\r\nperformance of a load-carrying (payload: 3 kg and total: 6kg)

\r\nunmanned aerial vehicle (UAV) through active wing and horizontal

\r\ntail active morphing and also integrated autopilot system parameters

\r\n(i.e. P, I, D gains) and UAV parameters (i.e. extension ratios of wing

\r\nand horizontal tail during flight) design. For this purpose, a loadcarrying

\r\nUAV (i.e. ZANKA-II) is manufactured in Erciyes

\r\nUniversity, College of Aviation, Model Aircraft Laboratory is

\r\nbenefited. Optimum values of UAV parameters and autopilot

\r\nparameters are obtained using a stochastic optimization method.

\r\nUsing this approach autonomous flight performance of UAV is

\r\nsubstantially improved and also in some adverse weather conditions

\r\nan opportunity for safe flight is satisfied. Active morphing and

\r\nintegrated design approach gives confidence, high performance and

\r\neasy-utility request of UAV users.","references":"[1] Austin, R. 2010. Unmanned aircraft systems. Wiley.\r\n[2] Dink, Y., Liu, Y. C., and Hsiao, F. B. The application of extended\r\nKalman filtering to autonomous formation flight of small UAV system.\r\nAircraft Engineering and Aerospace Technology. 1(2), 154-186.\r\n[3] Drak, A., Hejase, M., ElShorbagy, M., Wahyudie, A., & Noura, H.\r\n2014. Autonomous Formation Flight Algorithm and Platform for\r\nQuadrotor UAVs. International Journal of Robotics and Mechatronics.\r\n1(4), 124-132.\r\n[4] Luca De Filippis, Giorgio Guglieri, Fulvia B. Quagliotti. 2014. A novel\r\napproach for trajectory tracking of UAVs. Aircraft Engineering and\r\nAerospace Technology: An International Journal. 86 (3), 198 \u2013 206.\r\n[5] Hadi, G., Varianto, R., Trilaksono, B., and Budiyono, A. 2014.\r\nAutonomous UAV System Development for Payload Dropping Mission.\r\nJournal of Instrumentation, Automation, and Systems. 1(2), 72-77.\r\n[6] Grigoriadis, K. M., Carpenter, M. J. Zhu, G., and Skelton, R. E. 1993.\r\nOptimal Redesign of Linear Systems. Paper presented at Proceedings of\r\nthe American Control Conference, San Francisco, CA.\r\n[7] Grigoriadis, K. M., Zhu, G., and Skelton, R. E. 1996. Optimal Redesign\r\nof Linear Systems. Journal of Dynamic Systems, Measurement, and\r\nControl. 118 (3), 598\u2013605.\r\n[8] Krog, L., Tucker, A., Kemp, M., and Boyd, R. 2004. Topology\r\nOptimization of Aircraft Wing Box Ribs. Paper presented at 10th\r\nAIAA\/ISSMO Multidisciplinary Analysis and Optimization Conference.\r\nAlbany, New York, USA.\r\n[9] Park, K., Han, J. W., Lim, H. J., Kim, B. S. and Lee, J. 2008. Optimal\r\nDesign of Airfoil with High Aspect Ratio in Unmanned Aerial Vehicles.\r\nWorld Academy of Science, Engineering and Technology, 2 (4), 171-\r\n177.\r\n[10] Qun, W. and Hong-quang, J. 2011. Optimal design of UAV\u2019s pod shape.\r\nPaper presented at International Symposium on Photoelectronic\r\nDetection and Imaging: Advances in Infrared Imaging and Applications\r\nBeijing, China.\r\n[11] Moosavian, A., Xi, F., and Hashemi, S. M. 2013. Design and Motion\r\nControl of Fully Variable Morphing Wings. Journal of Aircraft. 50(4),\r\n1189-1201.\r\n[12] Yue, T. and Wang, L. 2013. Longitudinal Linear Parameter Varying\r\nModeling and Simulation of Morphing Aircraft. Journal of Aircraft.\r\n50(6), 1673-1681.\r\n[13] Chao, H., Cao, Y., and Chen, Y. Q. 2007. Autopilots for Small Fixed-\r\nWing Unmanned Aerial Vehicles: A Survey. Paper presented at IEEE\r\nInternational Conference on Mechatronics and Automation, Harbin,\r\nChina.\r\n[14] Jung, D., Ratti, J., Tsiotras, P. 2009. Real-time implementation and\r\nvalidation of a new hierarchical path planning scheme of UAVs via\r\nhardware-in-the-loop simulation. Journal of Intelligent and Robotic\r\nSystems, 54 (1-3), 163-281.\r\n[15] Sartori, D. 2014. Design, implementation, and testing of advanced\r\ncontrol laws for fixed-wing UAVs. PhD dissertation, Politecnico di\r\nTorino, Torino, Italy.\r\n[16] Nelson, R. C. 2007. Flight Stability and Automatic Control. 2nd ed.,\r\nMcGraw-Hill, New York, chapters 2-6.\r\n[17] Zagi-The original R\/C EPP foam wing homepage (2015),\r\nhttp\/\/:www.zagi.com.\r\n[18] Vural, S. Y. and Hajiyev, C. 2008. Autopilot system design for a small\r\nunmanned aerial vehicle. MS thesis, Istanbul Technical University,\r\nIstanbul, Turkey.\r\n[19] Vural, S. Y. and Hajiyev, C. 2013. LQR controller with Kalman\r\nestimator applied to UAV longitudinal dynamics. Scientific Research\r\nJournal. 4, 36-41.\r\n[20] Cardenas, E. M., Boschetti, P. J., and Celi, M. R. 2012. Design of\r\ncontrol systems to hold altitude and heading in severe atmospheric\r\ndisturbances for an unmanned airplane. Paper presented at 50th AIAA\r\nAerospace Sciences Meeting including the New Horizons Forum and\r\nAerospace Exposition, Nashville, Tennessee.\r\n[21] Jeni, S. D. and Budiyono, A. 2006. Automatic Flight Control System\u201d,\r\nLecture notes for Malaysian Institute of Aviation Technology.\r\n[22] U.S. Military Handbook MIL-HDBK-1797, 1997.\r\n[23] Jang, J. S., Liccardo, D. 2006. Automation of small UAVs using a low\r\ncost mems sensor and embedded computing platform.\r\n[24] Sultan, C. 2010. Proportional damping approximation using the energy\r\ngain and simultaneous perturbation stochastic approximation.\r\nMechanical Systems and Signal Processing. 24, 2210-2224.\r\n[25] Oktay, T. 2012. Constrained control of complex helicopter models. PhD\r\nDissertation, Virginia Tech.\r\n[26] Oktay, T. and Sultan, C. (2013), \u201cSimultaneous helicopter and controlsystem\r\ndesign,\u201d Journal of Aircraft, Vol. 50, No. 3, pp. 32-47.\r\n[27] Sadegh, P. and Spall, J. C. (1998), \u201cOptimal random perturbations for\r\nmultivariable stochastic approximation using a simultaneous\r\nperturbation gradient approximation\u201d, IEEE Transactions on Automatic\r\nControl, 43(10), pp. 1480-1484.\r\n[28] He, Y. and Fu, M. C. (2003), \u201cConvergence of simultaneous\r\nperturbation stochastic approximation for non-differentiable\r\noptimization\u201d, IEEE Transactions on Aerospace and Electronic Systems,\r\n48 (8), 1459-1463.","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 109, 2016"}