
 

 

  
Abstract—This paper presents and evaluates a new classification 

method that aims to improve classifiers performances and speed up 
their training process. The proposed approach, called labeled 
classification, seeks to improve convergence of the BP (Back 
propagation) algorithm through the addition of an extra feature 
(labels) to all training examples. To classify every new example, tests 
will be carried out each label. The simplicity of implementation is the 
main advantage of this approach because no modifications are 
required in the training algorithms. Therefore, it can be used with 
others techniques of acceleration and stabilization. In this work, two 
models of the labeled classification are proposed: the LMLP 
(Labeled Multi Layered Perceptron) and the LNFC (Labeled Neuro 
Fuzzy Classifier). These models are tested using Iris, wine, texture 
and human thigh databases to evaluate their performances. 
 

Keywords—Artificial neural networks, Fusion of neural network- 
fuzzy systems, Learning theory, Pattern recognition.  

I. INTRODUCTION 
N the past few years, ANNs (Artificial Neural Networks) 
have been widely used in several application of the pattern 

recognition. They have been employed as powerful classifiers 
for the reason of their capacities of learning and generalizing. 
But among their disadvantage is the slowness of their training 
process. Avoiding this problem is the main goal of the labeled 
classification. 

On the other hand, ANNs and FIS (Fuzzy Inference 
Systems) are appropriate to describe complex systems where it 
is difficult to give mathematical description. Moreover, a 
combination of these complementary methods allows having 
more robust systems [1] [2]. For example, ANNs are not 
interpretable, so they are not able to represent knowledge 
explicitly while a fuzzy system can do it by fuzzy if-then rules 
[1]. Furthermore, implementation of FIS necessitates tuning of 
the membership function parameters that can be automatically 
updated in the case of Neuro-Fuzzy Systems [2]. 
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TABLE I 
ADVANTAGES AND DISADVANTAGES OF ANN AND FIS 

 Advantage Disadvantage 

ANN 
Parallel computing 

Capacity of generalization 
Self-adaptation 

Black box 
Lack of initialization techniques 

FIS Possibility to use a prior 
knowledge  

Lack of training techniques 

 
The BP (Back Propagation) algorithm [3] is a useful 

algorithm in many applications. It is widely used for training 
the ANNs and the Neuro-Fuzzy Classifiers, but its 
convergence rate is relatively slow [4] and it is an unreliable 
algorithm [5] [6]. In order to improve performances of the BP, 
several approach have been proposed. Jacob et al. [7] 
presented an approach based on the use of a different step 
gains for each weight and the updating of theses term 
iteratively. Li et al. [8], Russo [9], Ngyen et al. [10] and Yam 
et al. [11] presented methods based on the weight 
initialization, Lee et al. [12] studied the effect of initial weight 
on premature saturation and Kamarthi et al. [13] introduced an 
algorithm based on extrapolation of each weight to accelerate 
the BP algorithm. Zurada [14] and Chandra et al. [15] 
proposed methods which are based on the adapting of the 
activation functions parameters. Rumelhart et al. [3] added an 
extra term (the momentum) and Zweiri et al. [4][16] 
introduced a third term (proportional factor) in addition to the 
learning rate and the momentum. The problem of the local 
minima was studied by Ampazis et al. [17], Phansalkar et al. 
[18] and Vitela et al. [19]. Cho et al. [20] proposed an 
approach based on the least-squares method to improve the 
BP convergence and Wang et al. [21] proposed a modified 
error function by adding one term to the conventional 
function. 

The labeled classification approach proposed in this work is 
different from these methods in the sense that our proposition 
aims to improve the training process by changing the 
representation of examples instead of modifying the training 
algorithm. Indeed, this method seeks to speed up the BP 
convergence by adding an extra feature (labels). 

Our approach can be used with several models trained by 
the BP, and it can be used with different techniques of 
acceleration and stabilization. In this work, two models of the 
labeled classification are proposed: LMLP and LNFC. The 
first model is based on the use of a neural architecture while 
the second is based on the use of Neuro-Fuzzy architecture. In 
section 2, we describe the proposed approach. In sections 3, 
we present the first model and we discuss its classification 
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performances on Iris, wine, human thigh and texture 
databases. The second model and its performances are 
presented in section 4.  Finally, conclusions are given in 
section 5.  

