 

convergence criterion [9] previously developed for the analysis 

of composite structures. The objective of these models is to 

statistically determine the most representative elementary 

volume. However, the homogenized characteristics of RVE are 

obtained by considering the Young's modulus as constant 

value for all solid blocks (deterministic approach). 

Nonetheless, this setting can considerably vary in a ratio of 1 
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to 2 for stones extracted from the same massif [10]. It might be 

necessary to take this variation into account for the analysis. 

The aim of this study is to develop a methodology allowing to 

assess the bearing capacity and to predict the failure 

mechanism of masonry vaults with consideration of the natural 

Young's modulus variability of stones.  

The masonry arches behavior assessment requires the use of 

several methods: MEXE (Military Engineering Experimental 

Establishment) [11], [12], the limit analysis method [13]-[16], 

REAM (Railway Empirical Assessment Method) [17]-[19], 

yield design method [20], [21], the finite element method [22]- 

[24] and finally the distinct element method [25], [26]. Most of 

these methods provide the basis for the development of several 

software packages and computer-based applications (Archie-

M, Voute, Ring, Diana...). The vast majority of available 

assessment methods of masonry vaults are deterministic. They 

can predict the bearing capacity provided that all variables 

involved in the mechanical response are assumed as 

deterministic values, which are not really the case due to 

uncertainties involved in the geometry, materials, loads ... etc. 

The reliability-based assessment methods of structures have 

been developed to address these issues. These methods take 

into account the uncertainties on the involved variables, 

through Monte Carlo simulations and other reliability methods 

[27]. Several experiences have shown the large amount of 

money that can be saved by efficient and accurate assessment 

based on a probabilistic approach [28]. The latter often 

requires making a large number of mechanical response 

calculations. That is why an interesting compromise was found 

between the computation time and accuracy, through modeling 

the arch with 2D beam finite element.  

In this study, the analysis of an arch composed of 16 

segments is presented. The Young's modulus of segments is 

assumed as random variable defined by a mean value and a 

coefficient of variation CV. The arch is treated as a plane 

structure formed of beam elements loaded in bending and 

compression. The hinge appearance is conditioned by the 

central third theorem where the formation of four successive 

hinges is synonymous to failure mechanism. The calculation is 

implemented in a software application developed for this 

purpose (ArcProg_Z).  

II. CALCULATION MODEL 

The failure mode of a vault is global. Indeed, experimental 

tests carried out on bridges show that the failure of an arch is 

of a global nature more than due to the failure of one of its 

components [28]. The chosen model allows performing this 

global analysis of the vault while minimizing the computation 
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time. The homogenized characteristics of each voussoir are 

represented at its average fiber. The tensile strength is assumed 

nil, which satisfies the requirements of the central third 

theorem adopted in this study and hinge formation conditions. 

Backfill reaction is modeled by horizontal and vertical springs 

acting at each node (i) and affected by stiffness coefficients (khi 

and kvi) taking into account the backfill modulus and contact 

surface corresponding to each node, as shown in Fig. 1. This 

spring stiffness is nil when the deformations have for effect to 

separate the structure from the backfill.  

The principle of the probabilistic calculation is to assign 

random value to the segment Young's moduli (Fig. 2). 

ArcProg_Z calculates the critical load value and its position 

and determines the failure mechanism for each assigned 

combination of sampled values. The calculation is repeated for 

10,000 Monte Carlo simulations leading to a total of 160,000 

Young's modulus values randomly generated by the developed 

program following a truncated normal distribution. No 

negative value of the module was generated due to truncation 

(the chosen normal law parameters make the probability very 

low), no statistical bias is introduced into the method. 

