Search results for: Recurrent neural network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3104

Search results for: Recurrent neural network

1844 A Simulator for Robot Navigation Algorithms

Authors: Michael A. Folcik, Bijan Karimi

Abstract:

A robot simulator was developed to measure and investigate the performance of a robot navigation system based on the relative position of the robot with respect to random obstacles in any two dimensional environment. The presented simulator focuses on investigating the ability of a fuzzy-neural system for object avoidance. A navigation algorithm is proposed and used to allow random navigation of a robot among obstacles when the robot faces an obstacle in the environment. The main features of this simulator can be used for evaluating the performance of any system that can provide the position of the robot with respect to obstacles in the environment. This allows a robot developer to investigate and analyze the performance of a robot without implementing the physical robot.

Keywords: Applications of Fuzzy Logic and Neural Networksin Robotics, Artificial Intelligence, Embedded Systems, MobileRobots, Robot Navigation, Robotics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1755
1843 Pulsed Multi-Layered Image Filtering: A VLSI Implementation

Authors: Christian Mayr, Holger Eisenreich, Stephan Henker, René Schüffny

Abstract:

Image convolution similar to the receptive fields found in mammalian visual pathways has long been used in conventional image processing in the form of Gabor masks. However, no VLSI implementation of parallel, multi-layered pulsed processing has been brought forward which would emulate this property. We present a technical realization of such a pulsed image processing scheme. The discussed IC also serves as a general testbed for VLSI-based pulsed information processing, which is of interest especially with regard to the robustness of representing an analog signal in the phase or duration of a pulsed, quasi-digital signal, as well as the possibility of direct digital manipulation of such an analog signal. The network connectivity and processing properties are reconfigurable so as to allow adaptation to various processing tasks.

Keywords: Neural image processing, pulse computation application, pulsed Gabor convolution, VLSI pulse routing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1390
1842 A Fitted Random Sampling Scheme for Load Distribution in Grid Networks

Authors: O. A. Rahmeh, P. Johnson, S. Lehmann

Abstract:

Grid networks provide the ability to perform higher throughput computing by taking advantage of many networked computer-s resources to solve large-scale computation problems. As the popularity of the Grid networks has increased, there is a need to efficiently distribute the load among the resources accessible on the network. In this paper, we present a stochastic network system that gives a distributed load-balancing scheme by generating almost regular networks. This network system is self-organized and depends only on local information for load distribution and resource discovery. The in-degree of each node is refers to its free resources, and job assignment and resource discovery processes required for load balancing is accomplished by using fitted random sampling. Simulation results show that the generated network system provides an effective, scalable, and reliable load-balancing scheme for the distributed resources accessible on Grid networks.

Keywords: Complex networks, grid networks, load-balancing, random sampling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1784
1841 Evaluating Portfolio Performance by Highlighting Network Property and the Sharpe Ratio in the Stock Market

Authors: Zahra Hatami, Hesham Ali, David Volkman

Abstract:

Selecting a portfolio for investing is a crucial decision for individuals and legal entities. In the last two decades, with economic globalization, a stream of financial innovations has rushed to the aid of financial institutions. The importance of selecting stocks for the portfolio is always a challenging task for investors. This study aims to create a financial network to identify optimal portfolios using network centralities metrics. This research presents a community detection technique of superior stocks that can be described as an optimal stock portfolio to be used by investors. By using the advantages of a network and its property in extracted communities, a group of stocks was selected for each of the various time periods. The performance of the optimal portfolios was compared to the famous index. Their Sharpe ratio was calculated in a timely manner to evaluate their profit for making decisions. The analysis shows that the selected potential portfolio from stocks with low centrality measurement can outperform the market; however, they have a lower Sharpe ratio than stocks with high centrality scores. In other words, stocks with low centralities could outperform the S&P500 yet have a lower Sharpe ratio than high central stocks.

