Search results for: Carbon fiber reinforced polymer (CFRP)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1845

Search results for: Carbon fiber reinforced polymer (CFRP)

645 Investigation on the Behavior of Conventional Reinforced Coupling Beams

Authors: Akash K. Walunj, Dipendu Bhunia, Samarth Gupta, Prabhat Gupta

Abstract:

Coupled shear walls consist of two shear walls connected intermittently by beams along the height. The behavior of coupled shear walls is mainly governed by the coupling beams. The coupling beams are designed for ductile inelastic behavior in order to dissipate energy. The base of the shear walls may be designed for elastic or ductile inelastic behavior. The amount of energy dissipation depends on the yield moment capacity and plastic rotation capacity of the coupling beams. In this paper, an analytical model of coupling beam was developed to calculate the rotations and moment capacities of coupling beam with conventional reinforcement.

Keywords: Design studies, computational model(s), case study/studies, modeling, coupling beam.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3297
644 Modelling Silica Optical Fibre Reliability: A Software Application

Authors: I. Severin, M. Caramihai, R. El Abdi, M. Poulain, A. Avadanii

Abstract:

In order to assess optical fiber reliability in different environmental and stress conditions series of testing are performed simulating overlapping of chemical and mechanical controlled varying factors. Each series of testing may be compared using statistical processing: i.e. Weibull plots. Due to the numerous data to treat, a software application has appeared useful to interpret selected series of experiments in function of envisaged factors. The current paper presents a software application used in the storage, modelling and interpretation of experimental data gathered from optical fibre testing. The present paper strictly deals with the software part of the project (regarding the modelling, storage and processing of user supplied data).

Keywords: Optical fibres, computer aided analysis, data models, data processing, graphical user interfaces.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1807
643 Analysis of a WDM System for Tanzania

Authors: Shaban Pazi, Chris Chatwin, Rupert Young, Philip Birch

Abstract:

Internet infrastructures in most places of the world have been supported by the advancement of optical fiber technology, most notably wavelength division multiplexing (WDM) system. Optical technology by means of WDM system has revolutionized long distance data transport and has resulted in high data capacity, cost reductions, extremely low bit error rate, and operational simplification of the overall Internet infrastructure. This paper analyses and compares the system impairments, which occur at data transmission rates of 2.5Gb/s and 10 Gb/s per wavelength channel in our proposed optical WDM system for Internet infrastructure in Tanzania. The results show that the data transmission rate of 2.5 Gb/s has minimum system impairments compared with a rate of 10 Gb/s per wavelength channel, and achieves a sufficient system performance to provide a good Internet access service.

Keywords: Internet infrastructure, WDM system, standard single mode fibers, system impairments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1649
642 Optimizing PelletPAVE™ Rubberized Asphalt Mix Design Using Gyratory Compaction and Volumetrics

Authors: H. Al-Baghli

Abstract:

In this investigation, rubberized HMA technology was examined to address the most critical forms of pavement distresses in the State of Kuwait, namely, high temperature rutting, and moisture induced raveling. PelletPAVE™ additive was selected as the preferred technology, since it offered a convenient method of directly modifying the exiting local HMA recipe without having to polymer modify the bitumen. Experimental work, using various Pelletpave contents was carried out at Kuwait Institute for Scientific Research (KISR) to design an optimum rubberized HMA formulation prior to conducting a pilot-scale road trial. With the aid of a gyratory compactor, the compaction and volumetric properties of HMAs containing 2.5% and 3.0% Pelletpave additive were investigated at a range of bitumen contents, all by mass of total mix.

Keywords: Modified bitumen, rubberized hot mix asphalt, gyratory compaction, volumetric properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 328
641 Photocatalytic Oxidation of Gaseous Formaldehyde Using the TiO2 Coated SF Filter

Authors: Janjira Triped, Wipada Sanongraj, Wipawee Khamwichit

Abstract:

The research work covered in this study includes the morphological structure and optical properties of TiO2-coated silk fibroin (SF) filters at 2.5% wt. TiO2/vol. PVA solution. SEM micrographs revealed the fibrous morphology of the TiO2-coated SF filters. An average diameter of the SF fiber was estimated to be approximately 10µm. Also, it was confirmed that TiO2 can be adhered more on SF filter surface at higher TiO2 dosages. The activity of semiconductor materials was studied by UV-VIS spectrophotometer method. The spectral data recorded shows the strong cut off at 390 nm. The calculated band-gap energy was about 3.19 eV. The photocatalytic activity of the filter was tested for gaseous formaldehyde removal in a modeling room with the total volume of 2.66 m3. The highest removal efficiency (54.72 ± 1.75%) was obtained at the initial formaldehyde concentration of about 5.00 ± 0.50ppm.