II. THE LABELED CLASSIFICATION 
An important reason of the BP slowness is the saturation 

behavior of the activation function used in different layer [4]. 
In fact, when a sigmoid has a slope near a zero, a weight point 
may enter the saturation region of the weight space [5]. In 
such situation, the weight increment remains little even if the 
error is relatively large. The basic idea of our approach is to 
make the training example linearly separable by adding an 
extra feature (labels). The labels must be identical for 
examples belongings to the same class to ensure the linear 
separation and reduce the possibility of entering the saturation 
region. After the training process, every test example will be 
classified according to the classifier’s outputs with all labels 
(Fig. 1). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1 Labeled classifier 

 
Recall that a conventional classifier maps any input vector 

X(x1 x2 … xN) into an output vector Z(z1 z2 … zK) corresponding 
to the class Ci of the example represented by X. Fig. 1 shows a 
labeled classifier with two input and three classes. It is based 
on the adding of labels at the input of the used classifier and 
giving a decision according to the classifier outputs.         

A. Methodology  
The labeled classification is performed in two stages: 
1. Addition of labels for all training examples and 

performing training of the used classifier (according to two 
modes). 

2. Carrying out tests with these labels to classify every 
novel example (Fig. 2). 

Therefore, for each class Ci, corresponds a label Li. Every 
training example X (x1 x2 …xN) of Ci is represented by X (x1  x2 
… xN   Li). The representations of all training examples are 
modified by the same manner. After the training process, 
every new example (X) will be tested with all labels and it will 

be classified according to the following decision rule: 
 

X ∈  Ci  if  Eri(X) =min {Er1(X), Er2(X), …ErK(X)} 
where Eri is the sum-squared error between the target Ti 
corresponding to the class Ci and the calculated output Zi 
using the label Li. Eri is defined by: 

 

iii ZTEr −=  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2 Scheme of the labeled classification 

B. Training in the Labeled Classification 

The labeled classification is used with the classifiers trained 
by the BP for the reason that our decision rule is based on the 
sum-squared-error between target and classifier output. 
Training in the labeled classification is performed using two 
modes: 

  
1) First Mode: Simple Training   
The first mode consists in carrying out the training 

normally. No modifications are involved in the algorithm and 
the cost function is the total sum-squared-error, which is given 
by: 

 
( ) ( )∑

=

−=
Q

q

qq ZTTSSS
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where T(q) and Z(q) are  the target and the classifier output of 
the qth  example.  
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2) Second Mode: Full Training  
In the second mode, the training is performed by 

minimizing the sum-squared errors between the target and the 
classier outputs obtained with each label (Fig. 3). That is to 
say, for every presented example, the classifier must be 
simulated and updated for all labels. The cost function 
becomes: 

 

)()(

1 1
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q
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q

K
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where T(q) is the target and ( )q

iZ is the calculated output of the 
qth example using the label Li.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3 Scheme of the full training 

 
In the simple training, the adaptation is performed once at 

every presentation of a training example while in the full 
training, the adaptation is performed K times (K is the number 
of classes). Therefore, the process of the full training is more 
complex. In the next paragraphs, the performances of these 
two modes are evaluated. 

III. THE LMLP 
A. Architecture 

The MLP (Multi Layered Perceptron) is the most used 
architecture of ANN. This model provides techniques of 
approximating arbitrary non-linear functional mapping 
between multi-dimensional spaces [22]. Its training algorithm 
is the BP and it is important to improve performances of this 
process. Therefore, we propose a classification model (LMLP) 
based on the use of the labeled classification with the MLP. 

Fig. 4 represents a LMLP with N neurons at the input layer, M 
neurons at the hidden layer and J neurons at the output layer. 

 
 
 

 
 

 
 

 
 

 
 
 
 
 
 
 

Fig. 4 LMLP 
 
After adding labels, representation of the training example 

becomes:  X (x1  x2 … xN  Li) where x1, x2,…xN are the original 
features and Li the added label. This additional feature (Li) 
will be treated with the same manner as the other feature. 
Thus, the output of the mth hidden neuron will be: 

 

  ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

⎭
⎬
⎫

⎩
⎨
⎧

= +
=

∑ mNinm

N

n
nm wLwxhy ,1

1
 

 
The jth network output becomes: 
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where zj is the output of the jth neurons, xn is the nth input. h 
and g are the activation function (sigmoid). The second part of 
the above equation shows the consequence of adding labels at 
the network outputs. 

