Search results for: two-layered ground.
533 An Analysis of the Results of Trial Blasting of Site Development Project in the Volcanic Island
Authors: Dong Wook Lee, Seung Hyun Kim
Abstract:
Trial blasting is conducted to identify the characteristics of the blasting of the applicable ground before production blasting and to investigate various problems posed by blasting. The methods and pattern of production blasting are determined based on an analysis of the results of trial blasting. The bedrock in Jeju Island, South Korea is formed through the volcanic activities unlike the inland areas, composed of porous basalt. Trial blasting showed that the blast vibration frequency of sedimentary and metamorphic rocks in the inland areas is in a high frequency band of about 80 Hz while the blast vibration frequency of Jeju Island is in a low frequency band of 10~25 Hz. The frequency band is analyzed to be low due to the large cycle of blasting pattern as blast vibration passes through the layered structured ground layer where the rock formation and clickers irregularly repeat. In addition, the blast vibration equation derived from trial blasting was R: 0.885, S.E: 0.216 when applying the square root scaled distance (SRSD) relatively suitable for long distance, estimated at the confidence level of 95%.Keywords: Attenuation index, basaltic ground, blasting vibration constant, blast vibration equation, clinker layer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1126532 Royal Mound “Baygetobe“ from the Burial Ground Shilikty
Authors: Abdesh Toleubayev, Rinat Zhumatayev, Kulzhazira Toleubayeva
Abstract:
Mounds are one of the most valuable sources of information on various aspects of life, household skills, rituals and beliefs of the ancient peoples of Kazakhstan. Moreover, the objects associated with the cult of the burial of the dead are the most informative, and often the only source of knowledge about past eras. The present study is devoted to some results of the excavations carried out on the mound "Baygetobe" of Shilikti burial ground. The purpose of the work is associated with certain categories of grave goods and reading "Fine Text" of Shilikti graves, whose structure is the same for burials of nobles and ordinary graves. The safety of a royal burial mounds, the integrity and completeness of the source are of particular value for studying.Keywords: Animal style, barrow, Baygetobe, dromos, Shilikty.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2450531 Microstrip Patch Antenna Enhancement Techniques
Authors: Ahmad H. Abdelgwad
Abstract:
Microstrip patch antennas are widely used in many wireless communication applications because of their various advantages such as light weight, compact size, inexpensive, ease of fabrication and high reliability. However, narrow bandwidth and low gain are the major drawbacks of microstrip antennas. The radiation properties of microstrip antenna is affected by many designing factors like feeding techniques, manufacturing substrate, patch and ground structure. This manuscript presents a review of the most popular gain and bandwidth enhancement methods of microstrip antenna and reports a brief description of its feeding techniques.Keywords: Gain and bandwidth enhancement, slotted patch, parasitic patch, electromagnetic band gap, defected ground, feeding techniques.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1827530 Effect of Coffee Grounds on Physical and Heating Value Properties of Sugarcane Bagasse Pellets
Authors: K. Rattawan, W. Intagun, W. Kanoksilapatham
Abstract:
Objective of this research is to study effect of coffee grounds on physical and heating value properties of sugarcane bagasse pellets. The coffee grounds were tested as an additive for pelletizing process of bagasse pellets. Pelletizing was performed using a Flat–die pellet mill machine. Moisture content of raw materials was controlled at 10-13%. Die temperature range during the process was 75-80 oC. Physical characteristics (bulk density and durability) of the bagasse pellet and pellets with 1-5% coffee ground were determined following the standard assigned by the Pellet Fuel Institute (PFI). The results revealed increasing values of 648±3.4, 659 ± 3.1, 679 ± 3.3 and 685 ± 3.1 kg/m3 (for pellet bulk density); and 98.7 ± 0.11, 99.2 ± 0.26, 99.3 ± 0.19 and 99.4 ± 0.07% (for pellet durability), respectively. In addition, the heating values of the coffee ground supplemented pellets (15.9 ± 1.16, 17.0 ± 1.23 and 18.8 ± 1.34 MJ/kg) were improved comparing to the non-supplemented control (14.9 ± 1.14 MJ/kg), respectively. The results indicated that both the bulk density and durability values of the bagasse pellets were increased with the increasing proportion of the coffee ground additive.
