Search results for: pressure distribution
1901 Studies on Pre-Ignition Chamber Dynamics of Solid Rockets with Different Port Geometries
Authors: S. Vivek, Sharad Sharan, R. Arvind, D. V. Praveen, J. Vigneshwar, S. Ajith, V. R. Sanal Kumar
Abstract:
In this paper numerical studies have been carried out to examine the pre-ignition flow features of high-performance solid propellant rocket motors with two different port geometries but with same propellant loading density. Numerical computations have been carried out using a validated 3D, unsteady, 2nd-order implicit, SST k- ω turbulence model. In the numerical study, a fully implicit finite volume scheme of the compressible, Reynolds-Averaged, Navier- Stokes equations is employed. We have observed from the numerical results that in solid rocket motors with highly loaded propellants having divergent port geometry the hot igniter gases can create preignition pressure oscillations leading to thrust oscillations due to the flow unsteadiness and recirculation. We have also observed that the igniter temperature fluctuations are diminished rapidly thereby reaching the steady state value faster in the case of solid propellant rocket motors with convergent port than the divergent port irrespective of the igniter total pressure. We have concluded that the prudent selection of the port geometry, without altering the propellant loading density, for damping the total temperature fluctuations within the motor is a meaningful objective for the suppression and control of instability and/or thrust oscillations often observed in solid propellant rocket motors with non-uniform port geometry.Keywords: Pre-Ignition chamber dynamics, starting transient, solid rockets, thrust oscillations in SRMs, ignition transient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22661900 Three Dimensional Large Eddy Simulation of Blood Flow and Deformation in an Elastic Constricted Artery
Authors: Xi Gu, Guan Heng Yeoh, Victoria Timchenko
Abstract:
In the current work, a three-dimensional geometry of a 75% stenosed blood vessel is analyzed. Large eddy simulation (LES) with the help of a dynamic subgrid scale Smagorinsky model is applied to model the turbulent pulsatile flow. The geometry, the transmural pressure and the properties of the blood and the elastic boundary were based on clinical measurement data. For the flexible wall model, a thin solid region is constructed around the 75% stenosed blood vessel. The deformation of this solid region was modelled as a deforming boundary to reduce the computational cost of the solid model. Fluid-structure interaction is realized via a twoway coupling between the blood flow modelled via LES and the deforming vessel. The information of the flow pressure and the wall motion was exchanged continually during the cycle by an arbitrary Lagrangian-Eulerian method. The boundary condition of current time step depended on previous solutions. The fluctuation of the velocity in the post-stenotic region was analyzed in the study. The axial velocity at normalized position Z=0.5 shows a negative value near the vessel wall. The displacement of the elastic boundary was concerned in this study. In particular, the wall displacement at the systole and the diastole were compared. The negative displacement at the stenosis indicates a collapse at the maximum velocity and the deceleration phase.
Keywords: Large Eddy Simulation, Fluid Structural Interaction, Constricted Artery, Computational Fluid Dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23431899 The Transient Reactive Power Regulation Capability of SVC for Large Scale WECS Connected to Distribution Networks
Authors: Y. Ates, A. R. Boynuegri, M. Uzunoglu, A. Karakas
Abstract:
The recent interest in alternative and renewable energy systems results in increased installed capacity ratio of such systems in total energy production of the world. Specifically, Wind Energy Conversion Systems (WECS) draw significant attention among possible alternative energy options, recently. On the contrary of the positive points of penetrating WECS in all over the world in terms of environment protection, energy independence of the countries, etc., there are significant problems to be solved for the grid connection of large scale WECS. The reactive power regulation, voltage variation suppression, etc. can be presented as major issues to be considered in this regard. Thus, this paper evaluates the application of a Static VAr Compensator (SVC) unit for the reactive power regulation and operation continuity of WECS during a fault condition. The system is modeled employing the IEEE 13 node test system. Thus, it is possible to evaluate the system performance with an overall grid simulation model close to real grid systems. The overall simulation model is developed in MATLAB/Simulink/SimPowerSystems® environments and the obtained results effectively match the target of the provided study.Keywords: IEEE 13 bus distribution system, reactive power regulation, static VAr compensator, wind energy conversion system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19811898 Numerical Simulation of the Dynamic Behavior of a LaNi5 Water Pumping System
Authors: Miled Amel, Ben Maad Hatem, Askri Faouzi, Ben Nasrallah Sassi
Abstract:
Metal hydride water pumping system uses hydrogen as working fluid to pump water for low head and high discharge. The principal operation of this pump is based on the desorption of hydrogen at high pressure and its absorption at low pressure by a metal hydride. This work is devoted to study a concept of the dynamic behavior of a metal hydride pump using unsteady model and LaNi5 as hydriding alloy. This study shows that with MHP, it is possible to pump 340l/kg-cycle of water in 15 000s using 1 Kg of LaNi5 at a desorption temperature of 360 K, a pumping head equal to 5 m and a desorption gear ratio equal to 33. This study reveals also that the error given by the steady model, using LaNi5 is about 2%.A dimensional mathematical model and the governing equations of the pump were presented to predict the coupled heat and mass transfer within the MHP. Then, a numerical simulation is carried out to present the time evolution of the specific water discharge and to test the effect of different parameters (desorption temperature, absorption temperature, desorption gear ratio) on the performance of the water pumping system (specific water discharge, pumping efficiency and pumping time). In addition, a comparison between results obtained with steady and unsteady model is performed with different hydride mass. Finally, a geometric configuration of the reactor is simulated to optimize the pumping time.
