Search results for: Electron Phase Coherence
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2119

Search results for: Electron Phase Coherence

799 Photodetector Engineering with Plasmonic Properties

Authors: Hasan Furkan Kurt, Tugba Nur Atabey, Onat Cavit Dereli, Ahmad Salmanogli, H. Selcuk Gecim

Abstract:

In the article, the main goal is to study the effect of the plasmonic properties on the photocurrent generated by a photodetector. Fundamentally, a typical photodetector is designed and simulated using the finite element methods. To utilize the plasmonic effect, gold nanoparticles with different shape, size and morphology are buried into the intrinsic region. Plasmonic effect is arisen through the interaction of the incoming light with nanoparticles by which electrical properties of the photodetector are manipulated. In fact, using plasmonic nanoparticles not only increases the absorption bandwidth of the incoming light, but also generates a high intensity near-field close to the plasmonic nanoparticles. Those properties strongly affect the generated photocurrent. The simulation results show that using plasmonic nanoparticles significantly enhances the electrical properties of the photodetectors. More importantly, one can easily manipulate the plasmonic properties of the gold nanoparticles through engineering the nanoparticles' size, shape and morphology. Another important phenomenon is plasmon-plasmon interaction inside the photodetector. It is shown that plasmon-plasmon interaction improves the electron-hole generation rate by which the rate of the current generation is severely enhanced. This is the key factor that we want to focus on, to improve the photodetector electrical properties.

Keywords: Nanoparticles, plasmonic, plasmon-plasmon interaction, plasmonic photodetector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 577
798 Unified Gas-Kinetic Scheme for Gas-Particle Flow in Shock-Induced Fluidization of Particles Bed

Authors: Zhao Wang, Hong Yan

Abstract:

In this paper, a unified-gas kinetic scheme (UGKS) for the gas-particle flow is constructed. UGKS is a direct modeling method for both continuum and rarefied flow computations. The dynamics of particle and gas are described as rarefied and continuum flow, respectively. Therefore, we use the Bhatnagar-Gross-Krook (BGK) equation for the particle distribution function. For the gas phase, the gas kinetic scheme for Navier-Stokes equation is solved. The momentum transfer between gas and particle is achieved by the acceleration term added to the BGK equation. The new scheme is tested by a 2cm-in-thickness dense bed comprised of glass particles with 1.5mm in diameter, and reasonable agreement is achieved.

Keywords: Gas-particle flow, unified gas-kinetic scheme, momentum transfer, shock-induced fluidization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 597
797 A Metallography Study of Secondary A226 Aluminium Alloy Used in Automotive Industries

Authors: Lenka Hurtalová, Eva Tillová, Mária Chalupová, Juraj Belan, Milan Uhríčik

Abstract:

The secondary alloy A226 is used for many automotive casting produced by mould casting and high pressure die casting. This alloy has excellent castability, good mechanical properties and cost-effectiveness. Production of primary aluminium alloys belong to heavy source fouling of life environs. The European Union calls for the emission reduction and reduction in energy consumption therefore increase production of recycled (secondary) aluminium cast alloys. The contribution is deal with influence of recycling on the quality of the casting made from A226 in automotive industry. The properties of the casting made from secondary aluminium alloys were compared with the required properties of primary aluminium alloys. The effect of recycling on microstructure was observed using combination different analytical techniques (light microscopy upon black-white etching, scanning electron microscopy - SEM upon deep etching and energy dispersive X-ray analysis - EDX). These techniques were used for the identification of the various structure parameters, which was used to compare secondary alloy microstructure with primary alloy microstructure.