B. LMLP Training 

1) Simple Training 
In this mode, labels are treated as the other features. The 

LMLP is trained as any conventional MLP and the BP is used 
without any change. The adaptation task is to minimize the 
total sum-squared error (TSSE) between the classifier outputs 
and the targets.  

 
2) Full Training 
In this mode, for every presented example, the network 

outputs must be determined with all labels. The weights are 
adjusted according to these outputs. The function cost 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Addition of the 
label Li 

Simulation of the 
classifier 

Update  

Next example  

 
 
 
 
 
 

Database 

Training 
examples 

Test 
examples 

For  
every Ci  

Extraction of a 
training example 

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:6, 2008 

2090International Scholarly and Scientific Research & Innovation 2(6) 2008 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

6,
 2

00
8 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

02
53

.p
df



 

 

becomes the sum-squared errors between targets and the 
classier outputs obtained with different labels. Therefore, at 
every iteration, a training example X(q) is presented to the 
classifier with a label Li. The adaptation task is to minimize 
the partial sum-squared error (PE) between the classifier 
output and the target. PE is defined by: 

 
( ) ( )q

i
q ZTPE −=  

 
where T(q) is the target and ( )q

iZ is the calculated output of the 
qth example using the label Li.  

C. Choice of Labels 

In this process, the choice of labels is very important 
because they influence directly the classification 
performances.  We suggest choosing values around 0.5 with a 
small deference (δ) between them. For example, in the case of 
three classes: L1=0.5- δ, L2=0.5 and L3=0.5+ δ  

D. Iris Database Classification  

To appreciate the proposed model, tests are carried out on 
the Iris database using an MLP and a LMLP. The 
classification performances of this database using MLP 
depend strongly on the initial weight. In some cases, the 
weight point enters the saturation region and the MLP makes a 
large number of iterations to escape from this region, or 
escape may never be achieved. An example of such situation 
is presented in Fig. 5. This figure indicates the evolution of 
the classification rate during the training stage of an MLP and 
a LMLP. Both models have the same architecture (8 hidden 
neurons), they are initialized by the same weights and the 
training parameters are the same (step gains and momentum). 
The used labels are L1=0.475, L2=0.5 and L3=0.525. So, with 
δ=0.025. LMLP1 denotes LMLP with simple training and 
LMLP2 denotes LMLP with full training. The graphs showed 
on this figure indicate the improvements obtained by the 
labeled classification. It allows obtaining a classification rate 
equal to 98 % after less than 200 iterations while the MLP 
permits obtaining this rate after more than 750  iterations.   
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Fig. 5 Iris classification using the MLP and the LMLP 
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Fig. 6 Iris classification using the LMLP (simple training) with 
different labels 
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Fig. 7 Iris classification using the LMLP (full training) with different 
labels 

 
Fig. 6 shows the effect of labels in the case of the simple 

training. Graph A corresponds to δ=0.025 (L1=0.475, L2=0.5 
and L3=0.525), graph B corresponds to δ=0.015 and graph C 
corresponds to δ=0.050. We can note that the LMLP with 
simple training gives acceptable results for δ ≤ 0.025. 

On the other hand, Fig. 7 indicates the effect of labels in the 
full training. It is clear that the LMLP gives the same results 
for these labels. 

E. Wine Database Classification 

This database was obtained after a chemical analysis of 
wines grown in the same region but derived from three 
different cultivars. It contains 178 examples with 13 features 
belonging to 3 classes. The first one has 59 examples, the 
second has 71 and the third has 48. We utilize the training 
data-itself-as-testing method. 

Fig. 8 indicates the evolution of the classification rate 
during the training stage of an MLP and a LMLP. Both 
models have the same architecture (6 hidden neurons), 
initialization weights and parameters. The used labels are 
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L1=0.49, L2=0.5 and L3=0.51. So, with δ=0.01. LMLP1 
denotes LMLP with simple training and LMLP2 denotes 
LMLP with full training. The graphs showed on this figure 
indicate the improvements obtained by the labeled 
classification (with full training). It allows obtaining a 
classification rate equal to 100 % after 35 iterations while the 
MLP permits obtaining this rate after 50 iterations.  
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Fig. 8 Wine classification using the MLP and the LMLP 

 
Fig. 9 shows the effect of labels in the case of the simple 

training. Graph A corresponds to δ=0.05 (L1=0.45, L2=0.5 
and L3=0.55), graph B corresponds to δ=0.025 and graph C 
corresponds to δ=0.01. We can note that the LMLP with 
simple training gives acceptable results for δ ≤ 0.025. 