Keywords: Photocatalytic oxidation process, Formaldehyde (HCHO), Silk fibroin (SF), Titanium dioxide (TiO2).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3217
640 Efficient Moment Frame Structure

Authors: Mircea I. Pastrav, Cornelia Baera, Florea Dinu

Abstract:

A different concept for designing and detailing of reinforced concrete precast frame structures is analyzed in this paper. The new detailing of the joints derives from the special hybrid moment frame joints. The special reinforcements of this alternative detailing, named modified special hybrid joint, are bondless with respect to both column and beams. Full scale tests were performed on a plan model, which represents a part of 5 story structure, cropped in the middle of the beams and columns spans. Theoretical approach was developed, based on testing results on twice repaired model, subjected to lateral seismic type loading. Discussion regarding the modified special hybrid joint behavior and further on widening research needed concludes the presentation.

Keywords: Acceptance criteria, modified hybrid joint, repair, seismic loading type.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2000
639 Performance of Membrane Bioreactor (MBR) in High Phosphate Wastewater

Authors: Aida Isma M. I., Putri Razreena A. R., Rozita Omar, Azni Idris

Abstract:

This study presents the performance of membrane bioreactor in treating high phosphate wastewater. The laboratory scale MBR was operated at permeate flux of 25 L/m2.h with a hollow fiber membrane (polypropylene, approx. pore size 0.01 - 0.2 μm) at hydraulic retention time (HRT) of 12 hrs. Scanning electron microscopy (SEM) and energy diffusive X-ray (EDX) analyzer were used to characterize the membrane foulants. Results showed that the removal efficiencies of COD, TSS, NH3-N and PO4 3- were 93, 98, 80 and 30% respectively. On average 91% of influent soluble microbial products (SMP) were eliminated, with the eliminations of polysaccharides mostly above 80%. The main fouling resistance was cake resistance. It should be noted that SMP were found in major portions of mixed liquor that played a relatively significant role in membrane fouling. SEM and EDX analyses indicated that the foulants covering the membrane surfaces comprises not only organic substances but also inorganic elements including Mg, Ca, Al, K and P.

Keywords: Membrane bioreactor (MBR), membrane fouling, phosphates, soluble microbial products (SMP).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3353
638 The Development of New Technologies for Medicine and Agroecology by Using Spherosomes

Authors: Gilmanov M. K., Gilmanova S. M.

Abstract:

Article devoted to the development of technologies for medicine and agroecology by using plant organelle – spherosome. Technological method of purification and isolation of this organelle by using novel nanostructured carbon sorbent – “nanocarbosorb" ARK type are presented. Also the methods of preparation of nanocontainers based on using of spherosome with loaded isosorbide dinitrate, piroxicam or diclofenak are exhibited. We found that the spherosome could be applied for ecological aims as bioregulator and also as biosensor for determination of ammonia ions in water reservoirs at concentration range 1mM to 100mM.

Keywords: Biosensor, nanocontainer, phosphatidylinositol, spherosome, vegetative reproduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1416
637 The Effect of Multiple Environmental Conditions on Acacia Senegal Seedling’s Carbon, Nitrogen, and Hydrogen Contents: An Experimental Investigation

Authors: Abdoelmoniem A. Attaelmanan, Ahmed A. H. Siddig

Abstract:

This study was conducted in light of continual global climate changes that projected increasing aridity, changes in soil fertility, and pollution. Plant growth and development largely depend on the combination of availing water and nutrients in the soil. Changes in the climate and atmospheric chemistry can cause serious effects on these growth factors. Plant carbon (C), nitrogen (N), and hydrogen (H) play a fundamental role in the maintenance of ecosystem structure and function. Hashab (Acacia senegal), which produces gum Arabic, supports dryland ecosystems in tropical zones by its potentiality to restore degraded soils; hence, it is ecologically and economically important for the dry areas of sub-Saharan Africa. The study aims at investigating the effects of water stress (simulated drought) and poor soil type on Acacia senegal C, N, and H contents. Seven-day-old seedlings were assigned to the treatments in split-plot design for four weeks. The main plot is irrigation interval (well-watered and water-stressed), and the subplot is soil types (silt and sandy soils). Seedling's C%, N%, and H% were measured using CHNS-O Analyzer and applying Standard Test Method. Irrigation intervals and soil types had no effects on seedlings and leaves C%, N%, and H%, irrigation interval had affected stem C% and H%, both irrigation intervals and soil types had affected root N% and interaction effect of water and soil was found on leaves and root's N%. Application of well-watered irrigation with soil that is rich in N and other nutrients would result in the greatest seedling C, N, and H content which will enhance growth and biomass accumulation and can play a crucial role in ecosystem productivity and services in the dryland regions.