Keywords: Bagasse, coffee grounds, pelletizing, heating value, sugar cane bagasse.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 769529 Estimation of Shock Velocity and Pressure of Detonations and Finding Their Flow Parameters
Authors: Mahmoud Zarrini, R. N. Pralhad
Abstract:
In this paper, mathematical modeling of detonation in the ground is studied. Estimation of flow parameters such as velocity, maximum velocity, acceleration, maximum acceleration, shock pressure as a result of an explosion in the ground have been computed in an appropriate dynamic model approach. The variation of these parameters with the diameter of detonation place (L), density of earth or stone (¤ü), time decay of detonation (T), peak pressure (Pm), and time (t) have been analyzed. The model has been developed from the concept of underwater explosions [Refs. [1]-[3]] with appropriate changes to the present model requirements.
Keywords: Shock velocity, detonation, shock acceleration, shock pressure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1300528 Ultra Fast Solid State Ground Fault Isolator
Authors: I Made Darmayuda, Zhou Jun, Krishna Mainali, Simon Ng Sheung Yan, Saisundar S, Eran Ofek
Abstract:
Personnel protection devices are cardinal in safety hazard applications. They are widely used in home, office and in industry environments to reduce the risk of lethal shock to human being and equipment safety. This paper briefly reviews various personnel protection devices also describes the basic working principle of conventional ground fault circuit interrupter (GFCI) or ground fault isolator (GFI), its disadvantages and ways to overcome the disadvantages with solid-state relay (SSR) based GFI with ultrafast response up on fault implemented in printed circuit board. This solid state GFI comprises discrete MOSFET based alternating current (AC) switches, linear optical amplifier, photovoltaic isolator and sense resistor. In conventional GFI, current transformer is employed as a sensing element to detect the difference in current flow between live and neutral conductor. If there is no fault in equipment powered through GFI, due to insulation failure of internal wires and windings of motors, both live and neutral currents will be equal in magnitude and opposite in phase.
Keywords: current transformer, electrocution, GFCI, GFI
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2324527 Design and Analysis of a New Dual-Band Microstrip Fractal Antenna
Authors: I. Zahraoui, J. Terhzaz, A. Errkik, El. H. Abdelmounim, A. Tajmouati, L. Abdellaoui, N. Ababssi, M. Latrach
Abstract:
This paper presents a novel design of a microstrip fractal antenna based on the use of Sierpinski triangle shape, it’s designed and simulated by using FR4 substrate in the operating frequency bands (GPS, WiMAX), the design is a fractal antenna with a modified ground structure. The proposed antenna is simulated and validated by using CST Microwave Studio Software, the simulated results presents good performances in term of radiation pattern and matching input impedance.
Keywords: Dual-band antenna, Fractal antenna, GPS band, Modified ground structure, Sierpinski triangle, WiMAX band.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4008526 A Numerical Study of Seismic Response of Shallow Square Tunnels in Two-Layered Ground
Authors: Mahmoud Hassanlourad, Mehran Naghizadehrokni, Vahid Molaei
Abstract:
In this study, the seismic behavior of a shallow tunnel with square cross section is investigated in a two layered and elastic heterogeneous environment using numerical method. To do so, FLAC finite difference software was used. Behavioral model of the ground and tunnel structure was assumed linear elastic. Dynamic load was applied to the model for 0.2 seconds from the bottom in form of a square pulse with maximum acceleration of 1 m/s2. The interface between the two layers was considered at three different levels of crest, middle, and bottom of the tunnel. The stiffness of the two upper and lower layers was considered to be varied from 10 MPa to 1000 MPa. Deformation of cross section of the tunnel due to dynamic load propagation, as well as the values of axial force and bending moment created in the tunnel structure, were examined in the three states mentioned above. The results of analyses show that heterogeneity of the environment, its stratification, and positioning of the interface of the two layers with respect to tunnel height and the stiffness ratio of the two layers have significant effects on the value of bending moment, axial force, and distortion of tunnel cross-section.Keywords: Dynamic analysis, shallow-buried tunnel, two-layered ground.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 769525 Reutilization of Organic and Peat Soils by Deep Cement Mixing
Authors: Bee-Lin Tang, Ismail Bakar, Chee - Ming Chan
Abstract:
Limited infrastructure development on peats and organic soils is a serious geotechnical issues common to many countries of the world especially Malaysia which distributed 1.5 mill ha of those problematic soil. These soils have high water content and organic content which exhibit different mechanical properties and may also change chemically and biologically with time. Constructing structures on peaty ground involves the risk of ground failure and extreme settlement. Nowdays, much efforts need to be done in making peatlands usable for construction due to increased landuse. Deep mixing method employing cement as binders, is generally used as measure again peaty/ organic ground failure problem. Where the technique is widely adopted because it can improved ground considerably in a short period of time. An understanding of geotechnical properties as shear strength, stiffness and compressibility behavior of these soils was requires before continues construction on it. Therefore, 1- 1.5 meter peat soil sample from states of Johor and an organic soil from Melaka, Malaysia were investigated. Cement were added to the soil in the pre-mixing stage with water cement ratio at range 3.5,7,14,140 for peats and 5,10,30 for organic soils, essentially to modify the original soil textures and properties. The mixtures which in slurry form will pour to polyvinyl chloride (pvc) tube and cured at room temperature 250C for 7,14 and 28 days. Laboratory experiments were conducted including unconfined compressive strength and bender element , to monitor the improved strength and stiffness of the 'stabilised mixed soils'. In between, scanning electron miscroscopic (SEM) were observations to investigate changes in microstructures of stabilised soils and to evaluated hardening effect of a peat and organic soils stabilised cement. This preliminary effort indicated that pre-mixing peat and organic soils contributes in gaining soil strength while help the engineers to establish a new method for those problematic ground improvement in further practical and long term applications.Keywords: peat soils, organic soils, cement stabilisation, strength, stiffness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3266524 Determination of Alkaline Protease Production In Serratia Marcescens Sp7 Using Agro Wastes As Substrate Medium, Optimization Of Production Parameters And Purification Of The Enzyme
Authors: Baby Joseph, Sankarganesh Palaniyandi
Abstract:
The enzyme alkaline protease production was determined under solid state fermentation using the soil bacteria Serratia marcescens sp7. The maximum production was obtained from wheat bran medium than ground nut shell and chemically defined medium. The physiological fermentation factors such as pH of the medium (pH 8), Temperature (40oC) and incubation time (48 hrs) played a vital role in alkaline protease production in all the above. 100Mm NaCl has given better resolution during elution of the enzymes. The enzyme production was found to be associated with growth of the bacterial culture.Keywords: Alkaline protease, Wheat bran, Ground nut shell, Serratia marcescens
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2517523 Influence of Local Soil Conditions on Optimal Load Factors for Seismic Design of Buildings
Authors: Miguel A. Orellana, Sonia E. Ruiz, Juan Bojórquez
Abstract:
Optimal load factors (dead, live and seismic) used for the design of buildings may be different, depending of the seismic ground motion characteristics to which they are subjected, which are closely related to the type of soil conditions where the structures are located. The influence of the type of soil on those load factors, is analyzed in the present study. A methodology that is useful for establishing optimal load factors that minimize the cost over the life cycle of the structure is employed; and as a restriction, it is established that the probability of structural failure must be less than or equal to a prescribed value. The life-cycle cost model used here includes different types of costs. The optimization methodology is applied to two groups of reinforced concrete buildings. One set (consisting on 4-, 7-, and 10-story buildings) is located on firm ground (with a dominant period Ts=0.5 s) and the other (consisting on 6-, 12-, and 16-story buildings) on soft soil (Ts=1.5 s) of Mexico City. Each group of buildings is designed using different combinations of load factors. The statistics of the maximums inter-story drifts (associated with the structural capacity) are found by means of incremental dynamic analyses. The buildings located on firm zone are analyzed under the action of 10 strong seismic records, and those on soft zone, under 13 strong ground motions. All the motions correspond to seismic subduction events with magnitudes M=6.9. Then, the structural damage and the expected total costs, corresponding to each group of buildings, are estimated. It is concluded that the optimal load factors combination is different for the design of buildings located on firm ground than that for buildings located on soft soil.