Keywords: Portfolio management performance, network analysis, centrality measurements, Sharpe ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 407
1840 Grid Learning; Computer Grid Joins to e- Learning

Authors: A. Nassiry, A. Kardan

Abstract:

According to development of communications and web-based technologies in recent years, e-Learning has became very important for everyone and is seen as one of most dynamic teaching methods. Grid computing is a pattern for increasing of computing power and storage capacity of a system and is based on hardware and software resources in a network with common purpose. In this article we study grid architecture and describe its different layers. In this way, we will analyze grid layered architecture. Then we will introduce a new suitable architecture for e-Learning which is based on grid network, and for this reason we call it Grid Learning Architecture. Various sections and layers of suggested architecture will be analyzed; especially grid middleware layer that has key role. This layer is heart of grid learning architecture and, in fact, regardless of this layer, e-Learning based on grid architecture will not be feasible.

Keywords: Distributed learning, Grid Learning, Grid network, SCORM standard.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1726
1839 A New Biologically Inspired Pattern Recognition Spproach for Face Recognition

Authors: V. Kabeer, N.K.Narayanan

Abstract:

This paper reports a new pattern recognition approach for face recognition. The biological model of light receptors - cones and rods in human eyes and the way they are associated with pattern vision in human vision forms the basis of this approach. The functional model is simulated using CWD and WPD. The paper also discusses the experiments performed for face recognition using the features extracted from images in the AT & T face database. Artificial Neural Network and k- Nearest Neighbour classifier algorithms are employed for the recognition purpose. A feature vector is formed for each of the face images in the database and recognition accuracies are computed and compared using the classifiers. Simulation results show that the proposed method outperforms traditional way of feature extraction methods prevailing for pattern recognition in terms of recognition accuracy for face images with pose and illumination variations.

Keywords: Face recognition, Image analysis, Wavelet feature extraction, Pattern recognition, Classifier algorithms

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1676
1838 An Efficient Spam Mail Detection by Counter Technique

Authors: Raheleh Kholghi, Soheil Behnam Roudsari, Alireza Nemaney Pour

Abstract:

Spam mails are unwanted mails sent to large number of users. Spam mails not only consume the network resources, but cause security threats as well. This paper proposes an efficient technique to detect, and to prevent spam mail in the sender side rather than the receiver side. This technique is based on a counter set on the sender server. When a mail is transmitted to the server, the mail server checks the number of the recipients based on its counter policy. The counter policy performed by the mail server is based on some pre-defined criteria. When the number of recipients exceeds the counter policy, the mail server discontinues the rest of the process, and sends a failure mail to sender of the mail; otherwise the mail is transmitted through the network. By using this technique, the usage of network resources such as bandwidth, and memory is preserved. The simulation results in real network show that when the counter is set on the sender side, the time required for spam mail detection is 100 times faster than the time the counter is set on the receiver side, and the network resources are preserved largely compared with other anti-spam mail techniques in the receiver side.

Keywords: Anti-spam, Mail server, Sender side, Spam mail

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1767
1837 Performance Analysis of Routing Protocol for WSN Using Data Centric Approach

Authors: A. H. Azni, Madihah Mohd Saudi, Azreen Azman, Ariff Syah Johari

Abstract:

Sensor Network are emerging as a new tool for important application in diverse fields like military surveillance, habitat monitoring, weather, home electrical appliances and others. Technically, sensor network nodes are limited in respect to energy supply, computational capacity and communication bandwidth. In order to prolong the lifetime of the sensor nodes, designing efficient routing protocol is very critical. In this paper, we illustrate the existing routing protocol for wireless sensor network using data centric approach and present performance analysis of these protocols. The paper focuses in the performance analysis of specific protocol namely Directed Diffusion and SPIN. This analysis reveals that the energy usage is important features which need to be taken into consideration while designing routing protocol for wireless sensor network.

Keywords: Data Centric Approach, Directed Diffusion, SPIN WSN Routing Protocol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2534
1836 Performance Comparison for AODV, DSR and DSDV W.R.T. CBR and TCP in Large Networks

Authors: Ibrahim M. Buamod, Muattaz Elaneizi

Abstract:

Mobile Ad hoc Network (MANET) is a wireless ad hoc self-configuring network of mobile routers (and associated hosts) connected by wireless links, the union of which forms an arbitrary topology, cause of the random mobility of the nodes. In this paper, an attempt has been made to compare these three protocols DSDV, AODV and DSR on the performance basis under different traffic protocols namely CBR and TCP in a large network. The simulation tool is NS2, the scenarios are made to see the effect of pause times. The results presented in this paper clearly indicate that the different protocols behave differently under different pause times. Also, the results show the main characteristics of different traffic protocols operating on MANETs and thus select the best protocol on each scenario.