Keywords: Dynamic behavior, unsteady model, LaNi5, performance of the water pumping system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7711897 Effect of Cooling Rate on base Metals Recovery from Copper Matte Smelting Slags
Authors: N. Tshiongo , R K.K. Mbaya , K Maweja, L.C. Tshabalala
Abstract:
Slag sample from copper smelting operation in a water jacket furnace from DRC plant was used. The study intends to determine the effect of cooling in the extraction of base metals. The cooling methods investigated were water quenching, air cooling and furnace cooling. The latter cooling ways were compared to the original as received slag. It was observed that, the cooling rate of the slag affected the leaching of base metals as it changed the phase distribution in the slag and the base metals distribution within the phases. It was also found that fast cooling of slag prevented crystallization and produced an amorphous phase that encloses the base metals. The amorphous slags from the slag dumps were more leachable in acidic medium (HNO3) which leached 46%Cu, 95% Co, 85% Zn, 92% Pb and 79% Fe with no selectivity at pH0, than in basic medium (NH4OH). The leachability was vice versa for the modified slags by quenching in water which leached 89%Cu with a high selectivity as metal extractions are less than 1% for Co, Zn, Pb and Fe at ambient temperature and pH12. For the crystallized slags, leaching of base metals increased with the increase of temperature from ambient temperature to 60°C and decreased at the higher temperature of 80°C due to the evaporation of the ammonia solution used for basic leaching, the total amounts of base metals that were leached in slow cooled slags were very low compared to the quenched slag samples.Keywords: copper slag, leaching, amorphous, cooling rate
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37661896 Response Surface Methodology Approach to Defining Ultrafiltration of Steepwater from Corn Starch Industry
Authors: Zita I. Šereš, Ljubica P. Dokić, Dragana M. Šoronja Simović, Cecilia Hodur, Zsuzsanna Laszlo, Ivana Nikolić, Nikola Maravić
Abstract:
In this work the concentration of steepwater from corn starch industry is monitored using ultrafiltration membrane. The aim was to examine the conditions of ultrafiltration of steepwater by applying the membrane of 2.5nm. The parameters that vary during the course of ultrafiltration, were the transmembrane pressure, flow rate, while the permeate flux and the dry matter content of permeate and retentate were the dependent parameter constantly monitored during the process. Experiments of ultrafiltration are conducted on the samples of steepwater, which were obtained from the starch wet milling plant „Jabuka“ Pancevo. The procedure of ultrafiltration on a single-channel 250mm lenght, with inner diameter of 6.8mm and outer diameter of 10mm membrane were carried on. The membrane is made of a-Al2O3 with TiO2 layer obtained from GEA (Germany). The experiments are carried out at a flow rate ranging from 100 to 200lh-1 and transmembrane pressure of 1-3 bars. During the experiments of steepwater ultrafiltration, the change of permeate flux, dry matter content of permeate and retentate, as well as the absorbance changes of the permeate and retentate were monitored. The experimental results showed that the maximum flux reaches about 40lm-2h-1. For responses obtained after experiments, a polynomial model of the second degree is established to evaluate and quantify the influence of the variables. The quadratic equitation fits with the experimental values, where the coefficient of determination for flux is 0.96. The dry matter content of the retentate is increased for about 6%, while the dry matter content of permeate was reduced for about 35-40%, respectively. During steepwater ultrafiltration in permeate stays 40% less dry matter compared to the feed.
Keywords: Ultrafiltration, steepwater, starch industry, ceramic membrane.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21361895 Thermodynamic Cycle Analysis for Overall Efficiency Improvement and Temperature Reduction in Gas Turbines
Authors: Jeni A. Popescu, Ionut Porumbel, Valeriu A. Vilag, Cleopatra F. Cuciumita
Abstract:
The paper presents a thermodynamic cycle analysis for three turboshaft engines. The first cycle is a Brayton cycle, describing the evolution of a classical turboshaft, based on the Klimov TV2 engine. The other four cycles aim at approaching an Ericsson cycle, by replacing the Brayton cycle adiabatic expansion in the turbine by quasi-isothermal expansion. The maximum quasi- Ericsson cycles temperature is set to a lower value than the maximum Brayton cycle temperature, equal to the Brayton cycle power turbine inlet temperature, in order to decrease the engine NOx emissions. Also, the power/expansion ratio distribution over the stages of the gas generator turbine is maintained the same. In two of the considered quasi-Ericsson cycles, the efficiencies of the gas generator turbine, as well as the power/expansion ratio distribution over the stages of the gas generator turbine are maintained the same as for the reference case, while for the other two cases, the efficiencies are increased in order to obtain the same shaft power as in the reference case. For the two cases respecting the first condition, both the shaft power and the thermodynamic efficiency of the engine decrease, while for the other two, the power and efficiency are maintained, as a result of assuming new, more efficient gas generator turbines.
