Search results for: composite shear wall
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1624

Search results for: composite shear wall

364 Computational Initial Value Method for Vibration Analysis of Symmetrically Laminated Composite Plate

Authors: Ahmed M. Farag, Wael F. Mohamed, Atef A. Ata, Burhamy M. Burhamy

Abstract:

In the present paper, an improved initial value numerical technique is presented to analyze the free vibration of symmetrically laminated rectangular plate. A combination of the initial value method (IV) and the finite differences (FD) devices is utilized to develop the present (IVFD) technique. The achieved technique is applied to the equation of motion of vibrating laminated rectangular plate under various types of boundary conditions. Three common types of laminated symmetrically cross-ply, orthotropic and isotropic plates are analyzed here. The convergence and accuracy of the presented Initial Value-Finite Differences (IVFD) technique have been examined. Also, the merits and validity of improved technique are satisfied via comparing the obtained results with those available in literature indicating good agreements.

Keywords: Free Vibrations, Initial Value, Finite Differences, Laminated plates.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2519
363 Effect of Coolant on Cutting Forces and Surface Roughness in Grinding of CSM GFRP

Authors: P Chockalingam, K Kok, R Vijayaram

Abstract:

This paper presents a comparative study on dry and wet grinding through experimental investigation in the grinding of CSM glass fibre reinforced polymer laminates using a pink aluminium oxide wheel. Different sets of experiments were performed to study the effects of the independent grinding parameters such as grinding wheel speed, feed and depth of cut on dependent performance criteria such as cutting forces and surface finish. Experimental conditions were laid out using design of experiment central composite design. An effective coolant was sought in this study to minimise cutting forces and surface roughness for GFRP laminates grinding. Test results showed that the use of coolants reduces surface roughness, although not necessarily the cutting forces. These research findings provide useful economic machining solution in terms of optimized grinding conditions for grinding CSM GFRP.

Keywords: Chopped Strand Mat GFRP laminates, Dry and Wet Grinding, Cutting Forces, Surface Finish.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4229
362 Investigation of Inert Gas Injection in Steam Reforming of Methane: Energy

Authors: Amjad Riaz, Ali Farsi, Gholamreza Zahedi, Zainuddin Abdul Manan

Abstract:

Synthesis gas manufacturing by steam reforming of hydrocarbons is an important industrial process. High endothermic nature of the process makes it one of the most cost and heat intensive processes. In the present work, composite effect of different inert gases on synthesis gas yield, feed gas conversion and temperature distribution along the reactor length has been studied using a heterogeneous model. Mathematical model was developed as a first stage and validated against the existing process models. With the addition of inert gases, a higher yield of synthesis gas is observed. Simultaneously the rector outlet temperature drops to as low as 810 K. It was found that Xenon gives the highest yield and conversion while Helium gives the lowest temperature. Using Xenon inert gas 20 percent reduction in outlet temperature was observed compared to traditional case.

Keywords: Energy savings, Inert gas, Methane, Modeling, Steam reforming

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1705
361 Numerical Calculation of Coils Filled With Bianisotropic Media

Authors: Nebojsa B. Raicevic, Teodoros S. Prokic, Vladan Golubovic

Abstract:

Recently, bianisotropic media again received increasing importance in electromagnetic theory because of advances in material science which enable the manufacturing of complex bianisotropic materials. By using Maxwell's equations and corresponding boundary conditions, the electromagnetic field distribution in bianisotropic solenoid coils is determined and the influence of the bianisotropic behaviour of coil to the impedance and Q-factor is considered. Bianisotropic media are the largest class of linear media which is able to describe the macroscopic material properties of artificial dielectrics, artificial magnetics, artificial chiral materials, left-handed materials, metamaterials, and other composite materials. Several special cases of coils, filled with complex substance, have been analyzed. Results obtained by using the analytical approach are compared with values calculated by numerical methods, especially by our new hybrid EEM/BEM method and FEM.