Keywords: Awk, CBR, Random waypoint model, TCP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1712
1835 Social, Group and Individual Mind extracted from Rule Bases of Multiple Agents

Authors: P. Cermak

Abstract:

This paper shows possibility of extraction Social, Group and Individual Mind from Multiple Agents Rule Bases. Types those Rule bases are selected as two fuzzy systems, namely Mambdani and Takagi-Sugeno fuzzy system. Their rule bases are describing (modeling) agent behavior. Modifying of agent behavior in the time varying environment will be provided by learning fuzzyneural networks and optimization of their parameters with using genetic algorithms in development system FUZNET. Finally, extraction Social, Group and Individual Mind from Multiple Agents Rule Bases are provided by Cognitive analysis and Matching criterion.

Keywords: Mind, Multi-agent system, Cognitive analysis, Fuzzy system, Neural network, Genetic algorithm, Rule base.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1252
1834 An Intelligent System Framework for Generating Activity List of a Project Using WBS Mind map and Semantic Network

Authors: H. Iranmanesh, M. Madadi

Abstract:

Work Breakdown Structure (WBS) is one of the most vital planning processes of the project management since it is considered to be the fundamental of other processes like scheduling, controlling, assigning responsibilities, etc. In fact WBS or activity list is the heart of a project and omission of a simple task can lead to an irrecoverable result. There are some tools in order to generate a project WBS. One of the most powerful tools is mind mapping which is the basis of this article. Mind map is a method for thinking together and helps a project manager to stimulate the mind of project team members to generate project WBS. Here we try to generate a WBS of a sample project involving with the building construction using the aid of mind map and the artificial intelligence (AI) programming language. Since mind map structure can not represent data in a computerized way, we convert it to a semantic network which can be used by the computer and then extract the final WBS from the semantic network by the prolog programming language. This method will result a comprehensive WBS and decrease the probability of omitting project tasks.

Keywords: Expert System, Mind map, Semantic network, Work breakdown structure,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2607
1833 A Corpus-Based Study on the Styles of Three Translators

Authors: Wang Yunhong

Abstract:

The present paper is preoccupied with the different styles of three translators in their translating a Chinese classical novel Shuihu Zhuan. Based on a parallel corpus, it adopts a target-oriented approach to look into whether and what stylistic differences and shifts the three translations have revealed. The findings show that the three translators demonstrate different styles concerning their word choices and sentence preferences, which implies that identification of recurrent textual patterns may be a basic step for investigating the style of a translator.

Keywords: Corpus, lexical choices, sentence characteristics, style.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 708
1832 Analysis of Time Delay Simulation in Networked Control System

Authors: Nyan Phyo Aung, Zaw Min Naing, Hla Myo Tun

Abstract:

The paper presents a PD controller for the Networked Control Systems (NCS) with delay. The major challenges in this networked control system (NCS) are the delay of the data transmission throughout the communication network. The comparative performance analysis is carried out for different delays network medium. In this paper, simulation is carried out on Ac servo motor control system using CAN Bus as communication network medium. The True Time toolbox of MATLAB is used for simulation to analyze the effect of different delays.

Keywords: NCS, Time delay, CAN Bus, True time, MATLAB.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1572
1831 A Novel Solution Methodology for Transit Route Network Design Problem

Authors: Ghada Moussa, Mamoud Owais

Abstract:

Transit route Network Design Problem (TrNDP) is the most important component in Transit planning, in which the overall cost of the public transportation system highly depends on it. The main purpose of this study is to develop a novel solution methodology for the TrNDP, which goes beyond pervious traditional sophisticated approaches. The novelty of the solution methodology, adopted in this paper, stands on the deterministic operators which are tackled to construct bus routes. The deterministic manner of the TrNDP solution relies on using linear and integer mathematical formulations that can be solved exactly with their standard solvers. The solution methodology has been tested through Mandl’s benchmark network problem. The test results showed that the methodology developed in this research is able to improve the given network solution in terms of number of constructed routes, direct transit service coverage, transfer directness and solution reliability. Although the set of routes resulted from the methodology would stand alone as a final efficient solution for TrNDP, it could be used as an initial solution for meta-heuristic procedures to approach global optimal. Based on the presented methodology, a more robust network optimization tool would be produced for public transportation planning purposes.