Keywords: A226 secondary aluminium alloy, deep etching, mechanical properties, recycling foundry aluminium alloy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3282
796 Cold Spray Deposition of SS316L Powders on Al5052 Substrates and Their Potential Using for Biomedical Applications

Authors: B. Dikici, I. Ozdemir, M. Topuz

Abstract:

The corrosion behaviour of 316L stainless steel coatings obtained by cold spray method was investigated in this study. 316L powders were deposited onto Al5052 aluminum substrates. The coatings were produced using nitrogen (N2) process gas. In order to further improve the corrosion and mechanical properties of the coatings, heat treatment was applied at 250 and 750 °C. The corrosion performances of the coatings were compared using the potentiodynamic scanning (PDS) technique under in-vitro conditions (in Ringer’s solution at 37 °C). In addition, the hardness and porosity tests were carried out on the coatings. Microstructural characterization of the coatings was carried out by using scanning electron microscopy attached with energy dispersive spectrometer (SEM-EDS) and X-ray diffraction (XRD) technique. It was found that clean surfaces and a good adhesion were achieved for particle/substrate bonding. The heat treatment process provided both elimination of the anisotropy in the coating and resulting in healing-up of the incomplete interfaces between the deposited particles. It was found that the corrosion potential of the annealed coatings at 750 °C was higher than that of commercially 316 L stainless steel. Moreover, the microstructural investigations after the corrosion tests revealed that corrosion preferentially starts at inter-splat boundaries.

Keywords: 316L, biomaterials, cold spray, heat treatment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2277
795 Growing Zeolite Y on FeCrAlloy Metal

Authors: Rana Th. A. Al-Rubaye, Burcin Atilgan, Richard J. Holmes, Arthur A. Garforth

Abstract:

Structured catalysts formed from the growth of zeolites on substrates is an area of increasing interest due to the increased efficiency of the catalytic process, and the ability to provide superior heat transfer and thermal conductivity for both exothermic and endothermic processes. However, the generation of structured catalysts represents a significant challenge when balancing the relationship variables between materials properties and catalytic performance, with the Na2O, H2O and Al2O3 gel composition paying a significant role in this dynamic, thereby affecting the both the type and range of application. The structured catalyst films generated as part of this investigation have been characterised using a range of techniques, including X-ray diffraction (XRD), Electron microscopy (SEM), Energy Dispersive X-ray analysis (EDX) and Thermogravimetric Analysis (TGA), with the transition from oxide-on-alloy wires to hydrothermally synthesised uniformly zeolite coated surfaces being demonstrated using both SEM and XRD. The robustness of the coatings has been ascertained by subjecting these to thermal cycling (ambient to 550oC), with the results indicating that the synthesis time and gel compositions have a crucial effect on the quality of zeolite growth on the FeCrAlloy wires. Finally, the activity of the structured catalyst was verified by a series of comparison experiments with standard zeolite Y catalysts in powdered pelleted forms.

Keywords: FeCrAlloy, Structured catalyst, and Zeolite Y.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2428
794 Natural Gas Sweetening by Wetted-Wire Column

Authors: Sarah Taheri, Shahram Ghanbari Pakdehi, Arash Rezaei

Abstract:

Natural gas usually includes H2S component which is very toxic, hazardous and corrosive to environment, human being and process equipments, respectively. Therefore, sweetening of the gas (separation of H2S) is inevitable. To achieve this purpose, using packed-bed columns with liquid absorbents such as MEA or DEA is very common. Due to some problems of usual packed columns especially high pressure drop of gas phase, a novel kind of them called wetted-wire column (WWC) has been invented. The column decreases the pressure drop significantly and improves the absorption efficiency. The packings are very thin rods (like wire) and as long as column. The column has 100 wires with a triangular arrangement and counter current flows of gas and liquid phases. The observation showed that at the same conditions, the absorption performance was quite comparable to conventional packed-bed towers and a very low pressure drop.

Keywords: H2S, Natural gas, separation, wetted-wire column (WWC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1986
793 Induction Motor Analysis Using LabVIEW

Authors: E. Ramprasath, P. Manojkumar, P. Veena

Abstract:

Proposed paper dealt with the modelling and analysis of induction motor based on the mathematical expression using the graphical programming environment of Laboratory Virtual Instrument Engineering Workbench (LabVIEW). Induction motor modelling with the mathematical expression enables the motor to be simulated with the various required parameters. Owing to the invention of variable speed drives study about the induction motor characteristics became complex. In this simulation motor internal parameter such as stator resistance and reactance, rotor resistance and reactance, phase voltage, frequency and losses will be given as input. By varying the speed of motor corresponding parameters can be obtained they are input power, output power, efficiency, torque induced, slip and current.

