Search results for: convolutional neural network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3089

Search results for: convolutional neural network

1829 Decision Making under Strict Uncertainty: Case Study in Sewer Network Planning

Authors: Zhen Wu, David Lupien St-Pierre, Georges Abdul-Nour

Abstract:

In decision making under strict uncertainty, decision makers have to choose a decision without any information about the states of nature. The classic criteria of Laplace, Wald, Savage, Hurwicz and Starr are introduced and compared in a case study of sewer network planning. Furthermore, results from different criteria are discussed and analyzed. Moreover, this paper discusses the idea that decision making under strict uncertainty (DMUSU) can be viewed as a two-player game and thus be solved by a solution concept in game theory: Nash equilibrium.

Keywords: Decision criteria, decision making, sewer network planning, strict uncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1496
1828 An Overview of Energy Efficient Routing Protocols for Acoustic Sensor Network

Authors: V. P. Dhivya, R. Arthi

Abstract:

Underwater acoustic network is one of the rapidly growing areas of research and finds different applications for monitoring and collecting various data for environmental studies. The communication among dynamic nodes and high error probability in an acoustic medium forced to maximize energy consumption in Underwater Sensor Networks (USN) than in traditional sensor networks. Developing energy-efficient routing protocol is the fundamental and a curb challenge because all the sensor nodes are powered by batteries, and they cannot be easily replaced in UWSNs. This paper surveys the various recent routing techniques that mainly focus on energy efficiency.

Keywords: Acoustic channels, Energy efficiency, Routing in sensor networks, Underwater Sensor Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2989
1827 Constructing a Bayesian Network for Solar Energy in Egypt Using Life Cycle Analysis and Machine Learning Algorithms

Authors: Rawaa H. El-Bidweihy, Hisham M. Abdelsalam, Ihab A. El-Khodary

Abstract:

In an era where machines run and shape our world, the need for a stable, non-ending source of energy emerges. In this study, the focus was on the solar energy in Egypt as a renewable source, the most important factors that could affect the solar energy’s market share throughout its life cycle production were analyzed and filtered, the relationships between them were derived before structuring a Bayesian network. Also, forecasted models were built for multiple factors to predict the states in Egypt by 2035, based on historical data and patterns, to be used as the nodes’ states in the network. 37 factors were found to might have an impact on the use of solar energy and then were deducted to 12 factors that were chosen to be the most effective to the solar energy’s life cycle in Egypt, based on surveying experts and data analysis, some of the factors were found to be recurring in multiple stages. The presented Bayesian network could be used later for scenario and decision analysis of using solar energy in Egypt, as a stable renewable source for generating any type of energy needed.

Keywords: ARIMA, auto correlation, Bayesian network, forecasting models, life cycle, partial correlation, renewable energy, SARIMA, solar energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 781
1826 The Labeled Classification and its Application

Authors: M. Nemissi, H. Seridi, H. Akdag

Abstract:

This paper presents and evaluates a new classification method that aims to improve classifiers performances and speed up their training process. The proposed approach, called labeled classification, seeks to improve convergence of the BP (Back propagation) algorithm through the addition of an extra feature (labels) to all training examples. To classify every new example, tests will be carried out each label. The simplicity of implementation is the main advantage of this approach because no modifications are required in the training algorithms. Therefore, it can be used with others techniques of acceleration and stabilization. In this work, two models of the labeled classification are proposed: the LMLP (Labeled Multi Layered Perceptron) and the LNFC (Labeled Neuro Fuzzy Classifier). These models are tested using Iris, wine, texture and human thigh databases to evaluate their performances.