Keywords: Acacia senegal, Africa, climate change, drylands, nutrients biomass, Sub-Sahara, Sudan.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 482
636 Utilization of Agro-Industrial Waste in Metal Matrix Composites: Towards Sustainability

Authors: L. Lancaster, M. H. Lung, D. Sujan

Abstract:

The application of agro-industrial waste in Aluminum Metal Matrix Composites has been getting more attention as they can reinforce particles in metal matrix which enhance the strength properties of the composites. In addition, by applying these agroindustrial wastes in useful way not only save the manufacturing cost of products but also reduce the pollutions on environment. This paper represents a literature review on a range of industrial wastes and their utilization in metal matrix composites. The paper describes the synthesis methods of agro-industrial waste filled metal matrix composite materials and their mechanical, wear, corrosion, and physical properties. It also highlights the current application and future potential of agro-industrial waste reinforced composites in aerospace, automotive and other construction industries.

Keywords: Bond layer, Interfacial shear stress, Bi-layered assembly, Thermal mismatch, Flip Chip Ball Grid Array.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4565
635 Modified Poly(pyrrole) Film Based Biosensors for Phenol Detection

Authors: S. Korkut, M. S. Kilic, E. Erhan

Abstract:

In order to detect and quantify the phenolic contents of a wastewater with biosensors, two working electrodes based on modified Poly(Pyrrole) films were fabricated. Enzyme horseradish peroxidase was used as biomolecule of the prepared electrodes. Various phenolics were tested at the biosensor. Phenol detection was realized by electrochemical reduction of quinones produced by enzymatic activity. Analytical parameters were calculated and the results were compared with each other.

Keywords: Carbon nanotube, Phenol biosensor, Polypyrrole, Poly(glutaraldehyde).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2171
634 Synthesis of Unconventional Materials Using Chitosan and Crown Ether for Selective Removal of Precious Metal Ions

Authors: Rabindra Prasad Dhakal, Tatsuya Oshima, Yoshinari Baba

Abstract:

The polyfunctional and highly reactive bio-polymer, the chitosan was first regioselectively converted into dialkylated chitosan using dimsyl anionic solution(NaH in DMSO) and bromodecane after protecting amino groups by phthalic anhydride. The dibenzo-18-crown-6-ether, on the other hand, was converted into its carbonyl derivatives via Duff reaction prior to incorporate into chitosan by Schiff base formation. Thus formed diformylated dibenzo-18-crown-6-ether was condensed with lipophilic chitosan to prepare the novel solvent extraction reagent. The products were characterized mainly by IR and 1H-NMR. Hence, the multidentate crown ether-embedded polyfunctional bio-material was tested for extraction of Pd(II) and Pt(IV) in aqueous solution.

Keywords: Lipophilic chitosan, Duff reaction, crown ether and precious metal ions extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1872
633 Modelling of Hydric Behaviour of Textiles

Authors: A. Marolleau, F. Salaun, D. Dupont, H. Gidik, S. Ducept.

Abstract:

The goal of this study is to analyze the hydric behaviour of textiles which can impact significantly the comfort of the wearer. Indeed, fabrics can be adapted for different climate if hydric and thermal behaviors are known. In this study, fabrics are only submitted to hydric variations. Sorption and desorption isotherms obtained from the dynamic vapour sorption apparatus (DVS) are fitted with the parallel exponential kinetics (PEK), the Hailwood-Horrobin (HH) and the Brunauer-Emmett-Teller (BET) models. One of the major finding is the relationship existing between PEK and HH models. During slow and fast processes, the sorption of water molecules on the polymer can be in monolayer and multilayer form. According to the BET model, moisture regain, a physical property of textiles, show a linear correlation with the total amount of water taken in monolayer. This study provides potential information of the end uses of these fabrics according to the selected activity level.