Keywords: Induction motor, LabVIEW software, modelling and analysis, electrical and mechanical characteristics of motor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3563
792 CFD Simulation of Dense Gas Extraction through Polymeric Membranes

Authors: Azam Marjani, Saeed Shirazian

Abstract:

In this study is presented a general methodology to predict the performance of a continuous near-critical fluid extraction process to remove compounds from aqueous solutions using hollow fiber membrane contactors. A comprehensive 2D mathematical model was developed to study Porocritical extraction process. The system studied in this work is a membrane based extractor of ethanol and acetone from aqueous solutions using near-critical CO2. Predictions of extraction percentages obtained by simulations have been compared to the experimental values reported by Bothun et al. [5]. Simulations of extraction percentage of ethanol and acetone show an average difference of 9.3% and 6.5% with the experimental data, respectively. More accurate predictions of the extraction of acetone could be explained by a better estimation of the transport properties in the aqueous phase that controls the extraction of this solute.

Keywords: Solvent extraction, Membrane, Mass transfer, Densegas, Modeling

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1564
791 An On-chip LDO Voltage Regulator with Improved Current Buffer Compensation

Authors: Lv Xiaopeng, Bian Qiang, Yue Suge

Abstract:

A fully on-chip low drop-out (LDO) voltage regulator with 100pF output load capacitor is presented. A novel frequency compensation scheme using current buffer is adopted to realize single dominant pole within the unit gain frequency of the regulation loop, the phase margin (PM) is at least 50 degree under the full range of the load current, and the power supply rejection (PSR) character is improved compared with conventional Miller compensation. Besides, the differentiator provides a high speed path during the load current transient. Implemented in 0.18μm CMOS technology, the LDO voltage regulator provides 100mA load current with a stable 1.8V output voltage consuming 80μA quiescent current.

Keywords: capacitor-less LDO, frequency compensation, transient response, power supply rejection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4641
790 Lean Thinking Process in the Determination of Design Suggestions to Optimize Treatment of WEEE

Authors: Anastasia Katsamaki, Nikolaos Bilalis, Vassilis Dedoussis

Abstract:

This work proposes a set of actions to assist redesign procedure in existing products of Electric and Electronic Equipment (EEE). The aim is to improve their environmental behavior after their withdrawal in the End-of-Life (EOL) phase. In the beginning data collection takes place. Then follows selection and implementation of the optimal EOL Treatment Strategy (EOL_TS) and its results- evaluation concerning the environment. In parallel, product design characteristics that can be altered are selected based on their significance for the environment in the EOL stage. All results from the previous stages are combined and possible redesign actions are formulated for further examination and afterwards configuration in the design stage. The applied method to perform these tasks is Lean Thinking (LT). At the end, results concerning the application of the proposed method on a distribution transformer are presented.

Keywords: End-of-life treatment, Lean thinking, WEEE

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1431
789 Effective Design Parameters on the End Effect in Single-Sided Linear Induction Motors

Authors: A. Zare Bazghaleh, M. R. Naghashan, H. Mahmoudimanesh, M. R. Meshkatoddini

Abstract:

Linear induction motors are used in various industries but they have some specific phenomena which are the causes for some problems. The most important phenomenon is called end effect. End effect decreases efficiency, power factor and output force and unbalances the phase currents. This phenomenon is more important in medium and high speeds machines. In this paper a factor, EEF , is obtained by an accurate equivalent circuit model, to determine the end effect intensity. In this way, all of effective design parameters on end effect is described. Accuracy of this equivalent circuit model is evaluated by two dimensional finite-element analysis using ANSYS. The results show the accuracy of the equivalent circuit model.