Keywords: Bianisotropic media, impedance and Q-factor, Maxwell`s equations, hybrid EEM/BEM method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1826
360 Complex Flow Simulation Using a Partially Lagging One-Equation Turbulence Model

Authors: M. Elkhoury

Abstract:

A recently developed one-equation turbulence model has been successfully applied to simulate turbulent flows with various complexities. The model, which is based on the transformation of the k-ε closure, is wall-distance free and equipped with lagging destruction/dissipation terms. Test cases included shockboundary- layer interaction flows over the NACA 0012 airfoil, an axisymmetric bump, and the ONERA M6 wing. The capability of the model to operate in a Scale Resolved Simulation (SRS) mode is demonstrated through the simulation of a massive flow separation over a circular cylinder at Re= 1.2 x106. An assessment of the results against available experiments Menter (k-ε)1Eq and the Spalart- Allmaras model that belongs to the single equation closure family is made.

Keywords: Turbulence modeling, complex flow simulation, scale adaptive simulation, one-equation turbulence model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1464
359 Optimization of Lipase Production Using Bacillus subtilis by Response Surface Methodology

Authors: A. Shyamala Devi, K. Chitra Devi, R. Rajendiran

Abstract:

A total of 6 isolates of Bacillus subtilis were isolated from oil mill waste collected in Namakkal district, Tamilnadu, India. The isolated bacteria were screened using lipase screening medium containing Tween 80. BS-3 isolate exhibited a greater clear zone than the others, indicating higher lipase activity. Therefore, this isolate was selected for media optimization studies. Ten process variables were screened using Plackett–Burman design and were further optimized by central composite design of response surface methodology for lipase production in submerged fermentation. Maximum lipase production of 16.627 U/min/ml were predicted in medium containing yeast extract (9.3636g), CaCl2 (0.8986g) and incubation periods (1.813 days). A mean value of 16.98 ± 0.2286 U/min/ml of lipase was acquired from real experiments.

Keywords: Bacillus subtilis, extracellular lipase, Plackett–Burman design, response surface methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4137
358 Motion-Based Detection and Tracking of Multiple Pedestrians

Authors: A. Harras, A. Tsuji, K. Terada

Abstract:

Tracking of moving people has gained a matter of great importance due to rapid technological advancements in the field of computer vision. The objective of this study is to design a motion based detection and tracking multiple walking pedestrians randomly in different directions. In our proposed method, Gaussian mixture model (GMM) is used to determine moving persons in image sequences. It reacts to changes that take place in the scene like different illumination; moving objects start and stop often, etc. Background noise in the scene is eliminated through applying morphological operations and the motions of tracked people which is determined by using the Kalman filter. The Kalman filter is applied to predict the tracked location in each frame and to determine the likelihood of each detection. We used a benchmark data set for the evaluation based on a side wall stationary camera. The actual scenes from the data set are taken on a street including up to eight people in front of the camera in different two scenes, the duration is 53 and 35 seconds, respectively. In the case of walking pedestrians in close proximity, the proposed method has achieved the detection ratio of 87%, and the tracking ratio is 77 % successfully. When they are deferred from each other, the detection ratio is increased to 90% and the tracking ratio is also increased to 79%.

Keywords: Automatic detection, tracking, pedestrians.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 823
357 A 3 Dimensional Simulation of the Repeated Load Triaxial Test

Authors: Bao Thach Nguyen, Abbas Mohajerani

Abstract:

A typical flexible pavement structure consists of the surface, base, sub-base and subgrade soil. The loading traffic is transferred from the top layer with higher stiffness to the layer below with less stiffness. Under normal traffic loading, the behaviour of flexible pavement is very complex and can be predicted by using the repeated load triaxial test equipment in the laboratory. However, the nature of the repeated load triaxial testing procedure is considered time-consuming, complicated and expensive, and it is a challenge to carry out as a routine test in the laboratory. Therefore, the current paper proposes a numerical approach to simulate the repeated load triaxial test by employing the discrete element method. A sample with particle size ranging from 2.36mm to 19.0mm was constructed. Material properties, which included normal stiffness, shear stiffness, coefficient of friction, maximum dry density and particle density, were used as the input for the simulation. The sample was then subjected to a combination of deviator and confining stress and it was found that the discrete element method is able to simulate the repeated load triaxial test in the laboratory.