Fig. 10 shows the effect of labels in the full training. The 
LMLP gives the same results for these different labels.  
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Fig. 9 Wine classification using the LMLP (simple training) with 
different labels 
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Fig. 10 Wine classification using the LMLP (full training) with 
different labels 

 

F. Human Thigh Database Classification  

The image of Fig. 11 is acquired by cryosection color 
photography. A manual classification was makes by an expert 
and four components were identified (grease, bone, marrow 
and muscle). Each one of these components corresponds to a 
class and a file of 300 pixels representing each one. The 
obtained sample consists of 1200 pixels, 300 pixels of each 
class. The addition of components X and Y (to locate 
geometrical position of a pixel and to take account of its 
vicinity) improves the classification performances.  

To evaluate generalization capacities of our model, a cross 
validation of order 4 is used. Four datasets are obtained. Each 
base contains 900 training examples and 300 test examples. 

 

 
 

Fig. 11 Image of human thigh cryosection 
 
As in [23], the used MLP is composed of 5 neurons at the 

input, 8 hidden neurons and 4 outputs neurons. The MLP and 
the LMLP are initialized by the same weights. In table (2), the 
obtained results are showed. This results are the average of the 
4 data sets obtained by the cross validation.  
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TABLE II 
RESULTS OF THE HUMANTHIGH CLASSIFICATION USING MLP AND LMLP 

Classifier  Labels  Classification 
rate 

(Test datasets) 
MLP  98.17 

0.425  0.475  0.525 0.575 (δ = 
0.050) 97.83 LMLP 

 (Simple training) 
0.485  0.495  0.505 0.515 (δ = 
0.010) 97.92 

0.470  0.490  0.510 0.530 (δ = 
0.020) 97.92 LMLP 

(Full training) 
0.485  0.495  0.505 0.515 (δ = 
0.010) 97.92 

 
G. Texture Database Classification 

Fig. 12 shows an image constituted of two different 
microtextures.  A pretreatment (calculation of different local 
correlations) of the initial image allows obtaining a series of 8 
images. Each one is the detection result of a particular 
attribute. Every pixel is then described by a vector of 8 
attributes.  

 

 
 

Fig. 12 Image of texture 
 
Thus, the image is represented by two classes, which are 

described by eight files containing each one the pixel values. 
The obtained sample consists of 400 pixels of each class. A 
cross validation of order 4 allows obtaining four training 
datasets containing each one 600 pixels and 4 test datasets of 
200 pixels for each one.   

For the comparison, the used MLP is composed of 5 
neurons at the input, 8 hidden neurons and 2 outputs neurons. 
Table III indicates the obtained results.     

 
TABLE III 

RESULTS OF TEXTURE CLASSIFICATION USING MLP AND LMLP 

Classifier  Labels  Classification rate 
(Test datasets) 

MLP  99.125 % 
0.475    0.525   (δ = 0.050) 99.375 % LMLP 

 (Simple training) 0.490    0.510   (δ = 0.020) 99.500 % 
0.475    0.525   (δ = 0.050) 100 % LMLP 

(Full training) 0.490    0.510   (δ = 0.020) 100 % 

IV. THE LNFC 

A. Presentation  

The implementation of Neuro-Fuzzy Systems aims to 
combine proprieties and advantages of ANNs and FIS. In 
these systems, every layer of ANN performs a different 
function of a FIS: Fuzzification, Inference and 
Defuzzification. The NFCs (Neuro-Fuzzy Classifiers) [1] have 
a Neuro-Fuzzy architecture that can incorporate in its structure 
fuzzy if-then rule of the form:  

 
If x1 is ‘small’ and x2 is ‘big’ then X belongs to Ck 
 
The conception of the LNFC aims to exploit and improve 

proprieties of the NFCs. The use of LNFC leads to replace the 
above rules by rules of the form [24]: 

 
If x1 is ‘small’ and x2 is ‘big’ and its label is L1 then this 

example belongs to Ck 
 

B. Architecture 
The labeled classification consists essentially in adding 

labels to all training examples. Consequently, a neuron is 
added at the first layer and K neurons at the second (K is the 
number of classes). Every neuron added to the second layer 
corresponds to the membership function of a label. 