Keywords: Integer programming, Transit route design, Transportation, Urban planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3110
1830 3G WCDMA Mobile Network DoS Attack and Detection Technology

Authors: JooHyung Oh, Dongwan Kang, Sekwon Kim, ChaeTae Im

Abstract:

Currently, there has been a 3G mobile networks data traffic explosion due to the large increase in the number of smartphone users. Unlike a traditional wired infrastructure, 3G mobile networks have limited wireless resources and signaling procedures for complex wireless resource management. And mobile network security for various abnormal and malicious traffic technologies was not ready. So Malicious or potentially malicious traffic originating from mobile malware infected smart devices can cause serious problems to the 3G mobile networks, such as DoS and scanning attack in wired networks. This paper describes the DoS security threat in the 3G mobile network and proposes a detection technology.

Keywords: 3G, WCDMA, DoS, Security Threat

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3265
1829 Altered Network Organization in Mild Alzheimer's Disease Compared to Mild Cognitive Impairment Using Resting-State EEG

Authors: Chia-Feng Lu, Yuh-Jen Wang, Shin Teng, Yu-Te Wu, Sui-Hing Yan

Abstract:

Brain functional networks based on resting-state EEG data were compared between patients with mild Alzheimer’s disease (mAD) and matched patients with amnestic subtype of mild cognitive impairment (aMCI). We integrated the time–frequency cross mutual information (TFCMI) method to estimate the EEG functional connectivity between cortical regions and the network analysis based on graph theory to further investigate the alterations of functional networks in mAD compared with aMCI group. We aimed at investigating the changes of network integrity, local clustering, information processing efficiency, and fault tolerance in mAD brain networks for different frequency bands based on several topological properties, including degree, strength, clustering coefficient, shortest path length, and efficiency. Results showed that the disruptions of network integrity and reductions of network efficiency in mAD characterized by lower degree, decreased clustering coefficient, higher shortest path length, and reduced global and local efficiencies in the delta, theta, beta2, and gamma bands were evident. The significant changes in network organization can be used in assisting discrimination of mAD from aMCI in clinical.

Keywords: EEG, functional connectivity, graph theory, TFCMI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2504
1828 Allocation of Mobile Units in an Urban Emergency Service System

Authors: Dimitra Alexiou

Abstract:

In an urban area the location allocation of emergency services mobile units, such as ambulances, police patrol cars must be designed so as to achieve a prompt response to demand locations. In this paper the partition of a given urban network into distinct sub-networks is performed such that the vertices in each component are close and simultaneously the sums of the corresponding population in the sub-networks are almost uniform. The objective here is to position appropriately in each sub-network a mobile emergency unit in order to reduce the response time to the demands. A mathematical model in framework of graph theory is developed. In order to clarify the corresponding method a relevant numerical example is presented on a small network.

Keywords: Distances, Emergency Service, Graph Partition, location.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1940
1827 Rapid Study on Feature Extraction and Classification Models in Healthcare Applications

Authors: S. Sowmyayani

Abstract:

The advancement of computer-aided design helps the medical force and security force. Some applications include biometric recognition, elderly fall detection, face recognition, cancer recognition, tumor recognition, etc. This paper deals with different machine learning algorithms that are more generically used for any health care system. The most focused problems are classification and regression. With the rise of big data, machine learning has become particularly important for solving problems. Machine learning uses two types of techniques: supervised learning and unsupervised learning. The former trains a model on known input and output data and predicts future outputs. Classification and regression are supervised learning techniques. Unsupervised learning finds hidden patterns in input data. Clustering is one such unsupervised learning technique. The above-mentioned models are discussed briefly in this paper.