Keywords: Life-cycle cost, optimal load factors, reinforced concrete buildings, total costs, type of soil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 903522 Comparative Study of Equivalent Linear and Non-Linear Ground Response Analysis for Rapar District of Kutch, India
Authors: Kulin Dave, Kapil Mohan
Abstract:
Earthquakes are considered to be the most destructive rapid-onset disasters human beings are exposed to. The amount of loss it brings in is sufficient to take careful considerations for designing of structures and facilities. Seismic Hazard Analysis is one such tool which can be used for earthquake resistant design. Ground Response Analysis is one of the most crucial and decisive steps for seismic hazard analysis. Rapar district of Kutch, Gujarat falls in Zone 5 of earthquake zone map of India and thus has high seismicity because of which it is selected for analysis. In total 8 bore-log data were studied at different locations in and around Rapar district. Different soil engineering properties were analyzed and relevant empirical correlations were used to calculate maximum shear modulus (Gmax) and shear wave velocity (Vs) for the soil layers. The soil was modeled using Pressure-Dependent Modified Kodner Zelasko (MKZ) model and the reference curve used for fitting was Seed and Idriss (1970) for sand and Darendeli (2001) for clay. Both Equivalent linear (EL), as well as Non-linear (NL) ground response analysis, has been carried out with Masing Hysteretic Re/Unloading formulation for comparison. Commercially available DEEPSOIL v. 7.0 software is used for this analysis. In this study an attempt is made to quantify ground response regarding generated acceleration time-history at top of the soil column, Response spectra calculation at 5 % damping and Fourier amplitude spectrum calculation. Moreover, the variation of Peak Ground Acceleration (PGA), Maximum Displacement, Maximum Strain (in %), Maximum Stress Ratio, Mobilized Shear Stress with depth is also calculated. From the study, PGA values estimated in rocky strata are nearly same as bedrock motion and marginal amplification is observed in sandy silt and silty clays by both analyses. The NL analysis gives conservative results of maximum displacement as compared to EL analysis. Maximum strain predicted by both studies is very close to each other. And overall NL analysis is more efficient and realistic because it follows the actual hyperbolic stress-strain relationship, considers stiffness degradation and mobilizes stresses generated due to pore water pressure.
Keywords: DEEPSOIL v 7.0, Ground Response Analysis, Pressure-Dependent Modified KodnerZelasko (MKZ) model, Response Spectra, Shear wave velocity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 932521 Design and Synthesis of Two Tunable Bandpass Filters Based On Varactors and Defected Ground Structure
Authors: M. Boulakroune, M. Challal, H. Louazene, S. Fentiz
Abstract:
This paper presents two types of microstrip bandpass filter (BPF) at microwave frequencies. The first one is a tunable BPF using planar patch resonators based on a varactor diode. The filter is formed by a triple mode circular patch resonator with two pairs of slots, in which the varactor diodes are connected. Indeed, this filter is initially centered at 2.4 GHz; the center frequency of the tunable patch filter could be tuned up to 1.8 GHz simultaneously with the bandwidth, reaching high tuning ranges. Lossless simulations were compared to those considering the substrate dielectric, conductor losses and the equivalent electrical circuit model of the tuning element in order to assess their effects. Within these variations, simulation results showed insertion loss better than 2 dB and return loss better than 10 dB over the passband. The second structure is a BPF for ultra-wideband (UWB) applications based on multiple-mode resonator (MMR) and rectangular-shaped defected ground structure (DGS). This filter, which is compact size of 25.2 x 3.8 mm2, provides in the pass band an insertion loss of 0.57 dB and a return loss greater than 12 dB. The proposed filters presents good performances and the simulation results are in satisfactory agreement with the experimentation ones reported elsewhere.
Keywords: Defected ground structure, varactor diode, microstrip bandpass filter, multiple-mode resonator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2646520 Human Induced Dynamic Loading on Stairs
Authors: L. Gaile, I. Radinsh
Abstract:
Based on experimental data using accelerometry technology there was developed an analytical model that approximates human induced ground reaction forces in vertical, longitudinal and lateral directions ascending and descending the stairs. Proposed dynamic loading factors and corresponding phase shifts for the first five harmonics of continuous walking force history in case of stair ascend and descend. Into account is taken imperfectness of individual footfall forcing functions, differences between continuous walking force histories among individuals. There is proposed mean synthetic continuous walking force history that can be used in numerical simulations of human movement on the stairs.