Keywords: Combustion, Ericsson, thermodynamic analysis, turbine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24631894 The Influence of Biofuels on the Permeability of Sand-Bentonite Liners
Authors: Mousa Bani Baker, Maria Elektorowicz, Adel Hanna, Altayeb Qasem
Abstract:
Liners are made to protect the groundwater table from the infiltration of leachate which normally carries different kinds of toxic materials from landfills. Although these liners are engineered to last for long period of time; unfortunately these liners fail; therefore, toxic materials pass to groundwater. This paper focuses on the changes of the hydraulic conductivity of a sand-bentonite liner due to the infiltration of biofuel and ethanol fuel. Series of laboratory tests were conducted in 20-cm-high PVC columns. Several compositions of sand-bentonite liners were tested: 95% sand: 5% bentonite; 90% sand: 10% bentonite; and 100% sand (passed mesh #40). The columns were subjected to extreme pressures of 40 kPa, and 100 kPa to evaluate the transport of alternative fuels (biofuel and ethanol fuel). For comparative studies, similar tests were carried out using water. Results showed that hydraulic conductivity increased due to the infiltration of alternative fuels through the liners. Accordingly, the increase in the hydraulic conductivity showed significant dependency on the type of liner mixture and the characteristics of the liquid. The hydraulic conductivity of a liner (subjected to biofuel infiltration) consisting of 5% bentonite: 95% sand under pressure of 40 kPa and 100 kPa had increased by one fold. In addition, the hydraulic conductivity of a liner consisting of 10% bentonite: 90% sand under pressure of 40 kPa and 100 kPa and infiltrated by biofuel had increased by three folds. On the other hand, the results obtained by water infiltration under 40 kPa showed lower hydraulic conductivities of 1.50×10-5 and 1.37×10-9 cm/s for 5% bentonite: 95% sand, and 10% bentonite: 90% sand, respectively. Similarly, under 100 kPa, the hydraulic conductivities were 2.30×10-5 and 1.90×10-9 cm/s for 5% bentonite: 95% sand, and 10% bentonite: 90% sand, respectively.Keywords: Biofuel, Ethanol; Hydraulic conductivity Landfill, Leakage, Liner failure, Liner performance Fine-grained soils, Particle size, Sand-bentonite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20071893 Effect of Three Drying Methods on Antioxidant Efficiency and Vitamin C Content of Moringa oleifera Leaf Extract
Authors: Kenia Martínez, Geniel Talavera, Juan Alonso
Abstract:
Moringa oleifera is a plant containing many nutrients that are mostly concentrated within the leaves. Commonly, the separation process of these nutrients involves solid-liquid extraction followed by evaporation and drying to obtain a concentrated extract, which is rich in proteins, vitamins, carbohydrates, and other essential nutrients that can be used in the food industry. In this work, three drying methods were used, which involved very different temperature and pressure conditions, to evaluate the effect of each method on the vitamin C content and the antioxidant efficiency of the extracts. Solid-liquid extractions of Moringa leaf (LE) were carried out by employing an ethanol solution (35% v/v) at 50 °C for 2 hours. The resulting extracts were then dried i) in a convective oven (CO) at 100 °C and at an atmospheric pressure of 750 mbar for 8 hours, ii) in a vacuum evaporator (VE) at 50 °C and at 300 mbar for 2 hours, and iii) in a freeze-drier (FD) at -40 °C and at 0.050 mbar for 36 hours. The antioxidant capacity (EC50, mg solids/g DPPH) of the dry solids was calculated by the free radical inhibition method employing DPPH˙ at 517 nm, resulting in a value of 2902.5 ± 14.8 for LE, 3433.1 ± 85.2 for FD, 3980.1 ± 37.2 for VE, and 8123.5 ± 263.3 for CO. The calculated antioxidant efficiency (AE, g DPPH/(mg solids·min)) was 2.920 × 10-5 for LE, 2.884 × 10-5 for FD, 2.512 × 10-5 for VE, and 1.009 × 10-5 for CO. Further, the content of vitamin C (mg/L) determined by HPLC was 59.0 ± 0.3 for LE, 49.7 ± 0.6 for FD, 45.0 ± 0.4 for VE, and 23.6 ± 0.7 for CO. The results indicate that the convective drying preserves vitamin C and antioxidant efficiency to 40% and 34% of the initial value, respectively, while vacuum drying to 76% and 86%, and freeze-drying to 84% and 98%, respectively.
Keywords: Antioxidant efficiency, convective drying, freeze-drying, Moringa oleifera, vacuum drying, vitamin C content.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17981892 Influence of Outer Corner Radius in Equal Channel Angular Pressing
Authors: Basavaraj V. Patil, Uday Chakkingal, T. S. Prasanna Kumar
Abstract:
Equal Channel Angular Pressing (ECAP) is currently being widely investigated because of its potential to produce ultrafine grained microstructures in metals and alloys. A sound knowledge of the plastic deformation and strain distribution is necessary for understanding the relationships between strain inhomogeneity and die geometry. Considerable research has been reported on finite element analysis of this process, assuming threedimensional plane strain condition. However, the two-dimensional models are not suitable due to the geometry of the dies, especially in cylindrical ones. In the present work, three-dimensional simulation of ECAP process was carried out for six outer corner radii (sharp to 10 mm in steps of 2 mm), with channel angle 105¶Çü▒, for strain hardening aluminium alloy (AA 6101) using ABAQUS/Standard software. Strain inhomogeneity is presented and discussed for all cases. Pattern of strain variation along selected radial lines in the body of the workpiece is presented. It is found from the results that the outer corner has a significant influence on the strain distribution in the body of work-piece. Based on inhomogeneity and average strain criteria, there is an optimum outer corner radius.Keywords: Equal Channel Angular Pressing, Finite Element Analysis, strain inhomogeneity, plastic equivalent strain, ultra fine grain size, aluminium alloy 6101.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22481891 An In-depth Experimental Study of Wax Deposition in Pipelines
Authors: M. L. Arias, J. D’Adamo, M. N. Novosad, P. A. Raffo, H. P. Burbridge, G. O. Artana
Abstract:
Shale oils are highly paraffinic and, consequently, can create wax deposits that foul pipelines during transportation. Several factors must be considered when designing pipelines or treatment programs that prevent wax deposition: including chemical species in crude oils, flowrates, pipes diameters and temperature. This paper describes the wax deposition study carried out within the framework of YPF Tecnolgía S.A. (Y-TEC) flow assurance projects, as part of the process to achieve a better understanding on wax deposition issues. Laboratory experiments were performed on a medium size, 1 inch diameter, wax deposition loop of 15 meters long equipped with a solid detector system, online microscope to visualize crystals, temperature, and pressure sensors along the loop pipe. A baseline test was performed with diesel with no added paraffin or additive content. Tests were undertaken with different temperatures of circulating and cooling fluid at different flow conditions. Then, a solution formed with a paraffin incorporated to the diesel was considered. Tests varying flowrate and cooling rate were again run. Viscosity, density, WAT (Wax Appearance Temperature) with DSC (Differential Scanning Calorimetry), pour point and cold finger measurements were carried out to determine physical properties of the working fluids. The results obtained in the loop were analyzed through momentum balance and heat transfer models. To determine possible paraffin deposition scenarios temperature and pressure loop output signals were studied. They were compared with WAT static laboratory methods.