Keywords: Discrete element method, repeated load triaxial, pavement materials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3144
356 Effect of U-Turn in Reinforced Concrete Dog-Legged Stair Slabs

Authors: Abdul Baqi, Zaid Mohammad

Abstract:

Reinforced concrete stair slabs with mid landings i.e. Dog-legged shaped are conventionally designed as per specifications of standard codes of practices which guide about the effective span according to the varying support conditions. Presently, the behavior of such slabs has been investigated using Finite Element method. A single flight stair slab with landings on both sides and supported at ends on wall, and a multi flight stair slab with landings and six different support arrangements have been analyzed. The results obtained for stresses, strains and deflections are used to describe the behavior of such stair slabs, including locations of critical moments and deflections. Values of critical moments obtained by F.E. analysis have also have been compared with that obtained from conventional analysis. Analytical results show that the moments are also critical near the kinks i.e. junction of mid-landing and inclined waist slab. This change in the behavior of dog-legged stair slab may be due to continuity of the material in transverse direction in two landings adjoining the waist slab, hence additional stiffness achieved. This change in the behavior is generally not taken care of in conventional method of design.

Keywords: Dog-legged, Stair slab, F.E. Analysis, Landing, Reinforced concrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4546
355 Study on Cross-flow Heat Transfer in Fixed Bed

Authors: Hong-fang Ma, Hai-tao Zhang, Wei-yong Ying, Ding-ye Fang

Abstract:

Radial flow reactor was focused for large scale methanol synthesis and in which the heat transfer type was cross-flow. The effects of operating conditions including the reactor inlet air temperature, the heating pipe temperature and the air flow rate on the cross-flow heat transfer was investigated and the results showed that the temperature profile of the area in front of the heating pipe was slightly affected by all the operating conditions. The main area whose temperature profile was influenced was the area behind the heating pipe. The heat transfer direction according to the air flow directions. In order to provide the basis for radial flow reactor design calculation, the dimensionless number group method was used for data fitting of the bed effective thermal conductivity and the wall heat transfer coefficient which was calculated by the mathematical model with the product of Reynolds number and Prandtl number. The comparison of experimental data and calculated value showed that the calculated value fit the experimental data very well and the formulas could be used for reactor designing calculation.

Keywords: Cross-flow, Heat transfer, Fixed bed, Mathematical model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1864
354 Application of Computer Aided Engineering Tools in Performance Prediction and Fault Detection of Mechanical Equipment of Mining Process Line

Authors: K. Jahani, J. Razavi

Abstract:

Nowadays, to decrease the number of downtimes in the industries such as metal mining, petroleum and chemical industries, predictive maintenance is crucial. In order to have efficient predictive maintenance, knowing the performance of critical equipment of production line such as pumps and hydro-cyclones under variable operating parameters, selecting best indicators of this equipment health situations, best locations for instrumentation, and also measuring of these indicators are very important. In this paper, computer aided engineering (CAE) tools are implemented to study some important elements of copper process line, namely slurry pumps and cyclone to predict the performance of these components under different working conditions. These modeling and simulations can be used in predicting, for example, the damage tolerance of the main shaft of the slurry pump or wear rate and location of cyclone wall or pump case and impeller. Also, the simulations can suggest best-measuring parameters, measuring intervals, and their locations.

Keywords: Computer aided engineering, predictive maintenance, fault detection, mining process line, slurry pump, hydrocyclone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1829
353 Qualitative Characteristics of Meat from Lambs Fed Hydrolyzed Sugarcane

Authors: V. Endo, A. G. Silva Sobrinho, F. A. Almeida, N. L. L. Lima, G. M. Manzi, L. G. A. Cirne, N. M. B. L. Zeola

Abstract:

We used 24 Ile de France lambs, weighing between 15 and 32 kg (BW). Treatments were supplemented with concentrate: “in nature” sugarcane (IN), sugarcane hydrolyzed using 0.6% calcium oxide (CaO) under aerobic condition (AER), and sugarcane hydrolyzed using 0.6% CaO under anaerobic condition (ANA), constituting a completely randomized design with eight repetitions per treatment. Lambs were housed in individual stalls and fed into the through, allowing 10% of leftovers. Lambs were slaughtered when body weight reached 32 kg. The following parameters were determined on Longissimu lumborum muscle of hot and cold carcasses: pH and color, 45 minutes and 24 hours after slaughtering. Qualitative analysis of the meat were performed in the loins, water-holding capacity (WHC), cooking loss (CL), and shear force (SF). We used a completely randomized design with three treatments and eight repetitions. Means were compared by Tukey test at 5% significance. A higher value for redness (a*) 45 minutes after slaughter (10.48) were found for lambs fed hydrolyzed under anaerobic conditions sugarcane. The other qualitative characteristics of meat were not affected by treatments (P >0.05). The comparison of meat quality resulting from the treatments shows that it is possible to feed in nature sugarcane to lambs, thus waiving hydrolyses process and the spending with alkalizing agent.