Fig. 13 shows an example of LNFC with two input 
variables (x1 x2) and two output variables (z1 z2). Every input 
is represented by two linguistics variables. In the first layer, 
every neuron corresponds to a linguistic variable. Neurons of 
the second layer send the product of the incoming signals and 
every neuron of the third layer corresponds to a class. The 
output of the mth output of the third layer is:   

( )∏
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=
N

n
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The jth network output is: 
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where μnm is the mth membership function, xn is the nth input 
and wmk is the weight between the mth hidden neuron and the 
jth output neuron. In the version of Jang [2], he used sigmoid 
function at the output layer. Using his model, the jth network 
output becomes:   
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where g is the activation function of the output layer. 
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Fig. 13 LNFC with tow labels, two inputs, eight rules and two 

outputs 

C. Training 
The back propagation algorithm is widely used for neuro-

fuzzy systems training, for example in [1] [24] [25] [26]. The 
adaptation task is to minimize the total sum-squared error 
between the classifier outputs and the targets. Our model is 
trained using this algorithm. The training of LNFC is 
performed without tuning the membership functions, which 
allows: 

1. Obtaining a simplified training process because only 
the output weights are updated.  

2. Keeping the original linguistic meaning of the 
membership functions. 

3. Changing the T-norme operator (used in neurons of the 
third layer) without changing the training algorithm. 

4. Changing the membership functions without changing 
the training algorithm. 

As for the LMLP, the training can be performed using two 
modes: simple training and full training. In both cases, the 
update expression at the (i+1) iteration of umj is: 

 
( ) ( ) ( ) ( ) mjjj

i
mj

i
mj ysgztuu '

1
1 −+=+ η

 
 

where η1 is the step gain, tj is the jth component of the target, zj 
is the jth output and g’ is the derivate of g (activation function 
of the output layer). 

D. Choice of Labels 
The premises of the Fuzzy rules established by the third 

layer depend on the membership functions of labels instead by 
the labels themselves. That is to say, contrary to the case of 
the LMLP where the choice of labels values influences 
directly the classification performances. 

E. Iris Database Classification 

To appreciate the LNFC, it is compared with a conventional 
NFC using Iris database. In both cases, three linguistic 
variables are used for the fuzzification (Fig. 14). 
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Fig. 14 Membership function of Iris features 
 
Fig. 15 shows the evolution of the classification rate during 

the training stage of the NFC and the LNFC.  Both models are 
initialized by the same weights and the training parameters are 
the same. The used membership function of labels are 
μi(Li)=1 and μi(Lj)=0.85. This figure indicates the 
improvements obtained by the labeled classification. It allows 
obtaining a classification rate equal to 99.33 % after 60 
iterations using LNFC with full training and 98.67 using 
LNFC with simple training while the NFC permits obtaining 
this rate after 80  iterations. 
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Fig. 15 Iris classification using the NFC and the LNFC 
 

Fig. 16 shows the effect of the membership function of 
labels in the case of the simple training. Graph A corresponds 
to μi(Li)=1 and μi(Lj)=0.9, graph B corresponds to μi(Li)=1 
and μi(Lj)=0.8 and graph C corresponds to μi(Li)=1 and 
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μi(Lj)=0.7. We can note that the LNFC with simple training 
gives an acceptable classification rate (98.67%) for μi(Lj) ≥ 
0.8. 

On the other hand, Fig. 17 indicates the effect of labels in 
the case of the full training: the LNFC allows obtaining a 
classification rate equal to 99.33 % for μi(Lj) ≥ 0.8. 
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Fig. 16 Iris classification using the LNFC (simple training) with 

different labels 
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Fig. 17 Iris classification using the LNFC (full training) with 
different labels 

F. Wine Database Classification 

The LNFC is compared with NCF using wine database. In 
both cases, two linguistic variables are used for the 
fuzzification (Fig. 18). 