Keywords: Artificial neural networks, Fusion of neural networkfuzzysystems, Learning theory, Pattern recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1410
1825 Centralized Monitoring and Self-protected against Fiber Fault in FTTH Access Network

Authors: Mohammad Syuhaimi Ab-Rahman, Boonchuan Ng, Kasmiran Jumari

Abstract:

This paper presented a new approach for centralized monitoring and self-protected against fiber fault in fiber-to-the-home (FTTH) access network by using Smart Access Network Testing, Analyzing and Database (SANTAD). SANTAD will be installed with optical line terminal (OLT) at central office (CO) for in-service transmission surveillance and fiber fault localization within FTTH with point-to-multipoint (P2MP) configuration downwardly from CO towards customer residential locations based on the graphical user interface (GUI) processing capabilities of MATLAB software. SANTAD is able to detect any fiber fault as well as identify the failure location in the network system. SANTAD enable the status of each optical network unit (ONU) connected line is displayed onto one screen with capability to configure the attenuation and detect the failure simultaneously. The analysis results and information will be delivered to the field engineer for promptly actions, meanwhile the failure line will be diverted to protection line to ensure the traffic flow continuously. This approach has a bright prospect to improve the survivability and reliability as well as increase the efficiency and monitoring capabilities in FTTH.

Keywords: Fiber fault, FTTH, SANTAD, transmission surveillance, MATLAB.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2552
1824 Fuzzy Based Particle Swarm Optimization Routing Technique for Load Balancing in Wireless Sensor Networks

Authors: S. Balaji, E. Golden Julie, M. Rajaram, Y. Harold Robinson

Abstract:

Network lifetime improvement and uncertainty in multiple systems are the issues of wireless sensor network routing. This paper presents fuzzy based particle swarm optimization routing technique to improve the network scalability. Significantly, in the cluster formation procedure, fuzzy based system is used to solve the uncertainty and network balancing. Cluster heads play an important role to reduce the energy consumption using particle swarm optimization algorithm, the cluster head sends its information along data packets to the heads with link. The simulation results show that the presented routing protocol can perform load balancing effectively and reduce the energy consumption of cluster heads.

Keywords: Wireless sensor networks, fuzzy logic, PSO, LEACH.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1283
1823 Parametric Analysis of Effective Factors on the Seismic Rehabilitation of the Foundations by Network Micropile

Authors: Keivan Abdollahi, Alireza Mortezaei

Abstract:

The main objective of seismic rehabilitation in the foundations is decreasing the range of horizontal and vertical vibrations and omitting high frequencies contents under the seismic loading. In this regard, the advantages of micropiles network is utilized. Reduction in vibration range of foundation can be achieved by using high dynamic rigidness module such as deep foundations. In addition, natural frequency of pile and soil system increases in regard to rising of system rigidness. Accordingly, the main strategy is decreasing of horizontal and vertical seismic vibrations of the structure. In this case, considering the impact of foundation, pile and improved soil foundation is a primary concern. Therefore, in this paper, effective factors are studied on the seismic rehabilitation of foundations applying network micropiles in sandy soils with nonlinear reaction.

Keywords: Micropile network, rehabilitation, vibration, seismic load.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2028
1822 Correlated Neural Activity in Cortex and Thalamus Following Brain Injury

Authors: Young-Seok Choi

Abstract:

It has been known that a characteristic Burst-Suppression (BS) pattern appears in EEG during the early recovery period following Cardiac Arrest (CA). Here, to explore the relationship between cortical and subcortical neural activities underlying BS, extracellular activity in the parietal cortex and the centromedian nucleus of the thalamus and extradural EEG were recorded in a rodent CA model. During the BS, the cortical firing rate is extraordinarily high, and that bursts in EEG correlate to dense spikes in cortical neurons. Newly observed phenomena are that 1) thalamic activity reemerges earlier than cortical activity following CA, and 2) the correlation coefficient of cortical and thalamic activities rises during BS period. These results would help elucidate the underlying mechanism of brain recovery after CA injury.

Keywords: Cortex, thalamus, cardiac arrest, burst-suppression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1928
1821 Wireless Sensor Networks for Long Distance Pipeline Monitoring

Authors: Augustine C. Azubogu, Victor E. Idigo, Schola U. Nnebe, Obinna S. Oguejiofor, Simon E.