Keywords: Comfort, hydric properties, modelling, underwear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 734
632 Impact of Rebar-Reinforcement on Flexural Response of Shear-Critical Ultrahigh-Performance Concrete Beams

Authors: Yassir M. Abbas, Mohammad Iqbal Khan, Galal Fares

Abstract:

In the present work, the structural responses of 12 ultra-high-performance concrete (UHPC) beams to four-point loading conditions were experimentally and analytically studied. The inclusion of a fibrous system in the UHPC material increased its compressive and flexural strengths by 31.5% and 237.8%, respectively. Based on the analysis of the load-deflection curves of UHPC beams, it was found that UHPC beams with a low reinforcement ratio are prone to sudden brittle failure. This failure behavior was changed, however, to a ductile one in beams with medium to high ratios. The implication is that improving UHPC beam tensile reinforcement could result in a higher level of safety. More reinforcement bars also enabled the load-deflection behavior to be improved, particularly after yielding.

Keywords: Ultra-high-performance concrete, moment capacity, RC beams, hybrid fiber, ductility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 91
631 Increasing Chickpea Quality and Agroecosystm Sustainability Using Organic and Natural Resources

Authors: Mohammadi K., Ghalavand A., Aghaalikhani M., Eskandari M.

Abstract:

In order to increase in chickpea quality and agroecosystem sustainability, field experiments were carried out in 2007 and 2008 growing seasons. In this research the effects of different organic, chemical and biological fertilizers were investigated on grain yield and quality of chickpea. Experimental units were arranged in split-split plots based on randomized complete blocks with three replications. The highest amounts of yield and yield components were obtained in G1×N5 interaction. Significant increasing of N, P, K, Fe and Mg content in leaves and grains emphasized on superiority of mentioned treatment because each one of these nutrients has an approved role in chlorophyll synthesis and photosynthesis ability of the crop. The combined application of compost, farmyard manure and chemical phosphorus (N5) had the best grain quality due to high protein, starch and total sugar contents, low crude fiber and reduced cooking time.

Keywords: Agroecosystem, sustainability, chickpea, naturalresources.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1645
630 Laboratory Evaluation of Geogrids Used for Stabilizing Soft Subgrades

Authors: Magdi M. E. Zumrawi, Nehla Mansour

Abstract:

This paper aims to assess the efficiency of using geogrid reinforcement for subgrade stabilization. The literature of applying geogrid reinforcement technique for pavements built on soft subgrades and the previous experiences were reviewed. Laboratory tests were conducted on soil reinforced with geogrids in one or several layers. The soil specimens were compacted in four layers with or without geogrid sheets. The California Bearing Ratio (CBR) test, in soaking condition, was performed on natural soil and soil-geogrid specimens. The test results revealed that the CBR value is much affected by the geogrid sheet location and the number of sheets used in the soil specimen. When a geogrid sheet was placed at the 1st layer of the soil, there was an increment of 26% in the CBR value. Moreover, the CBR value was significantly increased by 62% when geogrid sheets were placed at all four layers. The high CBR value is attributed to interface friction and interlock involved in the geogrid/ soil interactions. It could be concluded that geogrid reinforcement is successful and more economical technique.

Keywords: Geogrid, reinforcement, stabilization, subgrade.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2784
629 Embodied Energy in Concrete and Structural Masonry on Typical Brazilian Buildings

Authors: Marco A. S. González, Marlova P. Kulakowski, Luciano G. Breitenbach, Felipe Kirch

Abstract:

The AEC sector has an expressive environmental responsibility. Actually, most building materials have severe environmental impacts along their production cycle. Professionals enrolled in building design may choice the materials and techniques with less impact among the viable options. This work presents a study about embodied energy in materials of two typical Brazilian constructive alternatives. The construction options considered are reinforced concrete structure and structural masonry. The study was developed for the region of São Leopoldo, southern Brazil. Results indicated that the energy embodied in these two constructive systems is approximately 1.72 GJ·m-2 and 1.26 GJ·m-2, respectively. It may be concluded that the embodied energy is lower in the structural masonry system, with a reduction around to 1/4 in relation to the traditional option. The results can be used to help design decisions.