Keywords: Linear induction motor, end effect, equivalent circuitmodel, finite-element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2772
788 Microstructure and Hot Deformation Behavior of Fe-20Cr-5Al Alloy

Authors: Jung-Ho Moon, Tae Kwon Ha

Abstract:

High temperature deformation behavior of cast Fe-20Cr-5Al alloy has been investigated in this study by performing tensile and compression tests at temperatures from 1100 to 1200oC. Rectangular ingots of which the dimensions were 300×300×100 in millimeter were cast using vacuum induction melting. Phase equilibrium was calculated using the FactSage®, thermodynamic software and database. Tensile strength of cast Fe-20Cr-5Al alloy was 4 MPa at 1200oC. With temperature decreased, tensile strength increased rapidly and reached up to 13 MPa at 1100oC. Elongation also increased from 18 to 80% with temperature decreased from 1200oC to 1100oC. Microstructure observation revealed that M23C6 carbide was precipitated along the grain boundary and within the matrix.

Keywords: Fe-20Cr-5Al alloy, high temperature deformation, aging treatment, microstructure, mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2127
787 Sintering Atmosphere Effects on the Densification of Al-SiC Compacts

Authors: Tadeusz Pieczonka, Jan Kazior

Abstract:

The influence of SiC powder addition on densification of Al-SiC compacts during sintering in different atmospheres was investigated. It was performed in a dilatometer in flowing nitrogen, nitrogen/hydrogen (95/5 by volume) and argon. Fine, F500 grade of SiC powder was used. Mixtures containing 10 and 30 vol.% of SiC reinforcement were prepared in a Turbula mixer. Green compacts of about 82% of theoretical density were made of each mixture. For comparison, compacts made of pure aluminum powder were also investigated. It was shown that nitrogen is the best sintering atmosphere because only in this atmosphere did shrinkage take place. Its amount is lowered by ceramic powder addition, i.e. the more SiC the less densification occurs. Additionally, the formation of clusters, enhanced in compacts containing 30 vol.% SiC, is also responsible for limiting the shrinkage. Microstructural examinations of sintered composites revealed that sintering of compacts occurs in the presence of the liquid phase exclusively in nitrogen.

Keywords: Al-SiC composites, densification, sintering atmosphere.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3483
786 A Practical Method for Load Balancing in the LV Distribution Networks Case Study: Tabriz Electrical Network

Authors: A. Raminfard, S. M. Shahrtash

Abstract:

In this paper, a new efficient method for load balancing in low voltage distribution systems is presented. The proposed method introduces an improved Leap-frog method for optimization. The proposed objective function includes the difference between three phase currents, as well as two other terms to provide the integer property of the variables; where the latter are the status of the connection of loads to different phases. Afterwards, a new algorithm is supplemented to undertake the integer values for the load connection status. Finally, the method is applied to different parts of Tabriz low voltage network, where the results have shown the good performance of the proposed method.

Keywords: Load balancing, improved leap-frog method, optimization algorithm, low voltage distribution systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3401
785 Effects of Double Delta Doping on Millimeter and Sub-millimeter Wave Response of Two-Dimensional Hot Electrons in GaAs Nanostructures

Authors: N. Basanta Singh, Sanjoy Deb, G. P Mishra, Subir Kumar Sarkar

Abstract:

Carrier mobility has become the most important characteristic of high speed low dimensional devices. Due to development of very fast switching semiconductor devices, speed of computer and communication equipment has been increasing day by day and will continue to do so in future. As the response of any device depends on the carrier motion within the devices, extensive studies of carrier mobility in the devices has been established essential for the growth in the field of low dimensional devices. Small-signal ac transport of degenerate two-dimensional hot electrons in GaAs quantum wells is studied here incorporating deformation potential acoustic, polar optic and ionized impurity scattering in the framework of heated drifted Fermi-Dirac carrier distribution. Delta doping is considered in the calculations to investigate the effects of double delta doping on millimeter and submillimeter wave response of two dimensional hot electrons in GaAs nanostructures. The inclusion of delta doping is found to enhance considerably the two dimensional electron density which in turn improves the carrier mobility (both ac and dc) values in the GaAs quantum wells thereby providing scope of getting higher speed devices in future.