Abstract:

The main goal of this seminal paper is to introduce the application of Wireless Sensor Networks (WSN) in long distance infrastructure monitoring (in particular in pipeline infrastructure monitoring) – one of the on-going research projects by the Wireless Communication Research Group at the department of Electronic and Computer Engineering, Nnamdi Azikiwe University, Awka. The current sensor network architectures for monitoring long distance pipeline infrastructures are previewed. These are wired sensor networks, RF wireless sensor networks, integrated wired and wireless sensor networks. The reliability of these architectures is discussed. Three reliability factors are used to compare the architectures in terms of network connectivity, continuity of power supply for the network, and the maintainability of the network. The constraints and challenges of wireless sensor networks for monitoring and protecting long distance pipeline infrastructure are discussed.

Keywords: Connectivity, maintainability, reliability, wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5143
1820 A Simulator for Robot Navigation Algorithms

Authors: Michael A. Folcik, Bijan Karimi

Abstract:

A robot simulator was developed to measure and investigate the performance of a robot navigation system based on the relative position of the robot with respect to random obstacles in any two dimensional environment. The presented simulator focuses on investigating the ability of a fuzzy-neural system for object avoidance. A navigation algorithm is proposed and used to allow random navigation of a robot among obstacles when the robot faces an obstacle in the environment. The main features of this simulator can be used for evaluating the performance of any system that can provide the position of the robot with respect to obstacles in the environment. This allows a robot developer to investigate and analyze the performance of a robot without implementing the physical robot.

Keywords: Applications of Fuzzy Logic and Neural Networksin Robotics, Artificial Intelligence, Embedded Systems, MobileRobots, Robot Navigation, Robotics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1757
1819 Pulsed Multi-Layered Image Filtering: A VLSI Implementation

Authors: Christian Mayr, Holger Eisenreich, Stephan Henker, René Schüffny

Abstract:

Image convolution similar to the receptive fields found in mammalian visual pathways has long been used in conventional image processing in the form of Gabor masks. However, no VLSI implementation of parallel, multi-layered pulsed processing has been brought forward which would emulate this property. We present a technical realization of such a pulsed image processing scheme. The discussed IC also serves as a general testbed for VLSI-based pulsed information processing, which is of interest especially with regard to the robustness of representing an analog signal in the phase or duration of a pulsed, quasi-digital signal, as well as the possibility of direct digital manipulation of such an analog signal. The network connectivity and processing properties are reconfigurable so as to allow adaptation to various processing tasks.

Keywords: Neural image processing, pulse computation application, pulsed Gabor convolution, VLSI pulse routing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1391
1818 A Fitted Random Sampling Scheme for Load Distribution in Grid Networks

Authors: O. A. Rahmeh, P. Johnson, S. Lehmann

Abstract:

Grid networks provide the ability to perform higher throughput computing by taking advantage of many networked computer-s resources to solve large-scale computation problems. As the popularity of the Grid networks has increased, there is a need to efficiently distribute the load among the resources accessible on the network. In this paper, we present a stochastic network system that gives a distributed load-balancing scheme by generating almost regular networks. This network system is self-organized and depends only on local information for load distribution and resource discovery. The in-degree of each node is refers to its free resources, and job assignment and resource discovery processes required for load balancing is accomplished by using fitted random sampling. Simulation results show that the generated network system provides an effective, scalable, and reliable load-balancing scheme for the distributed resources accessible on Grid networks.

Keywords: Complex networks, grid networks, load-balancing, random sampling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1785
1817 Evaluating Portfolio Performance by Highlighting Network Property and the Sharpe Ratio in the Stock Market

Authors: Zahra Hatami, Hesham Ali, David Volkman

Abstract:

Selecting a portfolio for investing is a crucial decision for individuals and legal entities. In the last two decades, with economic globalization, a stream of financial innovations has rushed to the aid of financial institutions. The importance of selecting stocks for the portfolio is always a challenging task for investors. This study aims to create a financial network to identify optimal portfolios using network centralities metrics. This research presents a community detection technique of superior stocks that can be described as an optimal stock portfolio to be used by investors. By using the advantages of a network and its property in extracted communities, a group of stocks was selected for each of the various time periods. The performance of the optimal portfolios was compared to the famous index. Their Sharpe ratio was calculated in a timely manner to evaluate their profit for making decisions. The analysis shows that the selected potential portfolio from stocks with low centrality measurement can outperform the market; however, they have a lower Sharpe ratio than stocks with high centrality scores. In other words, stocks with low centralities could outperform the S&P500 yet have a lower Sharpe ratio than high central stocks.