 

 

Fig. 1 Modeling of backfill reaction (ArcProg_Z) 

 

Three values of the coefficient of variation (5%, 10% and 

20%) of the Young's modulus were considered for this 

simulation, in order to determine the influence of this 

variability on the global vault behavior; the mean value being 

equal to 48GPa. The question marks in Fig. 2 identify the 

problem unknowns. For each affected combination of modulus 

values, the position of the load point is moved along the half-

vault, with constant steps of 0.25m. Then, ArcProg_Z 

determines the critical load value for each position by 

increasing the point load by steps of 5 kN until the appearance 

of 4 hinges satisfying the failure criterion. The minimum value 

of the calculated critical load corresponding to the vault 

bearing capacity is then deduced, as well as the corresponding 

position X of this minimum load and the position of the 4 

hinges forming the failure mechanism. The studied vault is 

composed of 16 segments of 0.58 m thick (Fig. 2), with a span 

of 6.18 m, a rise of 2.50 m, a filling depth above the crown of 

0.85 m and a track thickness of 0.28 m. The physical and 

mechanical parameters are summarized in Table I.  

The obtained results are analyzed from three perspectives: 

The first concerns the vault bearing capacity variation 

depending on the combinations of modulus values of the 

segments. The second is related to the position of the formed 

hinges and the third perspective studies the importance of 

taking account of this variability in the mechanical response 

calculation. 

 

Fig. 2 Loading model 
 

TABLE I 

PHYSICAL AND MECHANICAL CHARACTERISTICS OF THE STUDIED VAULT 

Designation Unit Value 

Pavement unit weight kN/m3 21 

Backfill unit weight kN/m3 18 

Backfill cohesion kN/m2 0 

Backfill angle of shearing resistance rad π ∕ 6 

Pavement angle of diffusion rad π ∕ 6 

Backfill angle of diffusion rad π ∕ 6 

Tensile resistance of voussoirs kN/m2 0 

Backfill Young modulus kN/m2 20.103 
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III. INFLUENCE OF YOUNG’S MODULUS VARIABILITY ON THE 

BEARING CAPACITY 

The 10,000 critical load values resulting from Monte Carlo 

simulations are ordered in size, and grouped into size ranges of 

equal intervals of 5 kN. If the critical loads Pcr1, Pcr2 … Pcrk 

appear a1, a2 …, ak times, with Pcr1 < Pcr2 < … < Pcrk, the 

probability of each of these loads is given by: 

 ������� = 	
∑ 	
� = 	
�����                                 (1) 

 
This probability estimate is an approximation of the 

probability density function of the load capacity P(Pcri). Fig. 3 

gives the probability density of critical load and its distribution 

function for the coefficient of variation CV of 10%. The 

cumulative probability estimate is given by: 
 ������� = ∑ 	
�∑ 	
� = ∑ 	
������                                (2) 

 

 

Fig. 3 Probability density and cumulative functions of the load 

capacity (CV = 10%) 

The obtained distributions for the three CV values (5, 10 

and 20%) seem to be symmetrical with mean value of 340 kN. 

Normality test has proved that they were normal distributions 

with a mean value of 340 kN and standard deviations of 6.44, 

12.55 and 27.23 kN (fitting with 0.98%, 0.93% and 4.77% 

error respectively). 

The output data domain (critical load) increases with the 

coefficient of variation. Thus the consideration of the mean 

critical load is inappropriate since the loss of stability will 

result as soon as an extreme variation of Yong modulus of the 

segments is realized. In this case, conservative value 

calculations are required in order to predict the critical limit of 

bearing capacity with sufficient confidence. 

The proportion of the critical loads less than 305 kN (for 

example) can be read directly from the graph of cumulative 

probability in Fig. 4. Table II gives some characteristic values 

of the three dispersion levels. 

A. Modeling of Critical Load Variability 

In all three cases, limiting the vault bearing capacity to 

minimum value ensures its stability with a probability of 

99.8% regardless of Young’s modulus values of different 

segments. If the construction managers consider the lower 

confidence bound (95% for example), the vault bearing 

capacity is increased by 4 to 16%. In all cases, assuming that 

the mean value of critical load is the vault bearing capacity can 

overestimate the safety of the structure. In this context, it 

should be clarified that the mean value corresponds to the vault 

bearing capacity without taking into account the variability of 

Young’s modulus (the deterministic case), and additional 

safety factors should be considered. 