Keywords: Calcium oxide, hydrolysis, meat quality, pH.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2043
352 An Event Based Approach to Extract the Run Time Execution Path of BPEL Process for Monitoring QoS in the Cloud

Authors: Rima Grati, Khouloud Boukadi, Hanene Ben-Abdallah

Abstract:

Due to the dynamic nature of the Cloud, continuous monitoring of QoS requirements is necessary to manage the Cloud computing environment. The process of QoS monitoring and SLA violation detection consists of: collecting low and high level information pertinent to the service, analyzing the collected information, and taking corrective actions when SLA violations are detected. In this paper, we detail the architecture and the implementation of the first step of this process. More specifically, we propose an event-based approach to obtain run time information of services developed as BPEL processes. By catching particular events (i.e., the low level information), our approach recognizes the run-time execution path of a monitored service and uses the BPEL execution patterns to compute QoS of the composite service (i.e., the high level information).

Keywords: Monitoring of Web service composition, Cloud environment, Run-time extraction of execution path of BPEL.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1678
351 Production of Carbon Nanotubes by Iron Catalyst

Authors: Ezgi Dündar-Tekkaya, Nilgün Karatepe

Abstract:

Carbon nanotubes (CNTs) with their high mechanical, electrical, thermal and chemical properties are regarded as promising materials for many different potential applications. Having unique properties they can be used in a wide range of fields such as electronic devices, electrodes, drug delivery systems, hydrogen storage, textile etc. Catalytic chemical vapor deposition (CCVD) is a common method for CNT production especially for mass production. Catalysts impregnated on a suitable substrate are important for production with chemical vapor deposition (CVD) method. Iron catalyst and MgO substrate is one of most common catalyst-substrate combination used for CNT. In this study, CNTs were produced by CCVD of acetylene (C2H2) on magnesium oxide (MgO) powder substrate impregnated by iron nitrate (Fe(NO3)3•9H2O) solution. The CNT synthesis conditions were as follows: at synthesis temperatures of 500 and 800°C multiwall and single wall CNTs were produced respectively. Iron (Fe) catalysts were prepared by with Fe:MgO ratio of 1:100, 5:100 and 10:100. The duration of syntheses were 30 and 60 minutes for all temperatures and catalyst percentages. The synthesized materials were characterized by thermal gravimetric analysis (TGA), transmission electron microscopy (TEM) and Raman spectroscopy.

Keywords: Carbon nanotube, catalyst, catalytic chemical vapordeposition, iron

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2889
350 Experimental and Numerical Analysis of a Historical Bell Tower

Authors: Milorad Pavlovic, Sebastiano Trevisani, Antonella Cecchi

Abstract:

In this paper, a procedure for the evaluation of seismic behavior of slender masonry structures (towers, bell towers, chimneys, minarets, etc.) is presented. The presented procedure is based on a full three-dimensional modal analyses and frequency measurements. As well-known, masonry is a composite material formed by bricks, or stone blocks, and mortar arranged more or less regularly and adopted for many centuries as structural material. Dynamic actions may represent the major risk of collapse of brickworks, and despite the progress achieved so far in science and mechanics; the assessment of their seismic performance remains a challenging task. Then, reliable physical and numerical models are worthy of recommendation. In this paper, attention is paid to the historical bell tower of the Basilica of Santa Maria Gloriosa dei Frari - usually called Frari - one of the greatest churches in Venice, Italy.