Keywords: Portfolio management performance, network analysis, centrality measurements, Sharpe ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 408
1816 Grid Learning; Computer Grid Joins to e- Learning

Authors: A. Nassiry, A. Kardan

Abstract:

According to development of communications and web-based technologies in recent years, e-Learning has became very important for everyone and is seen as one of most dynamic teaching methods. Grid computing is a pattern for increasing of computing power and storage capacity of a system and is based on hardware and software resources in a network with common purpose. In this article we study grid architecture and describe its different layers. In this way, we will analyze grid layered architecture. Then we will introduce a new suitable architecture for e-Learning which is based on grid network, and for this reason we call it Grid Learning Architecture. Various sections and layers of suggested architecture will be analyzed; especially grid middleware layer that has key role. This layer is heart of grid learning architecture and, in fact, regardless of this layer, e-Learning based on grid architecture will not be feasible.

Keywords: Distributed learning, Grid Learning, Grid network, SCORM standard.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1727
1815 A New Biologically Inspired Pattern Recognition Spproach for Face Recognition

Authors: V. Kabeer, N.K.Narayanan

Abstract:

This paper reports a new pattern recognition approach for face recognition. The biological model of light receptors - cones and rods in human eyes and the way they are associated with pattern vision in human vision forms the basis of this approach. The functional model is simulated using CWD and WPD. The paper also discusses the experiments performed for face recognition using the features extracted from images in the AT & T face database. Artificial Neural Network and k- Nearest Neighbour classifier algorithms are employed for the recognition purpose. A feature vector is formed for each of the face images in the database and recognition accuracies are computed and compared using the classifiers. Simulation results show that the proposed method outperforms traditional way of feature extraction methods prevailing for pattern recognition in terms of recognition accuracy for face images with pose and illumination variations.

Keywords: Face recognition, Image analysis, Wavelet feature extraction, Pattern recognition, Classifier algorithms

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1677
1814 An Efficient Spam Mail Detection by Counter Technique

Authors: Raheleh Kholghi, Soheil Behnam Roudsari, Alireza Nemaney Pour

Abstract:

Spam mails are unwanted mails sent to large number of users. Spam mails not only consume the network resources, but cause security threats as well. This paper proposes an efficient technique to detect, and to prevent spam mail in the sender side rather than the receiver side. This technique is based on a counter set on the sender server. When a mail is transmitted to the server, the mail server checks the number of the recipients based on its counter policy. The counter policy performed by the mail server is based on some pre-defined criteria. When the number of recipients exceeds the counter policy, the mail server discontinues the rest of the process, and sends a failure mail to sender of the mail; otherwise the mail is transmitted through the network. By using this technique, the usage of network resources such as bandwidth, and memory is preserved. The simulation results in real network show that when the counter is set on the sender side, the time required for spam mail detection is 100 times faster than the time the counter is set on the receiver side, and the network resources are preserved largely compared with other anti-spam mail techniques in the receiver side.

Keywords: Anti-spam, Mail server, Sender side, Spam mail

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1768
1813 Performance Analysis of Routing Protocol for WSN Using Data Centric Approach

Authors: A. H. Azni, Madihah Mohd Saudi, Azreen Azman, Ariff Syah Johari

Abstract:

Sensor Network are emerging as a new tool for important application in diverse fields like military surveillance, habitat monitoring, weather, home electrical appliances and others. Technically, sensor network nodes are limited in respect to energy supply, computational capacity and communication bandwidth. In order to prolong the lifetime of the sensor nodes, designing efficient routing protocol is very critical. In this paper, we illustrate the existing routing protocol for wireless sensor network using data centric approach and present performance analysis of these protocols. The paper focuses in the performance analysis of specific protocol namely Directed Diffusion and SPIN. This analysis reveals that the energy usage is important features which need to be taken into consideration while designing routing protocol for wireless sensor network.