Keywords: Civil construction, sustainability, embodied energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2739
628 A Dynamic Mechanical Thermal T-Peel Test Approach to Characterize Interfacial Behavior of Polymeric Textile Composites

Authors: J. R. Büttler, T. Pham

Abstract:

Basic understanding of interfacial mechanisms is of importance for the development of polymer composites. For this purpose, we need techniques to analyze the quality of interphases, their chemical and physical interactions and their strength and fracture resistance. In order to investigate the interfacial phenomena in detail, advanced characterization techniques are favorable. Dynamic mechanical thermal analysis (DMTA) using a rheological system is a sensitive tool. T-peel tests were performed with this system, to investigate the temperature-dependent peel behavior of woven textile composites. A model system was made of polyamide (PA) woven fabric laminated with films of polypropylene (PP) or PP modified by grafting with maleic anhydride (PP-g-MAH). Firstly, control measurements were performed with solely PP matrixes. Polymer melt investigations, as well as the extensional stress, extensional viscosity and extensional relaxation modulus at -10°C, 100 °C and 170 °C, demonstrate similar viscoelastic behavior for films made of PP-g-MAH and its non-modified PP-control. Frequency sweeps have shown that PP-g-MAH has a zero phase viscosity of around 1600 Pa·s and PP-control has a similar zero phase viscosity of 1345 Pa·s. Also, the gelation points are similar at 2.42*104 Pa (118 rad/s) and 2.81*104 Pa (161 rad/s) for PP-control and PP-g-MAH, respectively. Secondly, the textile composite was analyzed. The extensional stress of PA66 fabric laminated with either PP-control or PP-g-MAH at -10 °C, 25 °C and 170 °C for strain rates of 0.001 – 1 s-1 was investigated. The laminates containing the modified PP need more stress for T-peeling. However, the strengthening effect due to the modification decreases by increasing temperature and at 170 °C, just above the melting temperature of the matrix, the difference disappears. Independent of the matrix used in the textile composite, there is a decrease of extensional stress by increasing temperature. It appears that the more viscous is the matrix, the weaker the laminar adhesion. Possibly, the measurement is influenced by the fact that the laminate becomes stiffer at lower temperatures. Adhesive lap-shear testing at room temperature supports the findings obtained with the T-peel test. Additional analysis of the textile composite at the microscopic level ensures that the fibers are well embedded in the matrix. Atomic force microscopy (AFM) imaging of a cross section of the composite shows no gaps between the fibers and matrix. Measurements of the water contact angle show that the MAH grafted PP is more polar than the virgin-PP, and that suggests a more favorable chemical interaction of PP-g-MAH with PA, compared to the non-modified PP. In fact, this study indicates that T-peel testing by DMTA is a technique to achieve more insights into polymeric textile composites.

Keywords: Dynamic mechanical thermal analysis, interphase, polyamide, polypropylene, textile composite, T-peel test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 711
627 Magnesium Waste Evaluation in Moderate Temperature (70oC) Magnesium Borate Synthesis

Authors: E. Moroydor Derun, A. S. Kipcak, A. Kaplan, S. Piskin

Abstract:

Waste problem is becoming a future problem all over the world. Magnesium wastes which can be used in recycling processes are produced by many industrial activities. Magnesium borates which have useful properties such as; high heat resistance, corrosion resistance, supermechanical strength, superinsulation, light weight, high coefficient of elasticity and so on. Addition, magnesium borates have great potential in the development of ceramic and detergents industry, whisker-reinforced composites, antiwear, and reducing friction additives.

In this study, using the starting materials of waste magnesium and H3BO3 the hydrothermal method was applied at a moderate temperature of 70oC with different reaction times. Several reaction times of waste magnesium to H3BO3 were selected as; 30, 60, 120, 240 minutes. After the synthesis, X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR) techniques were applied to products. As a result, the forms of Admontite [MgO(B2O3)3.7(H2O)] and Mcallisterite [Mg2(B6O7(OH)6)2.9(H2O)] were synthesized.

