Search results for: Learning performance
6226 Learning the Dynamics of Articulated Tracked Vehicles
Authors: Mario Gianni, Manuel A. Ruiz Garcia, Fiora Pirri
Abstract:
In this work, we present a Bayesian non-parametric approach to model the motion control of ATVs. The motion control model is based on a Dirichlet Process-Gaussian Process (DP-GP) mixture model. The DP-GP mixture model provides a flexible representation of patterns of control manoeuvres along trajectories of different lengths and discretizations. The model also estimates the number of patterns, sufficient for modeling the dynamics of the ATV.Keywords: Dirichlet processes, Gaussian processes, robot control learning, tracked vehicles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17836225 MMSE Based Beamforming for Chip Interleaved CDMA in Aeronautical Mobile Radio Channel
Authors: Sherif K. El Dyasti, Esam A. Hagras, Adel E. El-Hennawy
Abstract:
This paper addresses the performance of antenna array beamforming on Chip-Interleaved Code Division Multiple Access (CI_CDMA) system based on Minimum Mean Square Error (MMSE) detector in aeronautical mobile radio channel. Multipath fading, Doppler shifts caused by the speed of the aircraft, and Multiple Access Interference (MAI) are the most important reasons that affect and reduce the performance of aeronautical system. In this paper we suggested the CI-CDMA with antenna array to combat this fading and improve the bit error rate (BER) performance. We further evaluate the performance of the proposed system in the four standard scenarios in aeronautical mobile radio channel.
Keywords: Aeronautical Channel, CI-CDMA, Beamforming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21446224 Multi-Level Air Quality Classification in China Using Information Gain and Support Vector Machine
Authors: Bingchun Liu, Pei-Chann Chang, Natasha Huang, Dun Li
Abstract:
Machine Learning and Data Mining are the two important tools for extracting useful information and knowledge from large datasets. In machine learning, classification is a wildly used technique to predict qualitative variables and is generally preferred over regression from an operational point of view. Due to the enormous increase in air pollution in various countries especially China, Air Quality Classification has become one of the most important topics in air quality research and modelling. This study aims at introducing a hybrid classification model based on information theory and Support Vector Machine (SVM) using the air quality data of four cities in China namely Beijing, Guangzhou, Shanghai and Tianjin from Jan 1, 2014 to April 30, 2016. China's Ministry of Environmental Protection has classified the daily air quality into 6 levels namely Serious Pollution, Severe Pollution, Moderate Pollution, Light Pollution, Good and Excellent based on their respective Air Quality Index (AQI) values. Using the information theory, information gain (IG) is calculated and feature selection is done for both categorical features and continuous numeric features. Then SVM Machine Learning algorithm is implemented on the selected features with cross-validation. The final evaluation reveals that the IG and SVM hybrid model performs better than SVM (alone), Artificial Neural Network (ANN) and K-Nearest Neighbours (KNN) models in terms of accuracy as well as complexity.
Keywords: Machine learning, air quality classification, air quality index, information gain, support vector machine, cross-validation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9486223 A Review on Image Segmentation Techniques and Performance Measures
Authors: David Libouga Li Gwet, Marius Otesteanu, Ideal Oscar Libouga, Laurent Bitjoka, Gheorghe D. Popa
Abstract:
Image segmentation is a method to extract regions of interest from an image. It remains a fundamental problem in computer vision. The increasing diversity and the complexity of segmentation algorithms have led us firstly, to make a review and classify segmentation techniques, secondly to identify the most used measures of segmentation performance and thirdly, discuss deeply on segmentation philosophy in order to help the choice of adequate segmentation techniques for some applications. To justify the relevance of our analysis, recent algorithms of segmentation are presented through the proposed classification.Keywords: Classification, image segmentation, measures of performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20536222 Employee Motivation Factors That Affect Job Performance of Suan Sunandha Rajabhat University Employee
Authors: Orawan Boriban, Phatthanan Chaiyabut
Abstract:
The purpose of this research is to study motivation factors and also to study factors relation to job performance to compare motivation factors under the personal factor classification such as gender, age, income, educational level, marital status, and working duration; and to study the relationship between Motivation Factors and Job Performance with job satisfactions. The sample groups utilized in this research were 400 Suan Sunandha Rajabhat University employees. This research is a quantitative research using questionnaires as research instrument. The statistics applied for data analysis including percentage, mean, and standard deviation. In addition, the difference analysis was conducted by t value computing, one-way analysis of variance and Pearson’s correlation coefficient computing. The findings of the study results were as follows the findings showed that the aspects of job promotion and salary were at the moderate levels. Additionally, the findings also showed that the motivations that affected the revenue branch chiefs’ job performance were job security, job accomplishment, policy and management, job promotion, and interpersonal relation.