Keywords: Data Centric Approach, Directed Diffusion, SPIN WSN Routing Protocol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2535
1812 Performance Comparison for AODV, DSR and DSDV W.R.T. CBR and TCP in Large Networks

Authors: Ibrahim M. Buamod, Muattaz Elaneizi

Abstract:

Mobile Ad hoc Network (MANET) is a wireless ad hoc self-configuring network of mobile routers (and associated hosts) connected by wireless links, the union of which forms an arbitrary topology, cause of the random mobility of the nodes. In this paper, an attempt has been made to compare these three protocols DSDV, AODV and DSR on the performance basis under different traffic protocols namely CBR and TCP in a large network. The simulation tool is NS2, the scenarios are made to see the effect of pause times. The results presented in this paper clearly indicate that the different protocols behave differently under different pause times. Also, the results show the main characteristics of different traffic protocols operating on MANETs and thus select the best protocol on each scenario.

Keywords: Awk, CBR, Random waypoint model, TCP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1713
1811 Social, Group and Individual Mind extracted from Rule Bases of Multiple Agents

Authors: P. Cermak

Abstract:

This paper shows possibility of extraction Social, Group and Individual Mind from Multiple Agents Rule Bases. Types those Rule bases are selected as two fuzzy systems, namely Mambdani and Takagi-Sugeno fuzzy system. Their rule bases are describing (modeling) agent behavior. Modifying of agent behavior in the time varying environment will be provided by learning fuzzyneural networks and optimization of their parameters with using genetic algorithms in development system FUZNET. Finally, extraction Social, Group and Individual Mind from Multiple Agents Rule Bases are provided by Cognitive analysis and Matching criterion.

Keywords: Mind, Multi-agent system, Cognitive analysis, Fuzzy system, Neural network, Genetic algorithm, Rule base.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1253
1810 An Intelligent System Framework for Generating Activity List of a Project Using WBS Mind map and Semantic Network

Authors: H. Iranmanesh, M. Madadi

Abstract:

Work Breakdown Structure (WBS) is one of the most vital planning processes of the project management since it is considered to be the fundamental of other processes like scheduling, controlling, assigning responsibilities, etc. In fact WBS or activity list is the heart of a project and omission of a simple task can lead to an irrecoverable result. There are some tools in order to generate a project WBS. One of the most powerful tools is mind mapping which is the basis of this article. Mind map is a method for thinking together and helps a project manager to stimulate the mind of project team members to generate project WBS. Here we try to generate a WBS of a sample project involving with the building construction using the aid of mind map and the artificial intelligence (AI) programming language. Since mind map structure can not represent data in a computerized way, we convert it to a semantic network which can be used by the computer and then extract the final WBS from the semantic network by the prolog programming language. This method will result a comprehensive WBS and decrease the probability of omitting project tasks.

Keywords: Expert System, Mind map, Semantic network, Work breakdown structure,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2608
1809 Analysis of Time Delay Simulation in Networked Control System

Authors: Nyan Phyo Aung, Zaw Min Naing, Hla Myo Tun

Abstract:

The paper presents a PD controller for the Networked Control Systems (NCS) with delay. The major challenges in this networked control system (NCS) are the delay of the data transmission throughout the communication network. The comparative performance analysis is carried out for different delays network medium. In this paper, simulation is carried out on Ac servo motor control system using CAN Bus as communication network medium. The True Time toolbox of MATLAB is used for simulation to analyze the effect of different delays.

Keywords: NCS, Time delay, CAN Bus, True time, MATLAB.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1573
1808 A Novel Solution Methodology for Transit Route Network Design Problem

Authors: Ghada Moussa, Mamoud Owais

Abstract:

Transit route Network Design Problem (TrNDP) is the most important component in Transit planning, in which the overall cost of the public transportation system highly depends on it. The main purpose of this study is to develop a novel solution methodology for the TrNDP, which goes beyond pervious traditional sophisticated approaches. The novelty of the solution methodology, adopted in this paper, stands on the deterministic operators which are tackled to construct bus routes. The deterministic manner of the TrNDP solution relies on using linear and integer mathematical formulations that can be solved exactly with their standard solvers. The solution methodology has been tested through Mandl’s benchmark network problem. The test results showed that the methodology developed in this research is able to improve the given network solution in terms of number of constructed routes, direct transit service coverage, transfer directness and solution reliability. Although the set of routes resulted from the methodology would stand alone as a final efficient solution for TrNDP, it could be used as an initial solution for meta-heuristic procedures to approach global optimal. Based on the presented methodology, a more robust network optimization tool would be produced for public transportation planning purposes.