Keywords: Bell tower, FEM, masonry, modal analysis, non-destructive testing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1333
349 Influence of Thermal and Mechanical Shocks to Cutting Edge Tool Life

Authors: Robert Cep, Lenka Ocenasova, Jana Novakova, Karel Kouril, Jan Valicek, Branimir Barisic

Abstract:

This paper deals with the problem of thermal and mechanical shocks, which rising during operation, mostly at interrupted cut. Here will be solved their impact on the cutting edge tool life, the impact of coating technology on resistance to shocks and experimental determination of tool life in heating flame. Resistance of removable cutting edges against thermal and mechanical shock is an important indicator of quality as well as its abrasion resistance. Breach of the edge or its crumble may occur due to cyclic loading. We can observe it not only during the interrupted cutting (milling, turning areas abandoned hole or slot), but also in continuous cutting. This is due to the volatility of cutting force on cutting. Frequency of the volatility in this case depends on the type of rising chips (chip size element). For difficult-to-machine materials such as austenitic steel particularly happened at higher cutting speeds for the localization of plastic deformation in the shear plane and for the inception of separate elements substantially continuous chips. This leads to variations of cutting forces substantially greater than for other types of steel.

Keywords: Cutting Tool Life, Heating, Mechanical Shocks, Thermal Shocks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2024
348 Double Diffusive Convection in a Partially Porous Cavity under Suction/Injection Effects

Authors: Y. Outaleb, K. Bouhadef, O. Rahli

Abstract:

Double-diffusive steady convection in a partially porous cavity with partially permeable walls and under the combined buoyancy effects of thermal and mass diffusion was analysed numerically using finite volume method. The top wall is well insulated and impermeable while the bottom surface is partially well insulated and impermeable and partially submitted to constant temperature T1 and concentration C1. Constant equal temperature T2 and concentration C2 are imposed along the vertical surfaces of the enclosure. Mass suction/injection and injection/suction are respectively considered at the bottom of the porous centred partition and at one of the vertical walls. Heat and mass transfer characteristics as streamlines and average Nusselt numbers and Sherwood numbers were discussed for different values of buoyancy ratio, Rayleigh number, and injection/suction coefficient. It is especially noted that increasing the injection factor disadvantages the exchanges in the case of the injection while the transfer is augmented in case of suction. On the other hand, a critical value of the buoyancy ratio was highlighted for which heat and mass transfers are minimized.

Keywords: Double diffusive convection, Injection/Extraction, Partially porous cavity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1552
347 Predicting Crack Initiation Due to Ratchetting in Rail Heads Using Critical Element Analysis

Authors: I. U. Wickramasinghe, D. J. Hargreaves, D. V. De Pellegrin

Abstract:

This paper presents a strategy to predict the lifetime of rails subjected to large rolling contact loads that induce ratchetting strains in the rail head. A critical element concept is used to calculate the number of loading cycles needed for crack initiation to occur in the rail head surface. In this technique the finite element method (FEM) is used to determine the maximum equivalent ratchetting strain per load cycle, which is calculated by combining longitudinal and shear stains in the critical element. This technique builds on a previously developed critical plane concept that has been used to calculate the number of cycles to crack initiation in rolling contact fatigue under ratchetting failure conditions. The critical element concept simplifies the analytical difficulties of critical plane analysis. Finite element analysis (FEA) is used to identify the critical element in the mesh, and then the strain values of the critical element are used to calculate the ratchetting rate analytically. Finally, a ratchetting criterion is used to calculate the number of cycles to crack initiation from the ratchetting rate calculated.

Keywords: Critical element analysis, finite element modeling (FEM), wheel/rail contact.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2928
346 Verification of K-ω SST Turbulence Model for Supersonic Internal Flows

Authors: J. Kolář, V. Dvořák

Abstract:

In this work, we try to find the best setting of Computational Fluid Dynamic solver available for the problems in the field of supersonic internal flows. We used the supersonic air-toair ejector to represent the typical problem in focus. There are multiple oblique shock waves, shear layers, boundary layers and normal shock interacting in the supersonic ejector making this device typical in field of supersonic inner flows. Modeling of shocks in general is demanding on the physical model of fluid, because ordinary conservation equation does not conform to real conditions in the near-shock region as found in many works. From these reasons, we decided to take special care about solver setting in this article by means of experimental approach of color Schlieren pictures and pneumatic measurement. Fast pressure transducers were used to measure unsteady static pressure in regimes with normal shock in mixing chamber. Physical behavior of ejector in several regimes is discussed. Best choice of eddy-viscosity setting is discussed on the theoretical base. The final verification of the k-ω SST is done on the base of comparison between experiment and numerical results.