Keywords: Motivation Factors, Job Performance, Suan Sunandha Rajabhat University Employee.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28486221 A Model for Collaborative COTS Software Acquisition (COSA)
Authors: Torsti Rantapuska, Sariseelia Sore
Abstract:
Acquiring commercial off-the-shelf (COTS) software applications is becoming routine in organizations. However, eliciting user requirements, finding the candidate COTS products and making the decision is a complex task, especially for SMEs who do not have the time and knowledge needed to do the task properly. The existing models intended to help the decision makers are originally designed for professional use. SMEs are obligated to rely on the software vendor’s ability to solve the problem with the systems provided. In this paper, we develop a model for SMEs for the acquisition of Commercial Off-The-Shelf (COTS) software products. A leading idea of the model is that the ICT investment is basically a change initiative and therefore it should also be taken as a process of organizational learning. The model is designed bearing three objectives in mind: 1) business orientation, 2) agility, and 3) Learning and knowledge management orientation. The model can be applied to ICT investments in SMEs which have a professional team leader with basic business and IT knowledge.
Keywords: COTS acquisition, ICT investment, organizational learning, ICT adoption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17706220 Visual Analytics in K 12 Education - Emerging Dimensions of Complexity
Authors: Linnea Stenliden
Abstract:
The aim of this paper is to understand emerging learning conditions, when a visual analytics is implemented and used in K 12 (education). To date, little attention has been paid to the role visual analytics (digital media and technology that highlight visual data communication in order to support analytical tasks) can play in education, and to the extent to which these tools can process actionable data for young students. This study was conducted in three public K 12 schools, in four social science classes with students aged 10 to 13 years, over a period of two to four weeks at each school. Empirical data were generated using video observations and analyzed with help of metaphors within Actor-network theory (ANT). The learning conditions are found to be distinguished by broad complexity, characterized by four dimensions. These emerge from the actors’ deeply intertwined relations in the activities. The paper argues in relation to the found dimensions that novel approaches to teaching and learning could benefit students’ knowledge building as they work with visual analytics, analyzing visualized data.
Keywords: Analytical reasoning, complexity, data use, problem space, visual analytics, visual storytelling, translation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16976219 AI Tutor: A Computer Science Domain Knowledge Graph-Based QA System on JADE platform
Authors: Yingqi Cui, Changran Huang, Raymond Lee
Abstract:
In this paper, we proposed an AI Tutor using ontology and natural language process techniques to generate a computer science domain knowledge graph and answer users’ questions based on the knowledge graph. We define eight types of relation to extract relationships between entities according to the computer science domain text. The AI tutor is separated into two agents: learning agent and Question-Answer (QA) agent and developed on JADE (a multi-agent system) platform. The learning agent is responsible for reading text to extract information and generate a corresponding knowledge graph by defined patterns. The QA agent can understand the users’ questions and answer humans’ questions based on the knowledge graph generated by the learning agent.
Keywords: Artificial intelligence, natural language process, knowledge graph, agent, QA system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8966218 Websites for Hypothesis Testing
Authors: František Mošna
Abstract:
E-learning has become an efficient and widespread means of education at all levels of human activities. Statistics is no exception. Unfortunately the main focus in statistics teaching is usually paid to the substitution in formulas. Suitable websites can simplify and automate calculations and provide more attention and time to the basic principles of statistics, mathematization of real-life situations and following interpretation of results. We now introduce our own web-site for hypothesis testing. Its didactic aspects, the technical possibilities of the individual tools, the experience of use and the advantages or disadvantages are discussed in this paper. This web-site is not a substitute for common statistical software but should significantly improve the teaching of statistics at universities.