Keywords: Supervised learning, unsupervised learning, regression, neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 345
1826 Hybrid Control of Networked Multi-Vehicle System Considering Limitation of Communication Range

Authors: Toru Murayama, Akinori Nagano, Zhi-Wei Luo

Abstract:

In this research, we study a control method of a multivehicle system while considering the limitation of communication range for each vehicles. When we control networked vehicles with limitation of communication range, it is important to control the communication network structure of a multi-vehicle system in order to keep the network-s connectivity. From this, we especially aim to control the network structure to the target structure. We formulate the networked multi-vehicle system with some disturbance and the communication constraints as a hybrid dynamical system, and then we study the optimal control problems of the system. It is shown that the system converge to the objective network structure in finite time when the system is controlled by the receding horizon method. Additionally, the optimal control probrems are convertible into the mixed integer problems and these problems are solvable by some branch and bound algorithm.

Keywords: Hybrid system, multi-vehicle system, receding horizon control, topology control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1404
1825 ML Detection with Symbol Estimation for Nonlinear Distortion of OFDM Signal

Authors: Somkiat Lerkvaranyu, Yoshikazu Miyanaga

Abstract:

In this paper, a new technique of signal detection has been proposed for detecting the orthogonal frequency-division multiplexing (OFDM) signal in the presence of nonlinear distortion.There are several advantages of OFDM communications system.However, one of the existing problems is remain considered as the nonlinear distortion generated by high-power-amplifier at the transmitter end due to the large dynamic range of an OFDM signal. The proposed method is the maximum likelihood detection with the symbol estimation. When the training data are available, the neural network has been used to learn the characteristic of received signal and to estimate the new positions of the transmitted symbol which are provided to the maximum likelihood detector. Resulting in the system performance, the nonlinear distortions of a traveling wave tube amplifier with OFDM signal are considered in this paper.Simulation results of the bit-error-rate performance are obtained with 16-QAM OFDM systems.

Keywords: OFDM, TWTA, nonlinear distortion, detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1677
1824 Improving Worm Detection with Artificial Neural Networks through Feature Selection and Temporal Analysis Techniques

Authors: Dima Stopel, Zvi Boger, Robert Moskovitch, Yuval Shahar, Yuval Elovici

Abstract:

Computer worm detection is commonly performed by antivirus software tools that rely on prior explicit knowledge of the worm-s code (detection based on code signatures). We present an approach for detection of the presence of computer worms based on Artificial Neural Networks (ANN) using the computer's behavioral measures. Identification of significant features, which describe the activity of a worm within a host, is commonly acquired from security experts. We suggest acquiring these features by applying feature selection methods. We compare three different feature selection techniques for the dimensionality reduction and identification of the most prominent features to capture efficiently the computer behavior in the context of worm activity. Additionally, we explore three different temporal representation techniques for the most prominent features. In order to evaluate the different techniques, several computers were infected with five different worms and 323 different features of the infected computers were measured. We evaluated each technique by preprocessing the dataset according to each one and training the ANN model with the preprocessed data. We then evaluated the ability of the model to detect the presence of a new computer worm, in particular, during heavy user activity on the infected computers.

Keywords: Artificial Neural Networks, Feature Selection, Temporal Analysis, Worm Detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1727
1823 An Analysis of the Social Network Structure of Knowledge Management Students at NTU

Authors: Guo Yanru, Zhu Xiaobo, Lee Chu Keong

Abstract:

This paper maps the structure of the social network of the 2011 class ofsixty graduate students of the Masters of Science (Knowledge Management) programme at the Nanyang Technological University, based on their friending relationships on Facebook. To ensure anonymity, actual names were not used. Instead, they were replaced with codes constructed from their gender, nationality, mode of study, year of enrollment and a unique number. The relationships between friends within the class, and among the seniors and alumni of the programme wereplotted. UCINet and Pajek were used to plot the sociogram, to compute the density, inclusivity, and degree, global, betweenness, and Bonacich centralities, to partition the students into two groups, namely, active and peripheral, and to identify the cut-points. Homophily was investigated, and it was observed for nationality and study mode. The groups students formed on Facebook were also studied, and of fifteen groups, eight were classified as dead, which we defined as those that have been inactive for over two months.