Keywords: CFD simulations, color Schlieren, k-ω SST, supersonic flows, shock waves.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6464
345 A Comparison of Single of Decision Tree, Decision Tree Forest and Group Method of Data Handling to Evaluate the Surface Roughness in Machining Process

Authors: S. Ghorbani, N. I. Polushin

Abstract:

The machinability of workpieces (AISI 1045 Steel, AA2024 aluminum alloy, A48-class30 gray cast iron) in turning operation has been carried out using different types of cutting tool (conventional, cutting tool with holes in toolholder and cutting tool filled up with composite material) under dry conditions on a turning machine at different stages of spindle speed (630-1000 rpm), feed rate (0.05-0.075 mm/rev), depth of cut (0.05-0.15 mm) and tool overhang (41-65 mm). Experimentation was performed as per Taguchi’s orthogonal array. To evaluate the relative importance of factors affecting surface roughness the single decision tree (SDT), Decision tree forest (DTF) and Group method of data handling (GMDH) were applied.

Keywords: Decision Tree Forest, GMDH, surface roughness, taguchi method, turning process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 945
344 Investigation of Hydraulic and Thermal Performances of Fin Array at Different Shield Positions without By-Pass

Authors: Ramy H. Mohammed

Abstract:

In heat sinks, the flow within the core exhibits separation and hence does not lend itself to simple analytical boundary layer or duct flow analysis of the wall friction. In this paper, we present some findings from an experimental and numerical study aimed to obtain physical insight into the influence of the presence of the shield and its position on the hydraulic and thermal performance of square pin fin heat sink without top by-pass. The variations of the Nusselt number and friction factor are obtained under varied parameters, such as the Reynolds number and the shield position. The numerical code is validated by comparing the numerical results with the available experimental data. It is shown that, there is a good agreement between the temperature predictions based on the model and the experimental data. Results show that, as the presence of the shield, the heat transfer of fin array is enhanced and the flow resistance increased. The surface temperature distribution of the heat sink base is more uniform when the dimensionless shield position equals to 1/3 or 2/3. The comprehensive performance evaluation approach based on identical pumping power criteria is adopted and shows that the optimum shield position is at x/l=0.43.

Keywords: Shield, Fin array, Performance evaluation, Heat transfer, Validation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1830
343 Preparation and Physical Assessment of Portland Cement Base Composites Containing Nano Particles

Authors: Amir Mahmoudi

Abstract:

In this research the effects of adding silica and alumina nanoparticles on flow ability and compressive strength of cementitious composites based on Portland cement were investigated. In the first stage, the rheological behavior of different samples containing nanosilica, nanoalumina and polypropylene, polyvinyl alcohol and polyethylene fibers were evaluated. With increasing of nanoparticles in fresh samples, the slump flow diameter reduced. Fibers reduced the flow ability of the samples and viscosity increased. With increasing of the micro silica particles to cement ratio from 2/1 to 2/2, the slump flow diameter increased. By adding silica and alumina nanoparticles up to 3% and 2% respectively, the compressive strength increased and after decreased. Samples containing silica nanoparticles and fibers had the highest compressive strength.

Keywords: Portland cement, Composite, Nanoparticles, Compressive Strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1950
342 Frozen Fish: Control of Glazing Operation

Authors: Tânia Manso, Luís Teixeira, Paula M. Reis Correia

Abstract:

Glazing is a process used to reduce undesirable drying or dehydration of fish during frozen or cold storage. To evaluate the effect of the time/ temperature binomial of the cryogenic frozen tunnel in the amount of glazing watera Central Composite Rotatable Design was used, with application of the Response Surface Methodology. The results reveal that the time/ temperature obtained for pink cusk-eel in experimental conditions for glazing water are similar to the industrial process, but for red fish and merluza the industrial process needs some adjustments. Control charts were established and implementedto control the amount of glazing water on sardine and merluza. They show that the freezing process was statistically controlled but there were some tendencies that must be analyzed, since the trend of sample mean values approached either of the limits, mainly in merluza. Thus, appropriate actions must be taken, in order to improve the process.