Keywords: footfall, ground reaction forces, human loads, serviceability, stair vibration, walking
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2249519 Optimal Planning of Ground Grid Based on Particle Swam Algorithm
Authors: Chun-Yao Lee, Yi-Xing Shen
Abstract:
This paper presents an application of particle swarm optimization (PSO) to the grounding grid planning which compares to the application of genetic algorithm (GA). Firstly, based on IEEE Std.80, the cost function of the grounding grid and the constraints of ground potential rise, step voltage and touch voltage are constructed for formulating the optimization problem of grounding grid planning. Secondly, GA and PSO algorithms for obtaining optimal solution of grounding grid are developed. Finally, a case of grounding grid planning is shown the superiority and availability of the PSO algorithm and proposal planning results of grounding grid in cost and computational time.Keywords: Genetic algorithm, particle swarm optimization, grounding grid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2084518 Mechanical Properties and Chloride Diffusion of Ceramic Waste Aggregate Mortar Containing Ground Granulated Blast–Furnace Slag
Authors: H. Higashiyama, M. Sappakittipakorn, M. Mizukoshi, O. Takahashi
Abstract:
Ceramic Waste Aggregates (CWAs) were made from electric porcelain insulator wastes supplied from an electric power company, which were crushed and ground to fine aggregate sizes. In this study, to develop the CWA mortar as an eco–efficient, ground granulated blast–furnace slag (GGBS) as a Supplementary Cementitious Material (SCM) was incorporated. The water–to–binder ratio (W/B) of the CWA mortars was varied at 0.4, 0.5, and 0.6. The cement of the CWA mortar was replaced by GGBS at 20 and 40% by volume (at about 18 and 37% by weight). Mechanical properties of compressive and splitting tensile strengths, and elastic modulus were evaluated at the age of 7, 28, and 91 days. Moreover, the chloride ingress test was carried out on the CWA mortars in a 5.0% NaCl solution for 48 weeks. The chloride diffusion was assessed by using an electron probe microanalysis (EPMA). To consider the relation of the apparent chloride diffusion coefficient and the pore size, the pore size distribution test was also performed using a mercury intrusion porosimetry at the same time with the EPMA. The compressive strength of the CWA mortars with the GGBS was higher than that without the GGBS at the age of 28 and 91 days. The resistance to the chloride ingress of the CWA mortar was effective in proportion to the GGBS replacement level.Keywords: Ceramic waste aggregate, Chloride diffusion, GGBS, Pore size distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2003517 Comparative Study of Three DGS Unit Shapes and Compact Microstrip Low-Pass and Band-Pass Filters Designs
Authors: M. Challal, F. Labu, M. Dehmas, A. Azrar
Abstract:
In this paper, three types of defected ground structure (DGS) units which are triangular-head (TH), rectangular-head (RH) and U-shape (US) are investigated. They are further used to low-pass and band-pass filters designs (LPF and BPF) and the obtained performances are examined. The LPF employing RH-DGS geometry presents the advantages of compact size, low-insertion loss and wide stopband compared to the other filters. It provides cutoff frequency of 2.5 GHz, largest rejection band width of 20 dB from 2.98 to 8.76 GHz, smallest transition region and smallest sharpness of the cutoff frequency. The BPF based on RH-DGS has the highest bandwidth (BW) of about 0.74 GHz and the lowest center frequency of 3.24 GHz, whereas the other BPFs have BWs less than 0.7 GHz.Keywords: Defected ground structure (DGS), triangular-head(TH) DGS, rectangular-head (RH) DGS, U-shape (US) DGS, lowpassfilter (LPF) and band-pass filter (BPF).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1674516 Numerical Modeling and Computer Simulation of Ground Movement above Underground Mine
Authors: A. Nuric, S. Nuric, L. Kricak, I. Lapandic, R. Husagic
Abstract:
This paper describes topic of computer simulation with regard to the ground movement above an underground mine. Simulation made with software package ADINA for nonlinear elastic-plastic analysis with finite elements method. The one of representative profiles from Mine 'Stara Jama' in Zenica has been investigated. A collection and selection of both geo-mechanical data and geometric parameters of the mine was necessary for performing these simulations. Results of estimation have been compared with measured values (vertical displacement of surface), and then simulation performed with assumed dynamic and dimensions of excavation, over a period of time. Results are presented with bitmaps and charts.