Keywords: Facebook, friending relationships, Social network analysis, social network sites, structural position

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744
1822 A Brain Inspired Approach for Multi-View Patterns Identification

Authors: Yee Ling Boo, Damminda Alahakoon

Abstract:

Biologically human brain processes information in both unimodal and multimodal approaches. In fact, information is progressively abstracted and seamlessly fused. Subsequently, the fusion of multimodal inputs allows a holistic understanding of a problem. The proliferation of technology has exponentially produced various sources of data, which could be likened to being the state of multimodality in human brain. Therefore, this is an inspiration to develop a methodology for exploring multimodal data and further identifying multi-view patterns. Specifically, we propose a brain inspired conceptual model that allows exploration and identification of patterns at different levels of granularity, different types of hierarchies and different types of modalities. A structurally adaptive neural network is deployed to implement the proposed model. Furthermore, the acquisition of multi-view patterns with the proposed model is demonstrated and discussed with some experimental results.

Keywords: Multimodal, Granularity, Hierarchical Clustering, Growing Self Organising Maps, Data Mining

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1543
1821 Improving the Convergence of the Backpropagation Algorithm Using Local Adaptive Techniques

Authors: Z. Zainuddin, N. Mahat, Y. Abu Hassan

Abstract:

Since the presentation of the backpropagation algorithm, a vast variety of improvements of the technique for training a feed forward neural networks have been proposed. This article focuses on two classes of acceleration techniques, one is known as Local Adaptive Techniques that are based on weightspecific only, such as the temporal behavior of the partial derivative of the current weight. The other, known as Dynamic Adaptation Methods, which dynamically adapts the momentum factors, α, and learning rate, η, with respect to the iteration number or gradient. Some of most popular learning algorithms are described. These techniques have been implemented and tested on several problems and measured in terms of gradient and error function evaluation, and percentage of success. Numerical evidence shows that these techniques improve the convergence of the Backpropagation algorithm.

Keywords: Backpropagation, Dynamic Adaptation Methods, Local Adaptive Techniques, Neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2170
1820 Network State Classification based on the Statistical properties of RTT for an Adaptive Multi-State Proactive Transport Protocol for Satellite based Networks

Authors: Mohanchur Sakar, K.K.Shukla, K.S.Dasgupta

Abstract:

This paper attempts to establish the fact that Multi State Network Classification is essential for performance enhancement of Transport protocols over Satellite based Networks. A model to classify Multi State network condition taking into consideration both congestion and channel error is evolved. In order to arrive at such a model an analysis of the impact of congestion and channel error on RTT values has been carried out using ns2. The analysis results are also reported in the paper. The inference drawn from this analysis is used to develop a novel statistical RTT based model for multi state network classification. An Adaptive Multi State Proactive Transport Protocol consisting of Proactive Slow Start, State based Error Recovery, Timeout Action and Proactive Reduction is proposed which uses the multi state network state classification model. This paper also confirms through detail simulation and analysis that a prior knowledge about the overall characteristics of the network helps in enhancing the performance of the protocol over satellite channel which is significantly affected due to channel noise and congestion. The necessary augmentation of ns2 simulator is done for simulating the multi state network classification logic. This simulation has been used in detail evaluation of the protocol under varied levels of congestion and channel noise. The performance enhancement of this protocol with reference to established protocols namely TCP SACK and Vegas has been discussed. The results as discussed in this paper clearly reveal that the proposed protocol always outperforms its peers and show a significant improvement in very high error conditions as envisaged in the design of the protocol.

Keywords: GEO, ns2, Proactive TCP, SACK, Vegas

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1428
1819 Maximum Power Point Tracking by ANN Controller for a Standalone Photovoltaic System

Authors: K. Ranjani, M. Raja, B. Anitha

Abstract:

In this paper, ANN controller for maximum power point tracking of photovoltaic (PV) systems is proposed and PV modeling is discussed. Maximum power point tracking (MPPT) methods are used to maximize the PV array output power by tracking continuously the maximum power point. ANN controller with hill-climbing algorithm offers fast and accurate converging to the maximum operating point during steady-state and varying weather conditions compared to conventional hill-climbing. The proposed algorithm gives a good maximum power operation of the PV system. Simulation results obtained are presented and compared with the conventional hill-climbing algorithm. Simulation results show the effectiveness of the proposed technique.