Keywords: Carrier mobility, Delta doping, Hot carriers, Quantum wells.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1652
784 Optimization of Electromagnetic Interference Measurement by Convolutional Neural Network

Authors: Hussam Elias, Ninovic Perez, Holger Hirsch

Abstract:

With ever-increasing use of equipment, device or more generally any electrical or electronic system, the chance of Electromagnetic incompatibility incidents has considerably increased which demands more attention to ensure the possible risks of these technologies. Therefore, complying with certain Electromagnetic compatibility (EMC) rules and not overtaking an acceptable level of radiated emissions are utmost importance for the diffusion of electronic products. In this paper, developed measure tool and a convolutional neural network were used to propose a method to reduce the required time to carry out the final measurement phase of Electromagnetic interference (EMI) measurement according to the norm EN 55032 by predicting the radiated emission and determining the height of the antenna that meets the maximum radiation value.

Keywords: Antenna height, Convolutional Neural Network, Electromagnetic Compatibility, Mean Absolute Error, position error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 118
783 Web Server with Multi-Agent Support for Medical Practitioners by JADE Technology

Authors: O. Saravanan, A. Nagappan, P. Gnanasekar, S. Sharavanan, D. Vinodkumar, T. Elayabharathi, G. Karthik

Abstract:

The multi-agent system for processing Bio-signals will help the medical practitioners to have a standard examination procedure stored in web server. Web Servers supporting any standard Search Engine follow all possible combinations of the search keywords as an input by the user to a Search Engine. As a result, a huge number of Web-pages are shown in the Web browser. It also helps the medical practitioner to interact with the expert in the field his need in order to make a proper judgment in the diagnosis phase [3].A web server uses a web server plug in to establish and maintained the medical practitioner to make a fast analysis. If the user uses the web server client can get a related data requesting their search. DB agent, EEG / ECG / EMG agents- user placed with difficult aspects for updating medical information-s in web server.

Keywords: DB agent, EEG, ECG, EMG, Web server agent, JADE

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2056
782 Synthesis of SnO Novel Cabbage Nanostructure and Its Electrochemical Property as an Anode Material for Lithium Ion Battery

Authors: Yongkui Cui, Fengping Wang, Hailai Zhao, Muhammad Zubair Iqbal, Ziya Wang, Yan Li, Pengpeng L. V.

Abstract:

The novel 3D SnO cabbages self-assembled by nanosheets were successfully synthesized via template-free hydrothermal growth method under facile conditions. The XRD results manifest that the as-prepared SnO is tetragonal phase. The TEM and HRTEM results show that the cabbage nanosheets are polycrystalline structure consisted of considerable single-crystalline nanoparticles. Two typical Raman modes A1g=210 and Eg=112 cm-1 of SnO are observed by Raman spectroscopy. Moreover, galvanostatic cycling tests has been performed using the SnO cabbages as anode material of lithium ion battery and the electrochemical results suggest that the synthesized SnO cabbage structures are a promising anode material for lithium ion batteries.

Keywords: Hydrothermal process, lithium ion battery, Raman spectroscopy, stannous oxide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2076
781 Diagnosis of Inter Turn Fault in the Stator of Synchronous Generator Using Wavelet Based ANFIS

Authors: R. Rajeswari, N. Kamaraj

Abstract:

In this paper, Wavelet based ANFIS for finding inter turn fault of generator is proposed. The detector uniquely responds to the winding inter turn fault with remarkably high sensitivity. Discrimination of different percentage of winding affected by inter turn fault is provided via ANFIS having an Eight dimensional input vector. This input vector is obtained from features extracted from DWT of inter turn faulty current leaving the generator phase winding. Training data for ANFIS are generated via a simulation of generator with inter turn fault using MATLAB. The proposed algorithm using ANFIS is giving satisfied performance than ANN with selected statistical data of decomposed levels of faulty current.