Keywords: Hydrothermal synthesis, magnesium borates, waste magnesium.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2017
626 Effect of Germination on Proximate, Available Phenol and Flavonoid Content, and Antioxidant Activities of African Yam Bean (Sphenostylis stenocarpa)

Authors: Nneka N. Uchegbu, Ndidi F. Amulu

Abstract:

The work studied the effect of germination on proximate, phenol and flavonoid content and antioxidant activities (AOA) of African Yam been (AYB). Germination was done in controlled dark chamber (100% RH, 28oC). The proximate, phenol and flavonoid content and antioxidant activities before and after germination were investigated. The crude protein, moisture, and crude fiber content of germinated AYB were significantly higher (P<0.05) than that of ungermianated seed, while the fat, Ash and carbohydrate content of ungerminated were higher than the germinated seed. Germination increased the phenol and flavoniod content by 19.14% and 14.53% respectively. The results of AOA assay showed that the DPPH, reducing power and FRAP of germinated AYB seed gave high values: 48.92 ±1.22 μg/ml, 0.75± 0.15μg/ml and 98.60±0.04 μmol/g while that of ungerminated seed were: 31.33μ/ml, 0.56±1.52μg/ml and 96.11±1.13μmol/g respectively. Germinated AYB has phytochemicals with potential AOA for disease prevention.

Keywords: Antioxidant, flovonoid, germination, phenol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2342
625 Analytical Solutions for Corotational Maxwell Model Fluid Arising in Wire Coating inside a Canonical Die

Authors: Muhammad Sohail Khan, Rehan Ali Shah

Abstract:

The present paper applies the optimal homotopy perturbation method (OHPM) and the optimal homotopy asymptotic method (OHAM) introduced recently to obtain analytic approximations of the non-linear equations modeling the flow of polymer in case of wire coating of a corotational Maxwell fluid. Expression for the velocity field is obtained in non-dimensional form. Comparison of the results obtained by the two methods at different values of non-dimensional parameter l10, reveal that the OHPM is more effective and easy to use. The OHPM solution can be improved even working in the same order of approximation depends on the choices of the auxiliary functions.

Keywords: Wire coating die, Corotational Maxwell model, optimal homotopy asymptotic method, optimal homotopy perturbation method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1036
624 [Ti(OC4H9)4/2,5-Dimethoxytetrahydrofuran/ TEA/Ethylene Chlorobromide] as a Novel Homogeneous Catalyst System Effective for the Ethylene Dimerization Reaction

Authors: Seyed Hamed Mahdaviani, Davood Soudbar, Matin Parvari

Abstract:

In the present research, the titanium-catalyzed ethylene dimerization and more specifically, the concomitant byproducts and polymer formation have been studied in the presence of 2,5-dimethoxytetrahydrofuran as an electron donor compound in the combination with triethylaluminium (TEA) as activator. Then, we added ethylene chlorobromide as a new efficient promoter to the relevant catalyst system. Finally, the behavior of novel homogeneous [Titanium tetrabutoxide (Ti(OC4H9)4)/2,5-dimethoxytetrahydrofuran/ TEA/ethylene chlorobromide] was investigated in the various operating conditions for the optimum production of 1-butene. In the optimum conditions, a very high ethylene conversion (almost 90.77 %), a relative high selectivity to 1-butene (79.00 %), yield of reaction equal to 71.70 % and a significant productivity (turnover frequency equal to 1370 h-1) were achieved.

Keywords: Ethylene dimerization, 2, 5-dimethoxytetrahydrofuran, ethylene chlorobromide, polymeric compounds

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2098
623 Performance, Emission and Combustion Characteristics of a Variable Compression Ratio Diesel Engine Fueled with Karanj Biodiesel and Its Blends

Authors: Ajay V. Kolhe, R. E. Shelke, S. S. Khandare

Abstract:

The use of biodiesel in conventional diesel engines results in substantial reduction of unburned hydrocarbon, carbon monoxide and particulate matters. The performance, emission and combustion characteristics of a single cylinder four stroke variable compression ratio engine when fueled with Karanja (Pongamia) methyl ester and its 10-50 % blends with diesel (on a volume basis) are investigated and compared with standard diesel. The suitability of karanja methyl ester as a biofuel has been established in this study. The useful brake power obtained is similar to diesel fuel for all loads. Experiment has been conducted at a fixed engine speed of 1500 rpm, variable load and at compression ratios of 17.5:1 and 18.5:1. The impact of compression ratio on fuel consumption, combustion pressures and exhaust gas emissions has been investigated and presented. Optimum compression ratio which gives best performance has been identified. The results indicate longer ignition delay, maximum rate of pressure rise, lower heat release rate and higher mass fraction burnt at higher compression ratio for pongamia oil methyl ester when compared to that of diesel. The brake thermal efficiency for pongamia oil methyl ester blends and diesel has been calculated and the blend B20 is found to give maximum thermal efficiency. The blends when used as fuel results in reduction of carbon monoxide, hydrocarbon and increase in nitrogen oxides emissions. PME as an oxygenated fuel generated more complete combustion, which means increased torque and power. This is also supported with higher thermal efficiencies of the PME blends. NOx is slightly increased due to the higher combustion temperature and the presence of fuel oxygen with the blend at full load. PME as a new Biodiesel and its blends can be used in diesel engines without any engine modification.