Keywords: E-learning, hypothesis testing, PHP, websites.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23506217 Topology Influence on TCP Congestion Control Performance in Multi-hop Ad Hoc Wireless
Authors: Haniza N., Md Khambari, M. N, Shahrin S., Adib M.Monzer Habbal, Suhaidi Hassan
Abstract:
Wireless ad hoc nodes are freely and dynamically self-organize in communicating with others. Each node can act as host or router. However it actually depends on the capability of nodes in terms of its current power level, signal strength, number of hops, routing protocol, interference and others. In this research, a study was conducted to observe the effect of hops count over different network topologies that contribute to TCP Congestion Control performance degradation. To achieve this objective, a simulation using NS-2 with different topologies have been evaluated. The comparative analysis has been discussed based on standard observation metrics: throughput, delay and packet loss ratio. As a result, there is a relationship between types of topology and hops counts towards the performance of ad hoc network. In future, the extension study will be carried out to investigate the effect of different error rate and background traffic over same topologies.Keywords: NS-2, network topology, network performance, multi-hops
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15726216 Autonomous Flight Performance Improvement of Load-Carrying Unmanned Aerial Vehicles by Active Morphing
Authors: Tugrul Oktay, Mehmet Konar, Mohamed Abdallah Mohamed, Murat Aydin, Firat Sal, Murat Onay, Mustafa Soylak
Abstract:
In this paper, it is aimed to improve autonomous flight performance of a load-carrying (payload: 3 kg and total: 6kg) unmanned aerial vehicle (UAV) through active wing and horizontal tail active morphing and also integrated autopilot system parameters (i.e. P, I, D gains) and UAV parameters (i.e. extension ratios of wing and horizontal tail during flight) design. For this purpose, a loadcarrying UAV (i.e. ZANKA-II) is manufactured in Erciyes University, College of Aviation, Model Aircraft Laboratory is benefited. Optimum values of UAV parameters and autopilot parameters are obtained using a stochastic optimization method. Using this approach autonomous flight performance of UAV is substantially improved and also in some adverse weather conditions an opportunity for safe flight is satisfied. Active morphing and integrated design approach gives confidence, high performance and easy-utility request of UAV users.Keywords: Unmanned aerial vehicles, morphing, autopilots, autonomous performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22696215 Performance Analysis of Multiuser Diversity in Multiuser Two-Hop Decode-and-Forward Cooperative Multi-Relay Wireless Networks
Authors: Mamoun F. Al-Mistarihi, Rami Mohaisen
Abstract:
Cooperative diversity (CD) has been adopted in many communication systems because it helps in improving performance of the wireless communication systems with the help of the relays that emulate the multiple antenna terminals. This work aims to provide the derivation of the performance analysis expressions of the multiuser diversity (MUD) in the two-hop cooperative multi-relay wireless networks (TCMRNs). Considering the work analysis, we provide analytically the derivation of a closed form expression of the two most commonly used performance metrics namely, the outage probability and the symbol error probability (SEP) for the fixed decode-and-forward (FDF) protocol with MUD.