Keywords: Winding InterTurn fault, ANN, ANFIS, and DWT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2915
780 Analysis of Vortical Structures Generated by the Swirler of Combustion Chamber

Authors: Vladislav A. Nazukin, Valery G. Avgustinovich, Vakhtang V. Tsatiashvili

Abstract:

The most important part of modern lean low NOx combustors is a premixer where swirlers are often used for intensification of mixing processes and further formation of required flow pattern in combustor liner. Swirling flow leads to formation of complex eddy structures causing flow perturbations. It is able to cause combustion instability. Therefore, at design phase, it is necessary to pay great attention to aerodynamics of premixers. Analysis based on unsteady CFD modeling of swirling flow in production combustor swirler showed presence of large number of different eddy structures that can be conditionally divided into three types relative to its location of origin and a propagation path. Further, features of each eddy type were subsequently defined. Comparison of calculated and experimental pressure fluctuations spectrums verified correctness of computations.

Keywords: DES simulation, swirler, vortical structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1861
779 Channel Sounding and PAPR Reduction in OFDM for WiMAX Using Software Defined Radio

Authors: B. Siva Kumar Reddy, B. Lakshmi

Abstract:

This paper addresses the reduction of peak to average power ratio (PAPR) for the OFDM in Mobile-WiMAX physical layer (PHY) standard. In the process, the best achievable PAPR of 0 dB is found for the OFDM spectrum using phase modulation technique which avoids the nonlinear distortion. The performance of the WiMAX PHY standard is handled by the software defined radio (SDR) prototype in which GNU Radio and USRP N210 employed as software and hardware platforms respectively. It is also found that BER performance is shown for different coding and different modulation schemes. To empathize wireless propagation in specific environments, a sliding correlator wireless channel sounding system is designed by using SDR testbed.

Keywords: BER, Channel sounding, GNU Radio, OFDM/OFDMA, USRP N210.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3208
778 A Numerical Simulation of Arterial Mass Transport in Presence of Magnetic Field-Links to Atherosclerosis

Authors: H. Aminfar, M. Mohammadpourfard, K. Khajeh

Abstract:

This paper has focused on the most important parameters in the LSC uptake; inlet Re number and Sc number in the presence of non-uniform magnetic field. The magnetic field is arising from the thin wire with electric current placed vertically to the arterial blood vessel. According to the results of this study, applying magnetic field can be a treatment for atherosclerosis by reducing LSC along the vessel wall. Homogeneous porous layer as a arterial wall has been regarded. Blood flow has been considered laminar and incompressible containing Ferro fluid (blood and 4 % vol. Fe3O4) under steady state conditions. Numerical solution of governing equations was obtained by using the single-phase model and control volume technique for flow field.

Keywords: LDL Surface Concentration (LSC), Magnetic field, Computational fluid dynamics, Porous wall.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1547
777 Dimensioning of Subsynchronous Cascade for Speed Regulation of Two-Motors 6kv Conveyer Drives

Authors: M. Kasumović, A. Hodžić, M. Tešanović

Abstract:

One way for optimum loading of overdimensioning conveyers is speed (capacity) decrement, with attention for production capabilities and demands. At conveyers which drives with three phase slip-ring induction motor, technically reasonable solution for conveyer (driving motors) speed regulation is using constant torque subsynchronous cascade with static semiconductor converter and transformer for energy reversion to the power network. In the paper is described mathematical model for parameter calculation of two-motors 6 kV subsynchronous cascade. It is also demonstrated that applying of this cascade gave several good properties, foremost in electrical energy saving, also in improving of other energy indexes, and finally that results in cost reduction of complete electrical motor drive.