Keywords: Variable compression ratio CI engine, performance, combustion, emissions, biodiesel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3274
622 Influence of Plastic Waste Reinforcement on Compaction and Consolidation Behavior of Silty Soil

Authors: Maryam Meftahi, Yashar Hamidzadeh

Abstract:

In recent decades, the amount of solid waste production has been rising. In the meantime, plastic waste is one of the major parts of urban solid waste, so, recycling plastic waste from water bottles has become a serious challenge in the whole world. The experimental program includes the study of the effect of waste plastic fibers on maximum dry density (MDD), optimum moisture content (OMC) with different sizes and contents. Also, one dimensional consolidation tests were carried out to evaluate the benefit of utilizing randomly distributed waste plastics fiber to improve the engineering behavior of a tested soils. Silty soil specimens were prepared and tested at five different percentages of plastic waste content (i.e. 0.25%, 0.50%, 0.75%, 1% and 1.25% by weight of the parent soil). The size of plastic chips used, are 4 mm, 8 mm and 12 mm long and 4 mm in width. The results show that with the addition of waste plastic fibers, the MDD and OMC and also the compressibility of soil decrease significantly.

Keywords: Silty soil, waste plastic, compaction, consolidation, reinforcement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 685
621 Heterophase Polymerization of Pyrrole and Thienyl End Capped Ethoxylated Nonyl Phenol by Iron (III) Chloride

Authors: Görkem Ülkü, Esin A. Güvel, Nesrin Köken, Nilgün Kızılcan

Abstract:

This study presents synthesis of novel block copolymers of thienyl end capped ethoxylated nonyl phenol and pyrrole via chemical oxidative polymerization. Ethoxylated nonyl phenol (ENP) was reacted with 2-thiophenecarbonyl chloride in order to synthesize a macromonomer containing thienyl end-group (ENPThC). Then copolymers of ENP-ThC and pyrrole were synthesized by chemical oxidative polymerization using iron (III) chloride as an oxidant. ENP-ThC served both as a macromonomer and an emulsifier for pyrrole with poor solubility in water. The synthesized block copolymers (ENP-ThC-b-PPy) were characterized by spectroscopic analysis and the electrical conductivities were investigated with 4-point probe technique.

Keywords: End capped polymer, ethoxylated nonyl phenol, heterophase polymerization, polypyrrole.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2507
620 Nuts Composition and their Health Benefits

Authors: S. Azadmard-Damirchi, Sh. Emami, J. Hesari, S.H. Peighambardoust, M. Nemati

Abstract:

Nuts are part of a healthy diet such as Mediterranean diet. Benefits of nuts in reducing the risk of heart disease has been reasonably attributed to their composition of vitamins, minerals, unsaturated fatty acids, fiber and phytochemicals such as polyphenols, tocopherols, squalene and phytosterols. More than 75% of total fatty acids of nuts are unsaturated. α- tocopherol is the main tocopherol isomer present in most of the nuts. While walnuts, Brazil nut, cashew nut, peanut, pecan and pistachio nuts are rich in γ- tocopherol. β- sitosterol is dominant sterol in nuts. Pistachio and pine nut have the highest total phytosterol and Brazil nut and English walnut the lowest. Walnuts also contain large amount of phenolic compounds compared with other nuts. Nuts are rich in compounds with antioxidant properties and their consumption can offer preventing from incidence of many diseases including cardiovascular.

Keywords: Nuts, phenols, phytosterols, squalene, vitamin E.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5618
619 Environmental Friendly Polyurethane Coatings Based On Hyperbranched Resin

Authors: Ashraf M. Elsaid, Magd M. Badr, Mohamed S. Selim

Abstract:

Water borne polyurethane (PU) based on newly prepared hyperbranched poly (amine-ester) (HBPAE) was applied and evaluated as organic coating material. HBPAE was prepared through one-pot synthesis between trimethylol propane as a core and AB2 branched monomer which was obtained via Michal addition of methyl methacrylate (MMA) and diethanol amine (DEA). PU was prepared from HBPAE using different ratios of toluene diisocyanate (TDI) to form cured coating film. The prepared HBPAE was characterized using; GPC, FT-IR and 1H-NMR. The mechanical properties (impact, hardness, adhesion, and flexibility), thermal properties (DSC and TGA) and chemical resistance of the applied film were estimated. The results indicated 50% of TDI is the selected ratio. This formulation represents a promising candidate to be used as coating material.