Keywords: Paraffin deposition, wax, oil pipelines, experimental pipe loop.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1621890 Diagnosing Dangerous Arrhythmia of Patients by Automatic Detecting of QRS Complexes in ECG
Authors: Jia-Rong Yeh, Ai-Hsien Li, Jiann-Shing Shieh, Yen-An Su, Chi-Yu Yang
Abstract:
In this paper, an automatic detecting algorithm for QRS complex detecting was applied for analyzing ECG recordings and five criteria for dangerous arrhythmia diagnosing are applied for a protocol type of automatic arrhythmia diagnosing system. The automatic detecting algorithm applied in this paper detected the distribution of QRS complexes in ECG recordings and related information, such as heart rate and RR interval. In this investigation, twenty sampled ECG recordings of patients with different pathologic conditions were collected for off-line analysis. A combinative application of four digital filters for bettering ECG signals and promoting detecting rate for QRS complex was proposed as pre-processing. Both of hardware filters and digital filters were applied to eliminate different types of noises mixed with ECG recordings. Then, an automatic detecting algorithm of QRS complex was applied for verifying the distribution of QRS complex. Finally, the quantitative clinic criteria for diagnosing arrhythmia were programmed in a practical application for automatic arrhythmia diagnosing as a post-processor. The results of diagnoses by automatic dangerous arrhythmia diagnosing were compared with the results of off-line diagnoses by experienced clinic physicians. The results of comparison showed the application of automatic dangerous arrhythmia diagnosis performed a matching rate of 95% compared with an experienced physician-s diagnoses.Keywords: Signal processing, electrocardiography (ECG), QRS complex, arrhythmia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15171889 Maximum Water Hammer Sensitivity Analysis
Authors: Jalil Emadi, Abbas Solemani
Abstract:
Pressure waves and Water Hammer occur in a pumping system when valves are closed or opened suddenly or in the case of sudden failure of pumps. Determination of maximum water hammer is considered one of the most important technical and economical items of which engineers and designers of pumping stations and conveyance pipelines should take care. Hammer Software is a recent application used to simulate water hammer. The present study focuses on determining significance of each input parameter of the application relative to the maximum amount of water hammer estimated by the software. The study determines estimated maximum water hammer variations due to variations of input parameters including water temperature, pipe type, thickness and diameter, electromotor rpm and power, and moment of inertia of electromotor and pump. In our study, Kuhrang Pumping Station was modeled using WaterGEMS Software. The pumping station is characterized by total discharge of 200 liters per second, dynamic height of 194 meters and 1.5 kilometers of steel conveyance pipeline and transports water to Cheshme Morvarid for farmland irrigation. The model was run in steady hydraulic condition and transferred to Hammer Software. Then, the model was run in several unsteady hydraulic conditions and sensitivity of maximum water hammer to each input parameter was calculated. It is shown that parameters to which maximum water hammer is most sensitive are moment of inertia of pump and electromotor, diameter, type and thickness of pipe and water temperature, respectively.Keywords: Pressure Wave, Water Hammer, Sensitivity Analysis, Hammer Software, Kuhrang, Cheshme Morvarid
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32751888 Development and in vitro Characterization of Self-nanoemulsifying Drug Delivery Systems of Valsartan
Authors: P. S. Rajinikanth, Yeoh Suyu, Sanjay Garg
Abstract:
The present study is aim to prepare and evaluate the selfnanoemulsifying drug delivery (SNEDDS) system of a poorly water soluble drug valsartan in order to achieve a better dissolution rate which would further help in enhancing oral bioavailability. The present research work describes a SNEDDS of valsartan using labrafil M 1944 CS, Tween 80 and Transcutol HP. The pseudoternary phase diagrams with presence and absence of drug were plotted to check for the emulsification range and also to evaluate the effect of valsartan on the emulsification behavior of the phases. The mixtures consisting of oil (labrafil M 1944 CS) with surfactant (tween 80), co-surfactant (Transcutol HP) were found to be optimum formulations. Prepared formulations were evaluated for its particle size distribution, nanoemulsifying properties, robustness to dilution, self emulsication time, turbidity measurement, drug content and invitro dissolution. The optimized formulations are further evaluated for heating cooling cycle, centrifugation studies, freeze thaw cycling, particle size distribution and zeta potential were carried out to confirm the stability of the formed SNEDDS formulations. The prepared formulation revealed t a significant improvement in terms of the drug solubility as compared with marketed tablet and pure drug.