 
TABLE II 

CHARACTERISTIC VALUES 

 Domain of Pcr Quantiles 

 Min Max μ σ 1% 2% 3% 4% 5% 

Pcr(CV=5%) 315 370 340 6.44 324.38 326.14 327.25 328.09 328.77 

Pcr(CV=10%) 305 390 340 12.55 310.59 314.02 316.19 317.82 319.15 

Pcr(CV=20%) 250 515 340 27.23 277.93 285.35 290.35 293.60 296.48 

μ = mean value, σ = standard deviation 

 

 

Fig. 4 Probability density and distribution function of Pcr (CV = 5%, 

10% and 20%) 

 

It is therefore important to find a relationship that links the 

critical load to Young’s modulus variability of various 

segments, in order to define the influence of this variability on 

the vault bearing capacity. For that purpose, a linear regression 

using the least square method has been performed, leading to: 

 

��� = 10��. �4.88 �� + 3.85 �� + 1.58 � + 0.44 �! + 1.7 �# + 4.92 �& + 6.85 �� +  4.96 �( +  0.45 �) − 4.74 ��� − 8.77 ��� −10.82 ��� − 10.46 �� − 7.28 ��! − 0.17 ��# + 12.34 ��&+ + 341     

(3) 

 

This relationship can be written as: 

 ��� = ∑ ,������&� + ��           (4) 

 

The relationship (4) is composed of two parts. The first part 

is variable and presents the influence of Young’s modulus 

variability on the critical load. The second part is constant, 

which is the mean value of the critical load. In the case of 

constant modulus E throughout the vault, the first part of the 

above relationship is nil, which requires: 
 

- ∑ ,� = 0  �&�  ��� = �� = .                                  (5) 
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The final relationship is written as: 

 ��� = ∑ ,������&� + .                                  (6) 

 

The relationship (6) is valid for a point load applied on the 

left side of the vault. For a load applied on the right side, the 

relationship becomes: 

 ��� = ∑ ,���������&� + .                               (7) 

 

If we put: Ei = Ē + ΔEi, where Ē is the mean value of 

Young’s modulus. The relationship (4) gives: 

 ��� = ∑ ,������&� + . = ∑ ,���/ + ∆����&� + .        =   �/ ∑ ,��&� +∑ ,��∆����&� + .                   (8) 
 ∑ ,��&� = 0 ⇒ ��� = ∑ ,��∆����&� + .           (9) 

 

Similarly (7) takes the form: 

 ��� = ∑ ,��∆�������&� + .                            (10) 

 

Finally, (9) and (10) are respectively written as: 

 ��� = 10��. �4.88 ∆�� + 3.85 ∆�� + 1.58 ∆� + 0.44 ∆�! +1.7 ∆�# +  4.92 ∆�& + 6.85 ∆�� +  4.96 ∆�( +  0.45 ∆�) −4.74 ∆��� − 8.77 ∆��� − 10.82 ∆��� − 10.46 ∆�� − 7.28 ∆��! −0.17 ∆��# + 12.34 ∆��&+ + 341   (11) 
 ��� = 10��. �4.88 ∆��& + 3.85 ∆��# + 1.58 ∆��! + 0.44 ∆�� +1.7 ∆��� +  4.92 ∆��� + 6.85 ∆��� +  4.96 ∆�) +  0.45 ∆�( −4.74 ∆�� − 8.77 ∆�& − 10.82 ∆�# − 10.46 ∆�! − 7.28 ∆� −0.17 ∆�� + 12.34 ∆��+ + 341    (12) 

B. Result Analysis 

By observing (11) and (12), it can be seen that Young’s 

modulus variations of segments number: 1, 8, 9 and 16 are 

weighted by positive coefficients regardless the point load 

position. It means that ensuring that these segments have E 

values greater than the mean value Ē will certainly lead to an 

increase of the vault bearing capacity. The variation of the 

modulus would have an adverse affect when the point load 

switches to the other side of the vault (Table III). Conversely, 

a decrease in modulus values of the above-mentioned 

segments gives negative variations ΔE, weighted by positive 

coefficients, leads to a decrease of the vault bearing capacity. 