Keywords: Conveyer with rubber belt, electrical motor drive, sub synchronous cascade

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1921
776 Investigation of Titanium Oxide Layer in Thermal-Electrochemical Anodizing of Ti6Al4V Alloy

Authors: Z. Abdolldhi, A. A. Ziaee M., A. Afshar

Abstract:

In this paper the combination of thermal oxidation and electrochemical anodizing processes is used to produce titanium oxide layers. The response of titanium alloy Ti6Al4V to oxidation processes at various temperatures and electrochemical anodizing in various voltages are investigated. Scanning electron microscopy (SEM); X-Ray Diffraction (XRD) and porosity determination have been used to characterize the oxide layer thickness, surface morphology, oxide layer-substrate adhesion and porosity. In the first experiment, samples modified by thermal oxidation process then followed by electrochemical anodizing. Second experiment consists of surfaces modified by electrochemical anodizing process and then followed by thermal oxidation. The first method shows better properties than other one. In second experiment, Surfaces modified were achieved by thicker and more adherent thick oxide layers on titanium surface. The existence of an electrochemical anodized oxide layer did not improve the adhesion of thermal oxide layer. The high temperature, thermal formation of an oxide layer leads to a coarse oxide grain morphology and a complete oxidative particle. In addition, in high temperature oxidation porosity content is increased. The oxide layer of thermal oxidation and electrochemical anodizing processes; on Ti–6Al–4V substrate was covered with different colored oxide layers.

Keywords: Electrochemically anodizing, Porosity, Thermaloxidation, Ti6Al4 alloy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3353
775 Inversion Layer Effective Mobility Model for Pocket Implanted Nano Scale n-MOSFET

Authors: Muhibul Haque Bhuyan, Quazi D. M. Khosru

Abstract:

Carriers scattering in the inversion channel of n- MOSFET dominates the drain current. This paper presents an effective electron mobility model for the pocket implanted nano scale n-MOSFET. The model is developed by using two linear pocket profiles at the source and drain edges. The channel is divided into three regions at source, drain and central part of the channel region. The total number of inversion layer charges is found for these three regions by numerical integration from source to drain ends and the number of depletion layer charges is found by using the effective doping concentration including pocket doping effects. These two charges are then used to find the effective normal electric field, which is used to find the effective mobility model incorporating the three scattering mechanisms, such as, Coulomb, phonon and surface roughness scatterings as well as the ballistic phenomena for the pocket implanted nano-scale n-MOSFET. The simulation results show that the derived mobility model produces the same results as found in the literatures.

Keywords: Linear Pocket Profile, Pocket Implanted n-MOSFET, Effective Electric Field and Effective Mobility Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1881
774 Gasoline and Diesel Production via Fischer- Tropsch Synthesis over Cobalt Based Catalyst

Authors: N. Choosri, N. Swadchaipong, T. Utistham, U. W. Hartley

Abstract:

Performance of a cobalt doped sol-gel derived silica (Co/SiO2) catalyst for Fischer–Tropsch synthesis (FTS) in slurryphase reactor was studied using paraffin wax as initial liquid media. The reactive mixed gas, hydrogen (H2) and carbon monoxide (CO) in a molar ratio of 2:1, was flowed at 50 ml/min. Braunauer-Emmett- Teller (BET) surface area and X-ray diffraction (XRD) techniques were employed to characterize both the specific surface area and crystallinity of the catalyst, respectively. The reduction behavior of Co/SiO2 catalyst was investigated using the Temperature Programmmed Reduction (TPR) method. Operating temperatures were varied from 493 to 533K to find the optimum conditions to maximize liquid fuels production, gasoline and diesel.