Keywords: Integer programming, Transit route design, Transportation, Urban planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3111
1807 3G WCDMA Mobile Network DoS Attack and Detection Technology

Authors: JooHyung Oh, Dongwan Kang, Sekwon Kim, ChaeTae Im

Abstract:

Currently, there has been a 3G mobile networks data traffic explosion due to the large increase in the number of smartphone users. Unlike a traditional wired infrastructure, 3G mobile networks have limited wireless resources and signaling procedures for complex wireless resource management. And mobile network security for various abnormal and malicious traffic technologies was not ready. So Malicious or potentially malicious traffic originating from mobile malware infected smart devices can cause serious problems to the 3G mobile networks, such as DoS and scanning attack in wired networks. This paper describes the DoS security threat in the 3G mobile network and proposes a detection technology.

Keywords: 3G, WCDMA, DoS, Security Threat

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3267
1806 Altered Network Organization in Mild Alzheimer's Disease Compared to Mild Cognitive Impairment Using Resting-State EEG

Authors: Chia-Feng Lu, Yuh-Jen Wang, Shin Teng, Yu-Te Wu, Sui-Hing Yan

Abstract:

Brain functional networks based on resting-state EEG data were compared between patients with mild Alzheimer’s disease (mAD) and matched patients with amnestic subtype of mild cognitive impairment (aMCI). We integrated the time–frequency cross mutual information (TFCMI) method to estimate the EEG functional connectivity between cortical regions and the network analysis based on graph theory to further investigate the alterations of functional networks in mAD compared with aMCI group. We aimed at investigating the changes of network integrity, local clustering, information processing efficiency, and fault tolerance in mAD brain networks for different frequency bands based on several topological properties, including degree, strength, clustering coefficient, shortest path length, and efficiency. Results showed that the disruptions of network integrity and reductions of network efficiency in mAD characterized by lower degree, decreased clustering coefficient, higher shortest path length, and reduced global and local efficiencies in the delta, theta, beta2, and gamma bands were evident. The significant changes in network organization can be used in assisting discrimination of mAD from aMCI in clinical.

Keywords: EEG, functional connectivity, graph theory, TFCMI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2505
1805 Allocation of Mobile Units in an Urban Emergency Service System

Authors: Dimitra Alexiou

Abstract:

In an urban area the location allocation of emergency services mobile units, such as ambulances, police patrol cars must be designed so as to achieve a prompt response to demand locations. In this paper the partition of a given urban network into distinct sub-networks is performed such that the vertices in each component are close and simultaneously the sums of the corresponding population in the sub-networks are almost uniform. The objective here is to position appropriately in each sub-network a mobile emergency unit in order to reduce the response time to the demands. A mathematical model in framework of graph theory is developed. In order to clarify the corresponding method a relevant numerical example is presented on a small network.

Keywords: Distances, Emergency Service, Graph Partition, location.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1941
1804 Hybrid Control of Networked Multi-Vehicle System Considering Limitation of Communication Range

Authors: Toru Murayama, Akinori Nagano, Zhi-Wei Luo

Abstract:

In this research, we study a control method of a multivehicle system while considering the limitation of communication range for each vehicles. When we control networked vehicles with limitation of communication range, it is important to control the communication network structure of a multi-vehicle system in order to keep the network-s connectivity. From this, we especially aim to control the network structure to the target structure. We formulate the networked multi-vehicle system with some disturbance and the communication constraints as a hybrid dynamical system, and then we study the optimal control problems of the system. It is shown that the system converge to the objective network structure in finite time when the system is controlled by the receding horizon method. Additionally, the optimal control probrems are convertible into the mixed integer problems and these problems are solvable by some branch and bound algorithm.