Keywords: Self Emulsifying Drug Delivery System, Valsartan, Bioavailability, poorly soluble drug.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26801887 Heat Transfer and Entropy Generation in a Partial Porous Channel Using LTNE and Exothermicity/Endothermicity Features
Authors: Mohsen Torabi, Nader Karimi, Kaili Zhang
Abstract:
This work aims to provide a comprehensive study on the heat transfer and entropy generation rates of a horizontal channel partially filled with a porous medium which experiences internal heat generation or consumption due to exothermic or endothermic chemical reaction. The focus has been given to the local thermal non-equilibrium (LTNE) model. The LTNE approach helps us to deliver more accurate data regarding temperature distribution within the system and accordingly to provide more accurate Nusselt number and entropy generation rates. Darcy-Brinkman model is used for the momentum equations, and constant heat flux is assumed for boundary conditions for both upper and lower surfaces. Analytical solutions have been provided for both velocity and temperature fields. By incorporating the investigated velocity and temperature formulas into the provided fundamental equations for the entropy generation, both local and total entropy generation rates are plotted for a number of cases. Bifurcation phenomena regarding temperature distribution and interface heat flux ratio are observed. It has been found that the exothermicity or endothermicity characteristic of the channel does have a considerable impact on the temperature fields and entropy generation rates.
Keywords: Entropy generation, exothermicity, endothermicity, forced convection, local thermal non-equilibrium, analytical modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8741886 The Impact of Surface Roughness and PTFE/TiF3/FeF3 Additives in Plain ZDDP Oil on the Friction and Wear Behavior Using Thermal and Tribological Analysis under Extreme Pressure Condition
Authors: Gabi N. Nehme, Saeed Ghalambor
Abstract:
The use of titanium fluoride and iron fluoride (TiF3/FeF3) catalysts in combination with polutetrafluoroethylene (PTFE) in plain zinc- dialkyldithiophosphate (ZDDP) oil is important for the study of engine tribocomponents and is increasingly a strategy to improve the formation of tribofilm and provide low friction and excellent wear protection in reduced phosphorus plain ZDDP oil. The influence of surface roughness and the concentration of TiF3/FeF3/PTFE were investigated using bearing steel samples dipped in lubricant solution at 100°C for two different heating time durations. This paper addresses the effects of water drop contact angle using different surface; finishes after treating them with different lubricant combination. The calculated water drop contact angles were analyzed using Design of Experiment software (DOE) and it was determined that a 0.05 μm Ra surface roughness would provide an excellent TiF3/FeF3/PTFE coating for antiwear resistance as reflected in the Scanning electron microscopy (SEM) images and the tribological testing under extreme pressure conditions. Both friction and wear performance depend greatly on the PTFE/and catalysts in plain ZDDP oil with 0.05 % phosphorous and on the surface finish of bearing steel. The friction and wear reducing effects, which was observed in the tribological tests, indicated a better micro lubrication effect of the 0.05 μm Ra surface roughness treated at 100°C for 24 hours when compared to the 0.1 μm Ra surface roughness with the same treatment.
Keywords: Scanning Electron Microscopy (SEM), ZDDP, catalysts, PTFE, friction, wear.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16281885 Finite Element Study on Corono-Radicular Restored Premolars
Authors: Sandu L., Topală F., Porojan S.
Abstract:
Restoration of endodontically treated teeth is a common problem in dentistry, related to the fractures occurring in such teeth and to concentration of forces little information regarding variation of basic preparation guidelines in stress distribution has been available. To date, there is still no agreement in the literature about which material or technique can optimally restore endodontically treated teeth. The aim of the present study was to evaluate the influence of the core height and restoration materials on corono-radicular restored upper first premolar. The first step of the study was to achieve 3D models in order to analyze teeth, dowel and core restorations and overlying full ceramic crowns. The FEM model was obtained by importing the solid model into ANSYS finite element analysis software. An occlusal load of 100 N was conducted, and stresses occurring in the restorations, and teeth structures were calculated. Numerical simulations provide a biomechanical explanation for stress distribution in prosthetic restored teeth. Within the limitations of the present study, it was found that the core height has no important influence on the stress generated in coronoradicular restored premolars. It can be drawn that the cervical regions of the teeth and restorations were subjected to the highest stress concentrations.Keywords: 3D models, finite element analysis, dowel and core restoration, full ceramic crown, premolars, structural simulations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28831884 Enhancing Hand Efficiency of Smart Glass Cleaning Robot through Generative Design Module
Authors: Pankaj Gupta, Amit Kumar Srivastava, Nitesh Pandey
Abstract:
This article explores the domain of generative design in order to enhance the development of robot designs for innovative and efficient maintenance approaches for tall buildings. This study aims to optimize the design of robotic hands by focusing on minimizing mass and volume while ensuring they can withstand the specified pressure with equal strength. The research procedure is structured and systematic. The purpose of optimization is to enhance the efficiency of the robot and reduce the manufacturing expenses. The project seeks to investigate the application of generative design in order to optimize products. Autodesk Fusion 360 offers the capability to immediately apply the generative design functionality to the solid model. The effort involved creating a solid model of the Smart Glass Cleaning Robot and optimizing one of its components, the Hand, using generative techniques. The article has thoroughly examined the designs, outcomes, and procedure. These loads serve as a benchmark for creating designs that can endure the necessary level of pressure and preserve their structural integrity. The efficacy of the generative design process is contingent upon the selection of materials, as different materials possess distinct physical attributes. The study utilizes five different materials, namely Steel, Stainless Steel, Titanium, Aluminum, and CFRP (Carbon Fiber Reinforced Polymer), in order to investigate a range of design possibilities.