Keywords: Cooperative diversity (CD), fixed decode-andforward(FDF), multiuser diversity (MUD) , two - hop cooperative multi-relay wireless networks (TCMRN).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15386214 Performance Evaluation of Data Transfer Protocol GridFTP for Grid Computing
Authors: Hiroyuki Ohsaki, Makoto Imase
Abstract:
In Grid computing, a data transfer protocol called GridFTP has been widely used for efficiently transferring a large volume of data. Currently, two versions of GridFTP protocols, GridFTP version 1 (GridFTP v1) and GridFTP version 2 (GridFTP v2), have been proposed in the GGF. GridFTP v2 supports several advanced features such as data streaming, dynamic resource allocation, and checksum transfer, by defining a transfer mode called X-block mode. However, in the literature, effectiveness of GridFTP v2 has not been fully investigated. In this paper, we therefore quantitatively evaluate performance of GridFTP v1 and GridFTP v2 using mathematical analysis and simulation experiments. We reveal the performance limitation of GridFTP v1, and quantitatively show effectiveness of GridFTP v2. Through several numerical examples, we show that by utilizing the data streaming feature, the average file transfer time of GridFTP v2 is significantly smaller than that of GridFTP v1.Keywords: Grid Computing, GridFTP, Performance Evaluation, Queuing Theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14116213 Concept Indexing using Ontology and Supervised Machine Learning
Authors: Rossitza M. Setchi, Qiao Tang
Abstract:
Nowadays, ontologies are the only widely accepted paradigm for the management of sharable and reusable knowledge in a way that allows its automatic interpretation. They are collaboratively created across the Web and used to index, search and annotate documents. The vast majority of the ontology based approaches, however, focus on indexing texts at document level. Recently, with the advances in ontological engineering, it became clear that information indexing can largely benefit from the use of general purpose ontologies which aid the indexing of documents at word level. This paper presents a concept indexing algorithm, which adds ontology information to words and phrases and allows full text to be searched, browsed and analyzed at different levels of abstraction. This algorithm uses a general purpose ontology, OntoRo, and an ontologically tagged corpus, OntoCorp, both developed for the purpose of this research. OntoRo and OntoCorp are used in a two-stage supervised machine learning process aimed at generating ontology tagging rules. The first experimental tests show a tagging accuracy of 78.91% which is encouraging in terms of the further improvement of the algorithm.Keywords: Concepts, indexing, machine learning, ontology, tagging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16786212 Enhancement of Performance Utilizing Low Complexity Switched Beam Antenna
Authors: P. Chaipanya, R. Keawchai, W. Sombatsanongkhun, S. Jantaramporn
Abstract:
To manage the demand of wireless communication that has been dramatically increased, switched beam antenna in smart antenna system is focused. Implementation of switched beam antennas at mobile terminals such as notebook or mobile handset is a preferable choice to increase the performance of the wireless communication systems. This paper proposes the low complexity switched beam antenna using single element of antenna which is suitable to implement at mobile terminal. Main beam direction is switched by changing the positions of short circuit on the radiating patch. There are four cases of switching that provide four different directions of main beam. Moreover, the performance in terms of Signal to Interference Ratio when utilizing the proposed antenna is compared with the one using omni-directional antenna to confirm the performance improvable.
Keywords: Switched beam, shorted circuit, single element, signal to interference ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13606211 Performance Evaluation of Universities as Groups of Decision Making Units
Authors: Ali Payan, Bijan Rahmani Parchicolaie
Abstract:
Universities have different offices such as educational, research, student, administrative, and financial offices. This paper considers universities as groups of decision making units (DMUs) in which DMUs are their offices. This approach gives us with a more just evaluation of universities instead of separate evaluation of the offices of universities. The proposed approach to evaluate group performance of universities is based on common set of weights method in DEA. The suggested method not only can compare groups and measure their efficiencies, but also can calculate the efficiency of units within group and efficiency spread of groups. At last, the suggested method is applied for the analysis of the performance of universities in 14th district of Islamic Azad University as groups under evaluation.
Keywords: Common set of weights, group efficiency, performance analysis, spread efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14696210 SNR Classification Using Multiple CNNs
Authors: Thinh Ngo, Paul Rad, Brian Kelley
Abstract:
Noise estimation is essential in today wireless systems for power control, adaptive modulation, interference suppression and quality of service. Deep learning (DL) has already been applied in the physical layer for modulation and signal classifications. Unacceptably low accuracy of less than 50% is found to undermine traditional application of DL classification for SNR prediction. In this paper, we use divide-and-conquer algorithm and classifier fusion method to simplify SNR classification and therefore enhances DL learning and prediction. Specifically, multiple CNNs are used for classification rather than a single CNN. Each CNN performs a binary classification of a single SNR with two labels: less than, greater than or equal. Together, multiple CNNs are combined to effectively classify over a range of SNR values from −20 ≤ SNR ≤ 32 dB.We use pre-trained CNNs to predict SNR over a wide range of joint channel parameters including multiple Doppler shifts (0, 60, 120 Hz), power-delay profiles, and signal-modulation types (QPSK,16QAM,64-QAM). The approach achieves individual SNR prediction accuracy of 92%, composite accuracy of 70% and prediction convergence one order of magnitude faster than that of traditional estimation.Keywords: Classification, classifier fusion, CNN, Deep Learning, prediction, SNR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7206209 The Performance and the Induced Rebar Corrosion of Acrylic Resins for Injection Systems in Concrete Structures
Authors: C. S. Paglia, E. Pesenti, A. Krattiger
Abstract:
Commercially available methacrylate and acrylamide-based acrylic resins for injection in concrete systems have been tested with respect to the sealing performance and the rebar corrosion. Among the different resins, a methacrylate-based type of acrylic resin significantly inhibited the rebar corrosion. This was mainly caused by the relatively high pH of the resin and the resin aqueous solution. This resin also exhibited a relatively high sealing performance, in particular after exposing the resin to durability tests. The corrosion inhibition behaviour and the sealing properties after the exposition to durability tests were maintained up to one year. The other resins either promoted the corrosion of the rebar and/or exhibited relatively low sealing properties.Keywords: Acrylic resin, sealing performance, rebar corrosion, concrete injection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4386208 A Cognitive Model of Character Recognition Using Support Vector Machines
Authors: K. Freedman
Abstract:
In the present study, a support vector machine (SVM) learning approach to character recognition is proposed. Simple feature detectors, similar to those found in the human visual system, were used in the SVM classifier. Alphabetic characters were rotated to 8 different angles and using the proposed cognitive model, all characters were recognized with 100% accuracy and specificity. These same results were found in psychiatric studies of human character recognition.Keywords: Character recognition, cognitive model, support vector machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18786207 Self-efficacy, Self-reliance, and Motivation inan Asynchronous Learning Environment
Authors: Linda H. Meyer, Carol S. Sternberger
Abstract:
Self-efficacy, self-reliance, and motivation were examined in a quasi-experimental study with 178 sophomore university students. Participants used an interactive cardiovascular anatomy and physiology CD-ROM, and completed a 15-item questionnaire. Reliability of the questionnaire was established using Cronbach-s alpha. Post-tests and course grades were examined using a t-test, demonstrating no significance. Results of an item-to-item analysis of the questionnaire showed overall satisfaction with the teaching methodology and varied results for self-efficacy, selfreliance, and motivation. Kendall-s Tau was calculated for all items in the questionnaire.Keywords: Asynchronous learning environments, motivation, self-efficacy, self-reliance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36586206 Symmetrical Analysis of a Six-Phase Induction Machine Under Fault Conditions
Authors: E. K.Appiah, G. M'boungui, A. A. Jimoh, J. L. Munda, A.S.O. Ogunjuyigbe
Abstract:
The operational behavior of a six-phase squirrel cage induction machine with faulted stator terminals is presented in this paper. The study is carried out using the derived mathematical model of the machine in the arbitrary reference frame. Tests are conducted on a 1 kW experimental machine. Steady-state and dynamic performance are analyzed for the machine unloaded and loaded conditions. The results shows that with one of the stator phases experiencing either an open- circuit or short circuit fault the machine still produces starting torque, albeit the running performance is significantly derated.Keywords: Performance, fault conditions, six-phase induction machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28316205 Physiological and Performance Effects of Glycerol Hyperhydration for World Championship Distance Duathlons in Hot Conditions
Authors: John McCullagh, Jaclyn Munge, NivanWeerakkody, Kerrie Gamble
Abstract:
The aim of this study was to evaluate the effect of preexercise glycerol hyperhydration on endurance performance in a heat chamber designed to simulate the World Championship Distance (WCD) duathlon (10km run, 40km ride, 5 km run). Duathlons are often performed in hot and humid conditions and as a result hydration is a major issue. Glycerol enhances the body’s capacity for fluid retention by inducing hyperhydration, which is theorized to improve thermoregulatory and cardiovascular responses, and thereby improve performance. Six well-trained athletes completed the testing protocol in a heat chamber at the La Trobe University Exercise Physiology Laboratory. Each testing session was approximately 4.5 hours in duration (2 hours of pre-exercise glycerol hyper-hydration followed by approximately 2.5 hours of exercise). The results showed an increased water retention pre-exercise and an improved overall performance of 2.04% was achieved by subjects ingesting the glycerol solution.