 
 
 
 

 
 
 
 

Fig. 18 Membership function of Wine features 
 
The evolution of the classification rate during the training 

stage of the NFC and the LNFC are showed in Fig. 19.  In 
both case the initial weights and the training parameters are 
the same. The used membership function of labels are 
μi(Li)=1 and μi(Lj)=0.85. The graphs showed on this figure 
indicate the improvements obtained by the labeled 
classification. It allows obtaining a classification rate equal to 
100 % after 10  iterations using LNFC with full training and 
after 40 iterations using LNFC with simple training while the 
NFC permits obtaining this rate after 80 iterations. 
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Fig. 19 Wine classification using the NFC and the LNFC 

 
Fig. 20 shows the effect of the membership function of 

labels in the case of the simple training. Graph A corresponds 
to  μi(Li)=1 and μi(Lj)=0.9, graph B corresponds to μi(Li)=1 
and μi(Lj)=0.8 and graph C corresponds to μi(Li)=1 and 
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μi(Lj)=0.7. We can note that the LNFC with simple training 
gives acceptable results for μi(Lj)≥ 0.8. 

On the other hand, Fig. 21 indicates the effect of labels in 
the full training; the LNFC gives the same results for these 
labels.  
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Fig. 20 Wine classification using the LNFC (simple training) with 
different labels 
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Fig. 21 Wine classification using the LNFC (full training) with 
different labels 

 

G. Human Thigh Database Classification  

The NFC and the LNFC are tested using human thigh 
database. Three linguistic variables are used for the 
fuzzification. Table IV illustrates the obtained results. This 
results are the average of the 4 data sets obtained by the cross 
validation. 
 

 
 
 
 
 
 

TABLE IV 
RESULTS OF THE HUMANTHIGH CLASSIFICATION USING NFC AND LNFC 

Classifier  Labels  Classification rate 
(Test datasets) 

NFC  97.92 
μi (Li) =1   μi (Lj)=0.7 97.92 LNFC 

(simple training) μi (Li) =1   μi (Lj)=0.9 98.08 
μi (Li) =1   μi (Lj)=0.7 98.08 LNFC 

(full training) μi (Li) =1   μi (Lj)=0.9 98.08 

 

H. Texture Database Classification 

The NFC and the LNFC are also evaluated using texture 
database. Two linguistic variables are used for the 
fuzzification. The obtained results are showed on Table V. 

 
 

TABLE V 
RESULTS OF THE TEXTURE CLASSIFICATION USING NFC AND LNFC 

Classifier  Labels  Classification rate 
(Test datasets) 

NFC  99.13 
μi (Li) =1   μi (Lj)=0.8 99.25 LNFC 

(simple training) μi (Li) =1   μi (Lj)=0.9 99.25 
μi (Li) =1   μi (Lj)=0.7 99.25 LNFC 

(full training) μi (Li) =1   μi (Lj)=0.9 99.25 

 

V. CONCLUSION 
In this paper, a new classification method is presented. Two 

models obtained by the use of this method are proposed: the 
labeled MLP and the labeled NFC. To evaluate the 
performances established by this development, the LMLP and 
the LNFC are compared respectively with conventional NFC 
and MLP.  

Four databases are used for evaluation of these networks. 
Therefore, our models are examined by different type of 
features: length and width measure (in Iris database), pixel 
value and their position (in the human thigh database), local 
correlations components (in the texture database) and 
chemical features (in the wine database). 

The obtained results on these databases show that the 
proposed approach improve performances of the MLP and the 
NFC except in the case of human thigh classification using 
MLP. 

 The NFC is more stable than the MLP. The LNFC provides 
also this property because its conception does not require any 
modification in the structure and the training algorithm of the 
NFC.   

The training of the LNFC is performed without modifying 
the membership functions parameters, which leads obtaining 
simple training process and not loosing the original linguistic 
meaning of the membership functions. We can also change the 
T-norme operator (used in neurons of the third layer) and the 
membership functions without modifying the training 
algorithm.  

 The training in the proposed approach can be performed 
using two modes: the simple training and the full training. 
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According to our experiments, we can note that the first one is 
more simple but it depends strongly of labels values while the 
second provides more flexibility in the choice of labels but its 
training process is relatively complex. 
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