Table III shows that from the segments number 2 to 7 and 

from 10 to 15 the modulus variation must be low, i.e. the 

modulus of these segments must be close to the average value, 

especially for segments 3 to 6 and for segments 11 to 14 which 

are the vault haunches. A thickness loss at one of these 

segments substantially decreases the vault bearing capacity, 

and consequently increases the collapse risk of the structure. It 

is therefore recommended during inspection to start first by the 

springers of the vault then, the haunches and finally the 

keystone. The same priority order is maintained in the repair 

phase. This can be used to optimize the inspection and repair 

schedules, and consequently, to reduce the budget expenditure. 
 

TABLE III 

A_I VALUES ACCORDING TO THE POSITION OF THE POINT LOAD P 

Number of 
Voussoir 

P applied on : 
Number of 
Voussoir 

P applied on : 

Left side 
 [x 10-7] 

Right side 
 [x 10-7] 

Left side 
 [x 10-7] 

Right side 
 [x 10-7] 

1 4.88  12.34 9 0.45 4.96 

2 3.85 -0.17 10 -4.74 6.85 

3 1.58 -7.28 11 -8.77 4.92 

4 0.44 -10.46 12 -10.82 1.7 

5 1.7 -10.82 13 -10.46 0.44 

6 4.92 -8.77 14 -7.28 1.58 

7 6.85 -4.74 15 -0.17 3.85 

8 4.96 0.45 16 12.34 4.88 

IV. INFLUENCE OF YOUNG’S MODULUS VARIABILITY ON THE 

FAILURE MECHANISM 

ArcProg_Z determines the hinge positions of the mechanism 

at failure. The hinge position is then determined in the three 

treated cases. The search results are sorted by mechanism. The 

probability of appearance of each hinge is also calculated. In 

the following section, the obtained results are analyzed for 

each CV values. 

A. Failure Mechanism with CV = 5% 

Fig. 5 gives a graphic summary of the obtained results in 

both cases of point load position, on the left (Fig. 5 (a)), and on 

the right (Fig. 5 (b)) of the vault key. The analysis developed 

in this subsection concerns the case of Fig. 5 (a) relative to 

point load applied on the left side of the vault. The 

methodology is the same for the case of load applied on the 

right of the keystone (Fig. 5 (b)) and leads to the same results. 

Out of the 10,000 random simulations of the modulus 

distributions of the segments, the first hinge is observed at the 

joint number 2 with 100% of probability: 

 ��1� = 1                                        (13) 

 

The second hinge occurres at joint 17 with the same 

probability: 
 ��17|1� = 1                                      (14) 

 

Generally, the hinge position depends on those of the 

previous but the results have shown that the third hinge may 

occur at one of the two joints: either the joint number 6 with 

13.7 probability of occurrence or the joint number 7 with a 

probability of 86.3%. 
 -��6|1,17� = 0.137 ��7|1,17� = 0.863                                       (15) 

 

In this case, the first and the second hinge are observed at 

only one position, which means that the fourth hinge position 

depends solely on the position of the third one. The formation 

of the fourth hinge is synonymous to failure and expected to 

occur at two joints: 12 or 13. The result (16) gives the values 

of the probability of appearance of the fourth hinge at these 

joints conditioned by the previous hinge positions. 

The results (16) reveal the probability of occurrence of three 
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mechanisms whose values strongly favor the mechanism (2-

17-7-13) that corresponds to the same mechanism observed in 

the deterministic case where the variability of the Young’s 

modulus is not taken into account. Nevertheless, the two other 

mechanisms are also observed, which should be taken even 

more seriously, namely: the mechanism (12-6-17-2) with 

6.96% probability to be the failure mechanism and the 

mechanism (13-6-17-2) with probability of occurrence of 

6.73%.  