Keywords: Endurance performance, glycerol hyperhydration, heat chamber.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23776204 An Experimental Study on the Effects of Bioethanol-Unleaded Gasoline Blends on Engine Performance in a Spark Ignition Engine
Authors: A. Engin Özçelik, Hasan Aydoğan, Mustafa Acaroğlu
Abstract:
In the present study, the effects of bioethanol-unleaded gasoline blends on engine performance were investigated in a spark ignition engine. Fuel containing 100% ethanol (E100), fuel blend containing 40% bioethanol by volume (E40) and 100% unleaded gasoline (E0) were tested and the test results were compared. As the result of the study, it was found that the use of unleaded gasoline and bioethanol-unleaded gasoline blends as fuel did not cause a significant change in engine performance. The results of the engine tests showed that the use of unleaded gasoline-bioethanol blends as fuel caused a decrease in engine torque and engine power depending on the increase in the ratio of bioethanol in the fuel blend. As the result of these decreases, increases of up to 30% were observed in the specific fuel consumption of the engine.
Keywords: Bioetanol, engine performance, unleaded gasoline.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18016203 Learning Algorithms for Fuzzy Inference Systems Composed of Double- and Single-Input Rule Modules
Authors: Hirofumi Miyajima, Kazuya Kishida, Noritaka Shigei, Hiromi Miyajima
Abstract:
Most of self-tuning fuzzy systems, which are automatically constructed from learning data, are based on the steepest descent method (SDM). However, this approach often requires a large convergence time and gets stuck into a shallow local minimum. One of its solutions is to use fuzzy rule modules with a small number of inputs such as DIRMs (Double-Input Rule Modules) and SIRMs (Single-Input Rule Modules). In this paper, we consider a (generalized) DIRMs model composed of double and single-input rule modules. Further, in order to reduce the redundant modules for the (generalized) DIRMs model, pruning and generative learning algorithms for the model are suggested. In order to show the effectiveness of them, numerical simulations for function approximation, Box-Jenkins and obstacle avoidance problems are performed.Keywords: Box-Jenkins’s problem, Double-input rule module, Fuzzy inference model, Obstacle avoidance, Single-input rule module.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19576202 Self-Efficacy, Anxiety, and Performance in the English Language among Middle-School Students in English Language Program in Satri Si Suriyothai School, Bangkok
Authors: Christopher C. Anyadubalu
Abstract:
This study investigated students- perception of self efficacy and anxiety in acquiring English language, and consequently examined the relationship existing among the independent variables, confounding variables and students- performances in the English language. The researcher tested the research hypotheses using a sample group of 318 respondents out of the population size of 400 students. The results obtained revealed that there was a significant moderate negative relationship between English language anxiety and performance in English language, but no significant relationship between self-efficacy and English language performance, among the middle-school students. There was a significant moderate negative relationship between English language anxiety and self-efficacy. It was discovered that general self-efficacy and English language anxiety represented a significantly more powerful set of predictors than the set of confounding variables. Thus, the study concluded that English language anxiety and general self-efficacy were significant predictors of English language performance among middle-school students in Satri Si Suriyothai School.Keywords: Anxiety, English Language Anxiety, Performance inEnglish Language, Self Efficacy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 46866201 An Adequate Choice of Initial Sample Size for Selection Approach
Authors: Mohammad H. Almomani, Rosmanjawati Abdul Rahman
Abstract:
In this paper, we consider the effect of the initial sample size on the performance of a sequential approach that used in selecting a good enough simulated system, when the number of alternatives is very large. We implement a sequential approach on M=M=1 queuing system under some parameter settings, with a different choice of the initial sample sizes to explore the impacts on the performance of this approach. The results show that the choice of the initial sample size does affect the performance of our selection approach.Keywords: Ranking and Selection, Ordinal Optimization, Optimal Computing Budget Allocation, Subset Selection, Indifference-Zone, Initial Sample Size.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13086200 Awareness of Reading Strategies among EFL Learners at Bangkok University
Authors: Nuttanuch Munsakorn
Abstract:
This questionnaire-based study, aimed to measure and compare the awareness of English reading strategies among EFL learners at Bangkok University (BU) classified by their gender, field of study, and English learning experience. Proportional stratified random sampling was employed to formulate a sample of 380 BU students. The data were statistically analyzed in terms of the mean and standard deviation. t-Test analysis was used to find differences in awareness of reading strategies between two groups (-male and female- /-science and social-science students). In addition, one-way analysis of variance (ANOVA) was used to compare reading strategy awareness among BU students with different lengths of English learning experience. The results of this study indicated that the overall awareness of reading strategies of EFL learners at BU was at a high level (ðÑ = 3.60) and that there was no statistically significant difference between males and females, and among students who have different lengths of English learning experience at the significance level of 0.05. However, significant differences among students coming from different fields of study were found at the same level of significance.Keywords: EFL learners, higher education, reading comprehension, reading strategies
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39386199 Reliability Verification of the Performance Evaluation of Multiphase Pump
Authors: Joon-Hyung Kim, Him-Chan Lee, Jin-Hyuk Kim, Yong-Kab Lee, Young-Seok Choi
Abstract:
The crude oil in an oil well exists in various phases such as gas, seawater, and sand, as well as oil. Therefore, a phase separator is needed at the front of a single-phase pump for pressurization and transfer. On the other hand, the application of a multiphase pump can provide such advantages as simplification of the equipment structure and cost savings, because there is no need for a phase separation process. Therefore, the crude oil transfer method using a multiphase pump is being applied to recently developed oil wells. Due to this increase in demand, technical demands for the development of multiphase pumps are sharply increasing, but the progress of research into related technologies is insufficient, due to the nature of multiphase pumps that require high levels of skills. This study was conducted to verify the reliability of pump performance evaluation using numerical analysis, which is the basis of the development of a multiphase pump. For this study, a model was designed by selecting the specifications of this study. The performance of the designed model was evaluated through numerical analysis and experiment. The results of the performance evaluation were compared to verify the reliability of the result using numerical analysis.
Keywords: Multiphase pump, Numerical analysis, Experiment, Performance evaluation, Reliability verification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31346198 Enhancing the Performance of a Photovoltaic Module Using Different Cooling Methods
Authors: Ahmed Amine Hachicha, Chaouki Ghenai, Abdul Kadir Hamid
Abstract:
Temperature effect on the performance of a photovoltaic module is one of the main concerns that face this renewable energy, especially in hot arid region, e.g. United Arab Emirates. Overheating of the PV modules reduces the open circuit voltage and the efficiency of the modules dramatically. In this work, water-cooling is developed to enhance the performance of PV modules. Different scenarios are tested under UAE weather conditions: front, back and double cooling. A spraying system is used for the front cooling whether a direct contact water system is used for the back cooling. The experimental results are compared to non-cooling module and the performance of the PV module is determined for different situations. The experimental results show that the front cooling is more effective than the back cooling and may decrease the temperature of the PV module significantly.
Keywords: PV cooling, solar energy, cooling methods, electrical efficiency, temperature effect.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35546197 Integrating Computational Intelligence Techniques and Assessment Agents in ELearning Environments
Authors: Konstantinos C. Giotopoulos, Christos E. Alexakos, Grigorios N. Beligiannis, Spiridon D.Likothanassis
Abstract:
In this contribution an innovative platform is being presented that integrates intelligent agents and evolutionary computation techniques in legacy e-learning environments. It introduces the design and development of a scalable and interoperable integration platform supporting: I) various assessment agents for e-learning environments, II) a specific resource retrieval agent for the provision of additional information from Internet sources matching the needs and profile of the specific user and III) a genetic algorithm designed to extract efficient information (classifying rules) based on the students- answering input data. The agents are implemented in order to provide intelligent assessment services based on computational intelligence techniques such as Bayesian Networks and Genetic Algorithms. The proposed Genetic Algorithm (GA) is used in order to extract efficient information (classifying rules) based on the students- answering input data. The idea of using a GA in order to fulfil this difficult task came from the fact that GAs have been widely used in applications including classification of unknown data. The utilization of new and emerging technologies like web services allows integrating the provided services to any web based legacy e-learning environment.Keywords: Bayesian Networks, Computational Intelligencetechniques, E-learning legacy systems, Service Oriented Integration, Intelligent Agents, Genetic Algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744