Keywords: Fischer Tropsch synthesis, slurry phase, Co/SiO2, operating temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4091
773 Isobaric Vapor-Liquid Equilibrium of Binary Mixture of Methyl Acetate with Isopropylbenzene at 97.3 kPa

Authors: Seema Kapoor, Baljinder K. Gill, V. K. Rattan

Abstract:

Isobaric vapor-liquid equilibrium measurements are reported for the binary mixture of Methyl acetate and Isopropylbenzene at 97.3 kPa. The measurements have been performed using a vapor recirculating type (modified Othmer's) equilibrium still. The mixture shows positive deviation from ideality and does not form an azeotrope. The activity coefficients have been calculated taking into consideration the vapor phase nonideality. The data satisfy the thermodynamic consistency tests of Herington and Black. The activity coefficients have been satisfactorily correlated by means of the Margules, NRTL, and Black equations. A comparison of the values of activity coefficients obtained by experimental data with the UNIFAC model has been made.

Keywords: Binary mixture, Isopropylbenzene, Methyl acetate, Vapor-liquid equilibrium.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2174
772 Effect of Surface Pretreatments on Nanocrystalline Diamond Deposited On Silicon Nitride Substrates

Authors: D.N Awang Sh'ri, E. Hamzah

Abstract:

The deposition of diamond films on a Si3N4 substrate is an attractive technique for industrial applications because of the excellent properties of diamond. Pretreatment of substrate is very important prior to diamond deposition to promote nucleation and adhesion between coating and substrate. Deposition of nanocrystalline diamonds films on silicon nitride substrate have been carried out by HF-CVD technique using mixture of methane and hydrogen gases. Different pretreatment of substrate including chemical etching consists of hot acid etching and basic etching and mechanical etching were used to study the quality of diamond formed on the substrate. The structure and morphology of diamond coating have been studied using X-ray Diffraction (XRD) and Scanning Electron Microscope (SEM) while diamond film quality has been characterized using Raman spectroscopy. AFM was used to investigate the effect of chemical etching and mechanical pretreatment on the surface roughness of the substrates and the resultant morphology of nanocrystalline diamond. It was found that diamond film deposited on as-received, basic etched and grinded substrate shows the morphology of cauliflower while blasted and acidic etched substrates produce smooth, continuous diamond film. However, the Raman investigation did not show any deviation in quality of diamond film for any pretreatment.

Keywords: Nanocrystalline diamond, Chemical VaporDeposition, Pretreatment, Silicon Nitride

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2226
771 EASEL: Evaluation of Algorithmic Skills in an Environment Learning

Authors: A. Bey, T. Bensebaa, H. Benselem

Abstract:

This paper attempts to explore a new method to improve the teaching of algorithmic for beginners. It is well known that algorithmic is a difficult field to teach for teacher and complex to assimilate for learner. These difficulties are due to intrinsic characteristics of this field and to the manner that teachers (the majority) apprehend its bases. However, in a Technology Enhanced Learning environment (TEL), assessment, which is important and indispensable, is the most delicate phase to implement, for all problems that generate (noise...). Our objective registers in the confluence of these two axes. For this purpose, EASEL focused essentially to elaborate an assessment approach of algorithmic competences in a TEL environment. This approach consists in modeling an algorithmic solution according to basic and elementary operations which let learner draw his/her own step with all autonomy and independently to any programming language. This approach assures a trilateral assessment: summative, formative and diagnostic assessment.

Keywords: Algorithmic, assessment of competences, Technology Enhanced Learning (TEL).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1418
770 Detecting the Nonlinearity in Time Series from Continuous Dynamic Systems Based on Delay Vector Variance Method

Authors: Shumin Hou, Yourong Li, Sanxing Zhao

Abstract:

Much time series data is generally from continuous dynamic system. Firstly, this paper studies the detection of the nonlinearity of time series from continuous dynamics systems by applying the Phase-randomized surrogate algorithm. Then, the Delay Vector Variance (DVV) method is introduced into nonlinearity test. The results show that under the different sampling conditions, the opposite detection of nonlinearity is obtained via using traditional test statistics methods, which include the third-order autocovariance and the asymmetry due to time reversal. Whereas the DVV method can perform well on determining nonlinear of Lorenz signal. It indicates that the proposed method can describe the continuous dynamics signal effectively.

Keywords: Nonlinearity, Time series, continuous dynamics system, DVV method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1610