 

4 ��12|6,1,17� = 0.07��13|6,1,17� = 0.067��13|7,1,17� = 0.863                          (16) 

 

 

Fig. 5 Probability of hinges appearance (CV = 5%) 
 

 

Fig. 6 Probability of hinges appearance (CV = 10%) 
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Fig. 7 Probability of hinges appearance (CV = 20%) 

 
B. Failure Mechanism with CV = 10% 

In addition to the mechanism formed in the deterministic 

case, four other mechanisms are observed: (12-1-17-6), (13-1-

17-6), (12-2-17-6) and (13-2-17-6) with probabilities of 

occurrence of 0.01%, 0.05%, 19.3% and 9.8% respectively. 

The most probable mechanism is still the mechanism (13-2-

17-7) but with a lower probability: 70.8% rather than 86.3% 

in the previous case, as shown in Fig. 6. The probabilities of 

occurrence of the two observed mechanisms in the first case 

(CV = 5%), namely (2-17-6-12) and (2-17-6-13) have 

increased from 7% to 19.3% and from 6.7% to 9.8% 

respectively, which highlights even more the importance of 

taking into account the variability of Young’s modulus in the 

vault behavior assessment. 

 

 

Fig. 8 Probability of occurrence of observed mechanisms depending 

to coefficient of variation CV 

C. Failure Mechanism with CV = 20% 

In this last case, five other mechanisms are observed with 

significant probabilities: (1-17-6-12), (1-17-6-13), (2-17-6-

12), (2-17-6-13) and (2-17-7-14) with probabilities of 

occurrence of 2.9%, 1.6%, 30.8%, 12.5% and 0.01% 

respectively (Fig. 7). 

The most probable mechanism is once again the mechanism 

(13-2-17-7) but with even lower probability of 52.29%. Fig. 8 

clearly shows the variation of probability of various 

mechanisms depending on the coefficient of variation of the 

Young’s modulus. This means that if a significant change in 

the Young’s modulus of the segments is proven; taking into 

account in the computations becomes mandatory, both for 

determining the vault bearing capacity and for predicting its 

failure mechanism. 

 
TABLE IV 

PROBABILITY OF OCCURRENCE OF OBSERVED MECHANISMS 

CV 
Observed mechanisms  

2-17-7-13 2-17-6-12 2-17-6-13 1-17-6-12 1-17-6-13 2-17-7-14 

0% 100% 0% 0% 0% 0% 0% 

5% 86,31% 6,96% 6,73% 0% 0% 0% 

10% 70,77% 19,34% 9,83% 0,1% 0,5% 0% 

20% 52,29% 30,75% 12,47% 2,89% 1,59% 0,1% 

 

Table IV summarizes all the mechanisms identified for 

each considered CV value and their probability of occurrence. 

V. CONCLUSION 

A methodology for probabilistic assessment of bearing 

capacity and prediction of failure mechanisms of masonry 

vaults at the ultimate state is presented. This methodology 

involves the natural variability of Young’s modulus of vault 
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segments in calculation. Considering the Young’s modulus of 

the segments as random variable allows determining the 

distribution function of the critical load. The calculation has 

been performed for three values of the coefficient of variation 

CV (5%, 10% and 20%).  

The obtained results enabled us to propose relationship 

linking the vault bearing capacity to the segment modulus 

variation. A relationship that allowed identifying the segments 

whose modulus decrease will mostly contribute to the 

decrease of the bearing capacity i.e. segments for which no 

defect is tolerated. This allows us to establish an order of 

priority, valid for both inspection and repair phases: firstly, 

the springing of the vault, secondly, the haunches, and thirdly 

the vault key. This classification may optimize the inspection 

and repair schedules, and consequently, minimizes the budget 

expenses. 

In each case (deterministic, CV = 5%, CV = 10% and CV = 

20%), the failure mechanisms are identified as well as their 

probability of occurrence. The results show that the observed 

mechanism in deterministic case corresponds to that with the 

highest occurrence probability, which decreases depending on 

the coefficient of variation CV, while the number of the other 

mechanisms as well as their occurrence probabilities increase. 

This means that if a significant change in the Young’s 

modulus of the segments is proven, taking it into account in 

the computations becomes mandatory, for both determining 

the vault bearing capacity and for predicting its failure 

mechanism. 
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