Keywords: Control charts, frozen fish, glazing, RSM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4435
341 Theory about the Gebel El-Arak Knife: An Egyptian Knife with Canaanite Relief

Authors: Doaa El-Shereef

Abstract:

Gebel Al-Arak knife with its fine engravings on the two faces of the handle is the proof about the relationship between the Egyptians and the Canaanites during Naqada II. The Canaanites lived with the Egyptians in Abydos and they fought each other for power and the war scene on the knife prove that the Canaanites and the Egyptians wore the same outfit and they are only different by their hair style. The research discusses and analyzes many primary sources in Egypt, like wall inscriptions and palettes that prove the strong land relation and sea trade between Canaan and Egypt during Chalcolithic Age (4500-3500 BC). While no primary sources in Egypt prove the relationship between Egypt and Mesopotamia in the period to which the knife of Gebel Al-Arak belongs, between 3300-3100 BC, there were no battles or maritime trade exchanges between them. The engravings on the knife belong to the Canaanites and their God El (Master of Animals) and describing their victory over the Egyptians in this amphibious battle. The research aims to prove a theory that the Gebel Al-Arak knife is an Egyptian-made knife and the influences of the knife engravings were Canaanite, not Mesopotamian. The methodology of the study is historical methodology which is used to gather and analyze evidence and various historical data retrieved from history and interpret what the evidence reveals about things that occurred in history.

Keywords: Canaan, Egypt, Gebel el-Arak Knife, Louvre.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 469
340 Mechanical-Physical Characteristics Affecting the Durability of Fibre Reinforced Concrete with Recycled Aggregate

Authors: Vladimira Vytlacilova

Abstract:

The article presents findings from the study and analysis of the results of an experimental programme focused on the production of concrete and fibre reinforced concrete in which natural aggregate has been substituted with brick or concrete recyclate. The research results are analyzed to monitor the effect of mechanicalphysical characteristics on the durability properties of tested cementitious composites. The key parts of the fibre reinforced concrete mix are the basic components: aggregates – recyclate, cement, fly ash, water and fibres. Their specific ratios and the properties of individual components principally affect the resulting behaviour of fresh fibre reinforced concrete and the characteristics of the final product. The article builds on the sources dealing with the use of recycled aggregates from construction and demolition waste in the production of fibre reinforced concrete. The implemented procedure of testing the composite contributes to the building sustainability in environmental engineering.

Keywords: Recycled aggregate, Polypropylene fibres, Fibre Reinforced Concrete, Fly ash.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1854
339 Geotechnical Investigation of Soil Foundation for Ramps of Dawar El-Tawheed Bridge in Jizan City, Kingdom of Saudi Arabia

Authors: Ali H. Mahfouz, Hossam E. M.Sallam, Abdulwali Wazir, Hamod H. Kharezi

Abstract:

The soil profile at site of the bridge project includes soft fine grained soil layer located between 5.0 m to 11.0 m in depth, it has high water content, low SPT no., and low bearing capacity. The clay layer induces high settlement due to surcharge application of earth embankment at ramp T1, ramp T2, and ramp T3 especially at heights from 9m right 3m. Calculated settlement for embankment heights less than 3m may be accepted regarding Saudi Code for soil and foundation. The soil and groundwater at the project site comprise high contents of sulfates and chlorides of high aggressively on concrete and steel bars, respectively. Regarding results of the study, it has been recommended to use stone column piles or new technology named PCC piles as soil improvement to improve the bearing capacity of the weak layer. The new technology is cast in-situ thin wall concrete pipe piles (PCC piles), it has economically advantageous and high workability. The technology can save time of implementation and cost of application is almost 30% of other types of piles.

Keywords: Soft foundation soil, bearing capacity, bridge ramps, soil improvement, PCC piles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2004
338 An Alternative Approach for Assessing the Impact of Cutting Conditions on Surface Roughness Using Single Decision Tree

Authors: S. Ghorbani, N. I. Polushin

Abstract:

In this study, an approach to identify factors affecting on surface roughness in a machining process is presented. This study is based on 81 data about surface roughness over a wide range of cutting tools (conventional, cutting tool with holes, cutting tool with composite material), workpiece materials (AISI 1045 Steel, AA2024 aluminum alloy, A48-class30 gray cast iron), spindle speed (630-1000 rpm), feed rate (0.05-0.075 mm/rev), depth of cut (0.05-0.15 mm) and tool overhang (41-65 mm). A single decision tree (SDT) analysis was done to identify factors for predicting a model of surface roughness, and the CART algorithm was employed for building and evaluating regression tree. Results show that a single decision tree is better than traditional regression models with higher rate and forecast accuracy and strong value.