Keywords: Generative design, mass and volume optimization, material strength analysis, generative design, smart glass cleaning robot.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2011883 Using Scanning Electron Microscope and Computed Tomography for Concrete Diagnostics of Airfield Pavements
Authors: M. Linek
Abstract:
This article presents the comparison of selected evaluation methods regarding microstructure modification of hardened cement concrete intended for airfield pavements. Basic test results were presented for two pavement quality concrete lots. Analysis included standard concrete used for airfield pavements and modern material solutions based on concrete composite modification. In case of basic grain size distribution of concrete cement CEM I 42,5HSR NA, fine aggregate and coarse aggregate fractions in the form of granite chippings, water and admixtures were considered. In case of grain size distribution of modified concrete, the use of modern modifier as substitute of fine aggregate was suggested. Modification influence on internal concrete structure parameters using scanning electron microscope was defined. Obtained images were compared to the results obtained using computed tomography. Opportunity to use this type of equipment for internal concrete structure diagnostics and an attempt of its parameters evaluation was presented. Obtained test results enabled to reach a conclusion that both methods can be applied for pavement quality concrete diagnostics, with particular purpose of airfield pavements.Keywords: Scanning electron microscope, computed tomography, cement concrete, airfield pavements.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11151882 Influential Parameters in Estimating Soil Properties from Cone Penetrating Test: An Artificial Neural Network Study
Authors: Ahmed G. Mahgoub, Dahlia H. Hafez, Mostafa A. Abu Kiefa
Abstract:
The Cone Penetration Test (CPT) is a common in-situ test which generally investigates a much greater volume of soil more quickly than possible from sampling and laboratory tests. Therefore, it has the potential to realize both cost savings and assessment of soil properties rapidly and continuously. The principle objective of this paper is to demonstrate the feasibility and efficiency of using artificial neural networks (ANNs) to predict the soil angle of internal friction (Φ) and the soil modulus of elasticity (E) from CPT results considering the uncertainties and non-linearities of the soil. In addition, ANNs are used to study the influence of different parameters and recommend which parameters should be included as input parameters to improve the prediction. Neural networks discover relationships in the input data sets through the iterative presentation of the data and intrinsic mapping characteristics of neural topologies. General Regression Neural Network (GRNN) is one of the powerful neural network architectures which is utilized in this study. A large amount of field and experimental data including CPT results, plate load tests, direct shear box, grain size distribution and calculated data of overburden pressure was obtained from a large project in the United Arab Emirates. This data was used for the training and the validation of the neural network. A comparison was made between the obtained results from the ANN's approach, and some common traditional correlations that predict Φ and E from CPT results with respect to the actual results of the collected data. The results show that the ANN is a very powerful tool. Very good agreement was obtained between estimated results from ANN and actual measured results with comparison to other correlations available in the literature. The study recommends some easily available parameters that should be included in the estimation of the soil properties to improve the prediction models. It is shown that the use of friction ration in the estimation of Φ and the use of fines content in the estimation of E considerable improve the prediction models.
Keywords: Angle of internal friction, Cone penetrating test, General regression neural network, Soil modulus of elasticity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22821881 Material Density Mapping on Deformable 3D Models of Human Organs
Authors: Petru Manescu, Joseph Azencot, Michael Beuve, Hamid Ladjal, Jacques Saade, Jean-Michel Morreau, Philippe Giraud, Behzad Shariat
Abstract:
Organ motion, especially respiratory motion, is a technical challenge to radiation therapy planning and dosimetry. This motion induces displacements and deformation of the organ tissues within the irradiated region which need to be taken into account when simulating dose distribution during treatment. Finite element modeling (FEM) can provide a great insight into the mechanical behavior of the organs, since they are based on the biomechanical material properties, complex geometry of organs, and anatomical boundary conditions. In this paper we present an original approach that offers the possibility to combine image-based biomechanical models with particle transport simulations. We propose a new method to map material density information issued from CT images to deformable tetrahedral meshes. Based on the principle of mass conservation our method can correlate density variation of organ tissues with geometrical deformations during the different phases of the respiratory cycle. The first results are particularly encouraging, as local error quantification of density mapping on organ geometry and density variation with organ motion are performed to evaluate and validate our approach.
Keywords: Biomechanical simulation, dose distribution, image guided radiation therapy, organ motion, tetrahedral mesh, 4D-CT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30081880 Probabilistic Method of Wind Generation Placement for Congestion Management
Authors: S. Z. Moussavi, A. Badri, F. Rastegar Kashkooli
Abstract:
Wind farms (WFs) with high level of penetration are being established in power systems worldwide more rapidly than other renewable resources. The Independent System Operator (ISO), as a policy maker, should propose appropriate places for WF installation in order to maximize the benefits for the investors. There is also a possibility of congestion relief using the new installation of WFs which should be taken into account by the ISO when proposing the locations for WF installation. In this context, efficient wind farm (WF) placement method is proposed in order to reduce burdens on congested lines. Since the wind speed is a random variable and load forecasts also contain uncertainties, probabilistic approaches are used for this type of study. AC probabilistic optimal power flow (P-OPF) is formulated and solved using Monte Carlo Simulations (MCS). In order to reduce computation time, point estimate methods (PEM) are introduced as efficient alternative for time-demanding MCS. Subsequently, WF optimal placement is determined using generation shift distribution factors (GSDF) considering a new parameter entitled, wind availability factor (WAF). In order to obtain more realistic results, N-1 contingency analysis is employed to find the optimal size of WF, by means of line outage distribution factors (LODF). The IEEE 30-bus test system is used to show and compare the accuracy of proposed methodology.Keywords: Probabilistic optimal power flow, Wind power, Pointestimate methods, Congestion management
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18881879 Numerical Investigation of Developing Mixed Convection in Isothermal Circular and Annular Sector Ducts
Authors: Ayad A. Abdalla, Elhadi I. Elhadi, Hisham A. Elfergani
Abstract:
Developing mixed convection in circular and annular sector ducts is investigated numerically for steady laminar flow of an incompressible Newtonian fluid with Pr = 0.7 and a wide range of Grashof number (0 £ Gr £ 107). Investigation is limited to the case of heating in circular and annular sector ducts with apex angle of 2ϕ = π/4 for the thermal boundary condition of uniform wall temperature axially and peripherally. A numerical, finite control volume approach based on the SIMPLER algorithm is employed to solve the 3D governing equations. Numerical analysis is conducted using marching technique in the axial direction with axial conduction, axial mass diffusion, and viscous dissipation within the fluid are assumed negligible. The results include developing secondary flow patterns, developing temperature and axial velocity fields, local Nusselt number, local friction factor, and local apparent friction factor. Comparisons are made with the literature and satisfactory agreement is obtained. It is found that free convection enhances the local heat transfer in some cases by up to 2.5 times from predictions which account for forced convection only and the enhancement increases as Grashof number increases. Duct geometry and Grashof number strongly influence the heat transfer and pressure drop characteristics.