Keywords: Computer, finite element method, mine, nonlinear analysis, numerical modeling, simulation, subsidence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2834515 Investigation of Behavior on the Contact Surface of the Tire and Ground by CFD Simulation
Authors: M. F. Sung, Y.D. Kuan, R.J. Shyu, S.M. Lee
Abstract:
Tread design has evolved over the years to achieve the common tread pattern used in current vehicles. However, to meet safety and comfort requirements, tread design considers more than one design factor. Tread design must consider the grip and drainage, and the manner in which to reduce rolling noise, which is one of the main factors considered by manufacturers. The main objective of this study was the application the computational fluid dynamics (CFD) technique to simulate the contact surface of the tire and ground. The results demonstrated an air-Pumping and large pressure drop effect in the process of contact surface. The results also revealed that the pressure can be used to analyze sound pressure level (SPL).
Keywords: Air-pumping, computational fluid dynamics, sound pressure level, tire.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2379514 Use Cases Analysis of Free Space Optical Communication System
Authors: K. Saab, F. Bart, Y.-M. Seveque
Abstract:
The deployment of Free Space Optical Communications (FSOC) systems requires the development of robust and reliable Optical Ground Stations (OGS) that can be easily installed and operated. To this end, the Engineering Department of Airbus Defence and Space is actively working on the development of innovative and compact OGS solutions that can be deployed in various environments and provide high-quality connectivity under different atmospheric conditions. This article presents an overview of our recent developments in this field, including an evaluation study of different use cases of the FSOC with respect to different atmospheric conditions. The goal is to provide OGS solutions that are both simple and highly effective, allowing for the deployment of high-speed communication networks in a wide range of scenarios.
Keywords: End-to-end optical communication, laser propagation, optical ground station, turbulence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 145513 Parameters of Main Stage of Discharge between Artificial Charged Aerosol Cloud and Ground in Presence of Model Hydrometeor Arrays
Authors: D. S. Zhuravkova, A. G. Temnikov, O. S. Belova, L. L. Chernensky, T. K. Gerastenok, I. Y. Kalugina, N. Y. Lysov, A.V. Orlov
Abstract:
Investigation of the discharges from the artificial charged water aerosol clouds in presence of the arrays of the model hydrometeors could help to receive the new data about the peculiarities of the return stroke formation between the thundercloud and the ground when the large volumes of the hail particles participate in the lightning discharge initiation and propagation stimulation. Artificial charged water aerosol clouds of the negative or positive polarity with the potential up to one million volts have been used. Hail has been simulated by the group of the conductive model hydrometeors of the different form. Parameters of the impulse current of the main stage of the discharge between the artificial positively and negatively charged water aerosol clouds and the ground in presence of the model hydrometeors array and of its corresponding electromagnetic radiation have been determined. It was established that the parameters of the array of the model hydrometeors influence on the parameters of the main stage of the discharge between the artificial thundercloud cell and the ground. The maximal values of the main stage current impulse parameters and the electromagnetic radiation registered by the plate antennas have been found for the array of the model hydrometeors of the cylinder revolution form for the negatively charged aerosol cloud and for the array of the hydrometeors of the plate rhombus form for the positively charged aerosol cloud, correspondingly. It was found that parameters of the main stage of the discharge between the artificial charged water aerosol cloud and the ground in presence of the model hydrometeor array of the different considered forms depend on the polarity of the artificial charged aerosol cloud. In average, for all forms of the investigated model hydrometeors arrays, the values of the amplitude and the current rise of the main stage impulse current and the amplitude of the corresponding electromagnetic radiation for the artificial charged aerosol cloud of the positive polarity were in 1.1-1.9 times higher than for the charged aerosol cloud of the negative polarity. Thus, the received results could indicate to the possible more important role of the big volumes of the large hail arrays in the thundercloud on the parameters of the return stroke for the positive lightning.