Keywords: Cutting condition, surface roughness, decision tree, CART algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 859
337 Simulation of Fluid Flow and Heat Transfer in Inclined Cavity using Lattice Boltzmann Method

Authors: Arash Karimipour, A. Hossein Nezhad, E. Shirani, A. Safaei

Abstract:

In this paper, Lattice Boltzmann Method (LBM) is used to study laminar flow with mixed convection heat transfer inside a two-dimensional inclined lid-driven rectangular cavity with aspect ratio AR = 3. Bottom wall of the cavity is maintained at lower temperature than the top lid, and its vertical walls are assumed insulated. Top lid motion results in fluid motion inside the cavity. Inclination of the cavity causes horizontal and vertical components of velocity to be affected by buoyancy force. To include this effect, calculation procedure of macroscopic properties by LBM is changed and collision term of Boltzmann equation is modified. A computer program is developed to simulate this problem using BGK model of lattice Boltzmann method. The effects of the variations of Richardson number and inclination angle on the thermal and flow behavior of the fluid inside the cavity are investigated. The results are presented as velocity and temperature profiles, stream function contours and isotherms. It is concluded that LBM has good potential to simulate mixed convection heat transfer problems.

Keywords: gravity, inclined lid driven cavity, lattice Boltzmannmethod, mixed convection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1942
336 Well-Being in Adolescence: Fitting Measurement Model

Authors: Azlina Abu Bakar, Abdul Fatah Wan Sidek

Abstract:

Well-being has been given special emphasis in quality of life. It involves living a meaningful, life satisfaction, stability and happiness in life. Well-being also concerns the satisfaction of physical, psychological, social needs and demands of an individual. The purpose of this study was to validate three-factor measurement model of well-being using structural equation modeling (SEM). The conceptions of well-being measured such dimensions as physical, psychological and social well-being. This study was done based on a total sample of 650 adolescents from east-coast of peninsular Malaysia. The Well-Being Scales which was adapted from [1] was used in this study. The items were hypothesized a priori to have nonzero loadings on all dimensions in the model. The findings of the SEM demonstrated that it is a good fitting model which the proposed model fits the driving theory; (x2df = 1.268; GFI = .994; CFI = .998; TLI= .996; p = .255; RMSEA = .021). Composite reliability (CR) was .93 and average variance extracted (AVE) was 58%. The model in this study fits with the sample of data and well-being is important to bring sustainable development to the mainstream.

Keywords: Adolescence, Structural Equation Modeling, Sustainable Development, Well-Being.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3067
335 Numerical Heat Transfer Performance of Water-Based Graphene Nanoplatelets

Authors: Ahmad Amiri, Hamed K. Arzani, S. N. Kazi, B. T. Chew

Abstract:

Since graphene nanoplatelet (GNP) is a promising material due to desirable thermal properties, this paper is related to the thermophysical and heat transfer performance of covalently functionalized GNP-based water/ethylene glycol nanofluid through an annular channel. After experimentally measuring thermophysical properties of prepared samples, a computational fluid dynamics study has been carried out to examine the heat transfer and pressure drop of well-dispersed and stabilized nanofluids. The effect of concentration of GNP and Reynolds number at constant wall temperature boundary condition under turbulent flow regime on convective heat transfer coefficient has been investigated. Based on the results, for different Reynolds numbers, the convective heat transfer coefficient of the prepared nanofluid is higher than that of the base fluid. Also, the enhancement of convective heat transfer coefficient and thermal conductivity increase with the increase of GNP concentration in base-fluid. Based on the results of this investigation, there is a significant enhancement on the heat transfer rate associated with loading well-dispersed GNP in base-fluid.

Keywords: Nanofluid, turbulent flow, forced convection flow, graphene, annular, annulus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577