Keywords: Artificial neural network (ANN), hill-climbing, maximum power-point tracking (MPPT), photovoltaic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3154
1818 A Fuzzy Swarm Optimized Approach for Piece Selection in Bit Torrent Like Peer to Peer Network

Authors: M. Padmavathi, R. M. Suresh

Abstract:

Every machine plays roles of client and server simultaneously in a peer-to-peer (P2P) network. Though a P2P network has many advantages over traditional client-server models regarding efficiency and fault-tolerance, it also faces additional security threats. Users/IT administrators should be aware of risks from malicious code propagation, downloaded content legality, and P2P software’s vulnerabilities. Security and preventative measures are a must to protect networks from potential sensitive information leakage and security breaches. Bit Torrent is a popular and scalable P2P file distribution mechanism which successfully distributes large files quickly and efficiently without problems for origin server. Bit Torrent achieved excellent upload utilization according to measurement studies, but it also raised many questions as regards utilization in settings, than those measuring, fairness, and Bit Torrent’s mechanisms choice. This work proposed a block selection technique using Fuzzy ACO with optimal rules selected using ACO.

Keywords: Ant Colony Optimization (ACO), Bit Torrent, Download time, Peer-to-Peer (P2P) network, Performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2586
1817 Relations of Progression in Cognitive Decline with Initial EEG Resting-State Functional Network in Mild Cognitive Impairment

Authors: Chia-Feng Lu, Yuh-Jen Wang, Yu-Te Wu, Sui-Hing Yan

Abstract:

This study aimed at investigating whether the functional brain networks constructed using the initial EEG (obtained when patients first visited hospital) can be correlated with the progression of cognitive decline calculated as the changes of mini-mental state examination (MMSE) scores between the latest and initial examinations. We integrated the time–frequency cross mutual information (TFCMI) method to estimate the EEG functional connectivity between cortical regions, and the network analysis based on graph theory to investigate the organization of functional networks in aMCI. Our finding suggested that higher integrated functional network with sufficient connection strengths, dense connection between local regions, and high network efficiency in processing information at the initial stage may result in a better prognosis of the subsequent cognitive functions for aMCI. In conclusion, the functional connectivity can be a useful biomarker to assist in prediction of cognitive declines in aMCI.

Keywords: Cognitive decline, functional connectivity, MCI, MMSE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2409
1816 Hydrogen Integration in Petrochemical Complexes, Using Modified Automated Targeting Method

Authors: M. Shariati, N. Tahouni, A. Khoshgard, M.H. Panjeshahi

Abstract:

Owing to extensive use of hydrogen in refining or petrochemical units, it is essential to manage hydrogen network in order to make the most efficient utilization of hydrogen. On the other hand, hydrogen is an important byproduct not properly used through petrochemical complexes and mostly sent to the fuel system. A few works have been reported in literature to improve hydrogen network for petrochemical complexes. In this study a comprehensive analysis is carried out on petrochemical units using a modified automated targeting technique which is applied to determine the minimum hydrogen consumption. Having applied the modified targeting method in two petrochemical cases, the results showed a significant reduction in required fresh hydrogen.

Keywords: Automated targeting, Hydrogen network, Petrochemical, Process integration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1667
1815 Heuristic Continuous-time Associative Memories

Authors: Truong Quang Dang Khoa, Masahiro Nakagawa

Abstract:

In this paper, a novel associative memory model will be proposed and applied to memory retrievals based on the conventional continuous time model. The conventional model presents memory capacity is very low and retrieval process easily converges to an equilibrium state which is very different from the stored patterns. Genetic Algorithms is well-known with the capability of global optimal search escaping local optimum on progress to reach a global optimum. Based on the well-known idea of Genetic Algorithms, this work proposes a heuristic rule to make a mutation when the state of the network is trapped in a spurious memory. The proposal heuristic associative memory show the stored capacity does not depend on the number of stored patterns and the retrieval ability is up to ~ 1.

Keywords: Artificial Intelligent, Soft Computing, NeuralNetworks, Genetic Algorithms, Hopfield Neural Networks, andAssociative Memories.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1401