Keywords: Mixed convection, annular and circular sector ducts, heat transfer enhancement, pressure drop.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5471878 Mathematical Study for Traffic Flow and Traffic Density in Kigali Roads
Authors: Kayijuka Idrissa
Abstract:
This work investigates a mathematical study for traffic flow and traffic density in Kigali city roads and the data collected from the national police of Rwanda in 2012. While working on this topic, some mathematical models were used in order to analyze and compare traffic variables. This work has been carried out on Kigali roads specifically at roundabouts from Kigali Business Center (KBC) to Prince House as our study sites. In this project, we used some mathematical tools to analyze the data collected and to understand the relationship between traffic variables. We applied the Poisson distribution method to analyze and to know the number of accidents occurred in this section of the road which is from KBC to Prince House. The results show that the accidents that occurred in 2012 were at very high rates due to the fact that this section has a very narrow single lane on each side which leads to high congestion of vehicles, and consequently, accidents occur very frequently. Using the data of speeds and densities collected from this section of road, we found that the increment of the density results in a decrement of the speed of the vehicle. At the point where the density is equal to the jam density the speed becomes zero. The approach is promising in capturing sudden changes on flow patterns and is open to be utilized in a series of intelligent management strategies and especially in noncurrent congestion effect detection and control.
Keywords: Statistical methods, Poisson distribution, car moving techniques, traffic flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18191877 A Combined Approach of a Sequential Life Testing and an Accelerated Life Testing Applied to a Low-Alloy High Strength Steel Component
Authors: D. I. De Souza, D. R. Fonseca, G. P. Azevedo
Abstract:
Sometimes the amount of time available for testing could be considerably less than the expected lifetime of the component. To overcome such a problem, there is the accelerated life-testing alternative aimed at forcing components to fail by testing them at much higher-than-intended application conditions. These models are known as acceleration models. One possible way to translate test results obtained under accelerated conditions to normal using conditions could be through the application of the “Maxwell Distribution Law.” In this paper we will apply a combined approach of a sequential life testing and an accelerated life testing to a low alloy high-strength steel component used in the construction of overpasses in Brazil. The underlying sampling distribution will be three-parameter Inverse Weibull model. To estimate the three parameters of the Inverse Weibull model we will use a maximum likelihood approach for censored failure data. We will be assuming a linear acceleration condition. To evaluate the accuracy (significance) of the parameter values obtained under normal conditions for the underlying Inverse Weibull model we will apply to the expected normal failure times a sequential life testing using a truncation mechanism. An example will illustrate the application of this procedure.
Keywords: Sequential Life Testing, Accelerated Life Testing, Underlying Three-Parameter Weibull Model, Maximum Likelihood Approach, Hypothesis Testing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16391876 Simulation of Laser Structuring by Three Dimensional Heat Transfer Model
Authors: Bassim Bachy, Joerg Franke
Abstract:
In this study, a three dimensional numerical heat transfer model has been used to simulate the laser structuring of polymer substrate material in the Three-Dimensional Molded Interconnect Device (3D MID) which is used in the advanced multifunctional applications. A finite element method (FEM) transient thermal analysis is performed using APDL (ANSYS Parametric Design Language) provided by ANSYS. In this model, the effect of surface heat source was modeled with Gaussian distribution, also the effect of the mixed boundary conditions which consist of convection and radiation heat transfers have been considered in this analysis. The model provides a full description of the temperature distribution, as well as calculates the depth and the width of the groove upon material removal at different set of laser parameters such as laser power and laser speed. This study also includes the experimental procedure to study the effect of laser parameters on the depth and width of the removal groove metal as verification to the modeled results. Good agreement between the experimental and the model results is achieved for a wide range of laser powers. It is found that the quality of the laser structure process is affected by the laser scan speed and laser power. For a high laser structured quality, it is suggested to use laser with high speed and moderate to high laser power.