Keywords: Curing, Hyperbranched polymer, Polyurethane, Urethane-acrylates, water borne Coatings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3283
618 Survey on Nano-fibers from Acetobacter Xylinum

Authors: A. Ashjaran, M. E. Yazdanshenas, A. Rashidi, R. Khajavi, A. Rezaee

Abstract:

fibers of pure cellulose can be made from some bacteria such as acetobacter xylinum. Bacterial cellulose fibers are very pure, tens of nm across and about 0.5 micron long. The fibers are very stiff and, although nobody seems to have measured the strength of individual fibers. Their stiffness up to 70 GPa. Fundamental strengths should be at least greater than those of the best commercial polymers, but best bulk strength seems to about the same as that of steel. They can potentially be produced in industrial quantities at greatly lowered cost and water content, and with triple the yield, by a new process. This article presents a critical review of the available information on the bacterial cellulose as a biological nonwoven fabric with special emphasis on its fermentative production and applications. Characteristics of bacterial cellulose biofabric with respect to its structure and physicochemical properties are discussed. Current and potential applications of bacterial cellulose in textile, nonwoven cloth, paper, films synthetic fiber coating, food, pharmaceutical and other industries are also presented.

Keywords: Microbial cellulose, Biofabric, Microorganisms Acetobacter xylinum, Polysaccharide

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1680
617 Osteogenesis by Dextran Coating on and among Fibers of a Polyvinyl Formal Sponge

Authors: M. Yoshikawa, N. Tsuji, T. Yabuuchi, Y Shimomura, H. Kakigi, H. Hayashi, H. Ohgushi

Abstract:

A scaffold is necessary for tooth regeneration because of its three-dimensional geometry. For restoration of defect, it is necessary for the scaffold to be prepared in the shape of the defect. Sponges made from polyvinyl alcohol with formalin cross-linking (PVF sponge) have been used for scaffolds for bone formation in vivo. To induce osteogenesis within the sponge, methods of growing rat bone marrow cells (rBMCs) among the fiber structures in the sponge might be considered. Storage of rBMCs among the fibers in the sponge coated with dextran (10 kDa) was tried. After seeding of rBMCs to PVF sponge immersed in dextran solution at 2 g/dl concentration, osteogenesis was recognized in subcutaneously implanted PVF sponge as a scaffold in vivo. The level of osteocalcin was 25.28±5.71 ng/scaffold and that of Ca was 129.20±19.69 µg/scaffold. These values were significantly higher than those in sponges without dextran coating (p<0.01). Osteogenesis was induced in many spaces in the inner structure of the sponge with dextran coated fibers.

Keywords: Dextran, Polyvinyl formal sponge, Osteogenesis, Scaffold.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1534
616 Electrospinning and Characterization of Silk Fibroin/Gelatin Nanofibre Mats

Authors: S. Mohammadzadehmoghadam, Y. Dong

Abstract:

In this study, Bombyx mori silk fibroin/gelatin (SF/GT) nanocomposite with different GT ratio (SF/GT 100/0, 90/10 and 70/30) were prepared by electrospinning process and crosslinked with glutaraldehyde (GA) vapor. Properties of crosslinked SF/GT nanocomposites were investigated by scanning electron microscopy (SEM), mechanical test, water uptake capacity (WUC) and porosity. From SEM images, it was found that fiber diameter increased as GT content increased. The results of mechanical test indicated that the SF/GT 70/30 nanocomposites had both the highest Young’s modulus of 342 MPa and the highest tensile strength of about 14 MPa. However, porosity and WUC decreased from 62% and 405% for pristine SF to 47% and 232% for SF/GT 70/30, respectively. This behavior can be related to higher degree of crosslinking as GT ratio increased which altered the structure and physical properties of scaffolds. This study showed that incorporation of GT into SF nanofibers can enhance mechanical properties of resultant nanocomposite, but the GA treatment should be optimized to control and fine-tune other properties to warrant their biomedical application.

Keywords: Electrospinning, gelatin, mechanical properties, nanocomposites, silk fibroin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 876