Keywords: Hybrid system, multi-vehicle system, receding horizon control, topology control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1405
1803 Rapid Study on Feature Extraction and Classification Models in Healthcare Applications

Authors: S. Sowmyayani

Abstract:

The advancement of computer-aided design helps the medical force and security force. Some applications include biometric recognition, elderly fall detection, face recognition, cancer recognition, tumor recognition, etc. This paper deals with different machine learning algorithms that are more generically used for any health care system. The most focused problems are classification and regression. With the rise of big data, machine learning has become particularly important for solving problems. Machine learning uses two types of techniques: supervised learning and unsupervised learning. The former trains a model on known input and output data and predicts future outputs. Classification and regression are supervised learning techniques. Unsupervised learning finds hidden patterns in input data. Clustering is one such unsupervised learning technique. The above-mentioned models are discussed briefly in this paper.

Keywords: Supervised learning, unsupervised learning, regression, neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 346
1802 ML Detection with Symbol Estimation for Nonlinear Distortion of OFDM Signal

Authors: Somkiat Lerkvaranyu, Yoshikazu Miyanaga

Abstract:

In this paper, a new technique of signal detection has been proposed for detecting the orthogonal frequency-division multiplexing (OFDM) signal in the presence of nonlinear distortion.There are several advantages of OFDM communications system.However, one of the existing problems is remain considered as the nonlinear distortion generated by high-power-amplifier at the transmitter end due to the large dynamic range of an OFDM signal. The proposed method is the maximum likelihood detection with the symbol estimation. When the training data are available, the neural network has been used to learn the characteristic of received signal and to estimate the new positions of the transmitted symbol which are provided to the maximum likelihood detector. Resulting in the system performance, the nonlinear distortions of a traveling wave tube amplifier with OFDM signal are considered in this paper.Simulation results of the bit-error-rate performance are obtained with 16-QAM OFDM systems.

Keywords: OFDM, TWTA, nonlinear distortion, detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1678
1801 Improving Worm Detection with Artificial Neural Networks through Feature Selection and Temporal Analysis Techniques

Authors: Dima Stopel, Zvi Boger, Robert Moskovitch, Yuval Shahar, Yuval Elovici

Abstract:

Computer worm detection is commonly performed by antivirus software tools that rely on prior explicit knowledge of the worm-s code (detection based on code signatures). We present an approach for detection of the presence of computer worms based on Artificial Neural Networks (ANN) using the computer's behavioral measures. Identification of significant features, which describe the activity of a worm within a host, is commonly acquired from security experts. We suggest acquiring these features by applying feature selection methods. We compare three different feature selection techniques for the dimensionality reduction and identification of the most prominent features to capture efficiently the computer behavior in the context of worm activity. Additionally, we explore three different temporal representation techniques for the most prominent features. In order to evaluate the different techniques, several computers were infected with five different worms and 323 different features of the infected computers were measured. We evaluated each technique by preprocessing the dataset according to each one and training the ANN model with the preprocessed data. We then evaluated the ability of the model to detect the presence of a new computer worm, in particular, during heavy user activity on the infected computers.

Keywords: Artificial Neural Networks, Feature Selection, Temporal Analysis, Worm Detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1728
1800 An Analysis of the Social Network Structure of Knowledge Management Students at NTU

Authors: Guo Yanru, Zhu Xiaobo, Lee Chu Keong

Abstract:

This paper maps the structure of the social network of the 2011 class ofsixty graduate students of the Masters of Science (Knowledge Management) programme at the Nanyang Technological University, based on their friending relationships on Facebook. To ensure anonymity, actual names were not used. Instead, they were replaced with codes constructed from their gender, nationality, mode of study, year of enrollment and a unique number. The relationships between friends within the class, and among the seniors and alumni of the programme wereplotted. UCINet and Pajek were used to plot the sociogram, to compute the density, inclusivity, and degree, global, betweenness, and Bonacich centralities, to partition the students into two groups, namely, active and peripheral, and to identify the cut-points. Homophily was investigated, and it was observed for nationality and study mode. The groups students formed on Facebook were also studied, and of fifteen groups, eight were classified as dead, which we defined as those that have been inactive for over two months.

Keywords: Facebook, friending relationships, Social network analysis, social network sites, structural position

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1745