Keywords: Laser Structuring, Simulation, Finite element analysis, Thermal modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 43451875 Applications of AUSM+ Scheme on Subsonic, Supersonic and Hypersonic Flows Fields
Authors: Muhammad Yamin Younis, Muhammad Amjad Sohail, Tawfiqur Rahman, Zaka Muhammad, Saifur Rahman Bakaul
Abstract:
The performance of Advection Upstream Splitting Method AUSM schemes are evaluated against experimental flow fields at different Mach numbers and results are compared with experimental data of subsonic, supersonic and hypersonic flow fields. The turbulent model used here is SST model by Menter. The numerical predictions include lift coefficient, drag coefficient and pitching moment coefficient at different mach numbers and angle of attacks. This work describes a computational study undertaken to compute the Aerodynamic characteristics of different air vehicles configurations using a structured Navier-Stokes computational technique. The CFD code bases on the idea of upwind scheme for the convective (convective-moving) fluxes. CFD results for GLC305 airfoil and cone cylinder tail fined missile calculated on above mentioned turbulence model are compared with the available data. Wide ranges of Mach number from subsonic to hypersonic speeds are simulated and results are compared. When the computation is done by using viscous turbulence model the above mentioned coefficients have a very good agreement with the experimental values. AUSM scheme is very efficient in the regions of very high pressure gradients like shock waves and discontinuities. The AUSM versions simulate the all types of flows from lower subsonic to hypersonic flow without oscillations.Keywords: Subsonic, supersonic, Hypersonic, AUSM+, Drag Coefficient, lift Coefficient, Pitching moment coefficient, pressure Coefficient, turbulent flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32441874 Reducing Defects through Organizational Learning within a Housing Association Environment
Authors: T. Hopkin, S. Lu, P. Rogers, M. Sexton
Abstract:
Housing Associations (HAs) contribute circa 20% of the UK’s housing supply. HAs are however under increasing pressure as a result of funding cuts and rent reductions. Due to the increased pressure, a number of processes are currently being reviewed by HAs, especially how they manage and learn from defects. Learning from defects is considered a useful approach to achieving defect reduction within the UK housebuilding industry. This paper contributes to our understanding of how HAs learn from defects by undertaking an initial round table discussion with key HA stakeholders as part of an ongoing collaborative research project with the National House Building Council (NHBC) to better understand how house builders and HAs learn from defects to reduce their prevalence. The initial discussion shows that defect information runs through a number of groups, both internal and external of a HA during both the defects management process and organizational learning (OL) process. Furthermore, HAs are reliant on capturing and recording defect data as the foundation for the OL process. During the OL process defect data analysis is the primary enabler to recognizing a need for a change to organizational routines. When a need for change has been recognized, new options are typically pursued to design out defects via updates to a HAs Employer’s Requirements. Proposed solutions are selected by a review board and committed to organizational routine. After implementing a change, both structured and unstructured feedback is sought to establish the change’s success. The findings from the HA discussion demonstrates that OL can achieve defect reduction within the house building sector in the UK. The paper concludes by outlining a potential ‘learning from defects model’ for the housebuilding industry as well as describing future work.
Keywords: Defects, new homes, housing associations, organizational learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18971873 Standard Deviation of Mean and Variance of Rows and Columns of Images for CBIR
Authors: H. B. Kekre, Kavita Patil
Abstract:
This paper describes a novel and effective approach to content-based image retrieval (CBIR) that represents each image in the database by a vector of feature values called “Standard deviation of mean vectors of color distribution of rows and columns of images for CBIR". In many areas of commerce, government, academia, and hospitals, large collections of digital images are being created. This paper describes the approach that uses contents as feature vector for retrieval of similar images. There are several classes of features that are used to specify queries: colour, texture, shape, spatial layout. Colour features are often easily obtained directly from the pixel intensities. In this paper feature extraction is done for the texture descriptor that is 'variance' and 'Variance of Variances'. First standard deviation of each row and column mean is calculated for R, G, and B planes. These six values are obtained for one image which acts as a feature vector. Secondly we calculate variance of the row and column of R, G and B planes of an image. Then six standard deviations of these variance sequences are calculated to form a feature vector of dimension six. We applied our approach to a database of 300 BMP images. We have determined the capability of automatic indexing by analyzing image content: color and texture as features and by applying a similarity measure Euclidean distance.
Keywords: Standard deviation Image retrieval, color distribution, Variance, Variance of Variance, Euclidean distance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37461872 Low-Cost Mechatronic Design of an Omnidirectional Mobile Robot
Authors: S. Cobos-Guzman
Abstract:
This paper presents the results of a mechatronic design based on a 4-wheel omnidirectional mobile robot that can be used in indoor logistic applications. The low-level control has been selected using two open-source hardware (Raspberry Pi 3 Model B+ and Arduino Mega 2560) that control four industrial motors, four ultrasound sensors, four optical encoders, a vision system of two cameras, and a Hokuyo URG-04LX-UG01 laser scanner. Moreover, the system is powered with a lithium battery that can supply 24 V DC and a maximum current-hour of 20Ah.The Robot Operating System (ROS) has been implemented in the Raspberry Pi and the performance is evaluated with the selection of the sensors and hardware selected. The mechatronic system is evaluated and proposed safe modes of power distribution for controlling all the electronic devices based on different tests. Therefore, based on different performance results, some recommendations are indicated for using the Raspberry Pi and Arduino in terms of power, communication, and distribution of control for different devices. According to these recommendations, the selection of sensors is distributed in both real-time controllers (Arduino and Raspberry Pi). On the other hand, the drivers of the cameras have been implemented in Linux and a python program has been implemented to access the cameras. These cameras will be used for implementing a deep learning algorithm to recognize people and objects. In this way, the level of intelligence can be increased in combination with the maps that can be obtained from the laser scanner.
Keywords: Autonomous, indoor robot, mechatronic, omnidirectional robot.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 587