Keywords: Main stage of discharge, hydrometeor form, lightning parameters, negative and positive artificial charged aerosol cloud.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1040512 An Investigation to Study the Moisture Dependency of Ground Enhancement Compound
Authors: Arunima Shukla, Vikas Almadi, Devesh Jaiswal, Sunil Saini, Bhusan S. Patil
Abstract:
Lightning protection consists of three main parts; mainly air termination system, down conductor, and earth termination system. Earth termination system is the most important part as earth is the sink and source of charges. Therefore, even when the charges are captured and delivered to the ground, and an easy path is not provided to the charges, earth termination system would lead to problems. Soil has significantly different resistivities ranging from 10 Ωm for wet organic soil to 10000 Ωm for bedrock. Different methods have been discussed and used conventionally such as deep-ground-well method and altering the length of the rod. Those methods are not considered economical. Therefore, it was a general practice to use charcoal along with salt to reduce the soil resistivity. Bentonite is worldwide acceptable material, that had led our interest towards study of bentonite at first. It was concluded that bentonite is a clay which is non-corrosive, environment friendly. Whereas bentonite is suitable only when there is moisture present in the soil, as in the absence of moisture, cracks will appear on the surface which will provide an open passage to the air, resulting into increase in the resistivity. Furthermore, bentonite without moisture does not have enough bonding property, moisture retention, conductivity, and non-leachability. Therefore, bentonite was used along with the other backfill material to overcome the dependency of bentonite on moisture. Different experiments were performed to get the best ratio of bentonite and carbon backfill. It was concluded that properties will highly depend on the quantity of bentonite and carbon-based backfill material.
Keywords: Backfill material, bentonite, conducting soil, grounding material, low resistivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 449511 Efficiency Validation of Hybrid Cooling Application in Hot and Humid Climate Houses of KSA
Authors: Jamil Hijazi, Stirling Howieson
Abstract:
Reducing energy consumption and CO2 emissions are probably the greatest challenge now facing mankind. From considerations surrounding global warming and CO2 production, it has to be recognized that oil is a finite resource and the KSA like many other oil-rich countries will have to start to consider a horizon where hydro-carbons are not the dominant energy resource. The employment of hybrid ground-cooling pipes in combination with the black body solar collection and radiant night cooling systems may have the potential to displace a significant proportion of oil currently used to run conventional air conditioning plant. This paper presents an investigation into the viability of such hybrid systems with the specific aim of reducing cooling load and carbon emissions while providing all year-round thermal comfort in a typical Saudi Arabian urban housing block. Soil temperatures were measured in the city of Jeddah. A parametric study then was carried out by computational simulation software (DesignBuilder) that utilized the field measurements and predicted the cooling energy consumption of both a base case and an ideal scenario (typical block retro-fitted with insulation, solar shading, ground pipes integrated with hypocaust floor slabs/stack ventilation and radiant cooling pipes embed in floor). Initial simulation results suggest that careful ‘ecological design’ combined with hybrid radiant and ground pipe cooling techniques can displace air conditioning systems, producing significant cost and carbon savings (both capital and running) without appreciable deprivation of amenity.
Keywords: Cooling load, energy efficiency, ground pipe cooling, hybrid cooling strategy, hydronic radiant systems, low carbon emission, passive designs, thermal comfort.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 947510 Comparison of Stationary and Two-Axis Tracking System of 50MW Photovoltaic Power Plant in Al-Kufra, Libya: Landscape Impact and Performance
Authors: Yasser Aldali
Abstract:
The scope of this paper is to evaluate and compare the potential of LS-PV(Large Scale Photovoltaic Power Plant) power generation systems in the southern region of Libya at Al-Kufra for both stationary and tracking systems. A Microsoft Excel-VBA program has been developed to compute slope radiation, dew-point, sky temperature, and then cell temperature, maximum power output and module efficiency of the system for stationary system and for tracking system. The results for energy production show that the total energy output is 114GWh/year for stationary system and 148GWh/year for tracking system. The average module efficiency for the stationary system is 16.6% and 16.2% for the tracking system.
The values of electricity generation capacity factor (CF) and solar capacity factor (SCF) for stationary system were found to be 26% and 62.5% respectively and 34% and 82% for tracking system. The GCR (Ground Cover Ratio) for a stationary system is 0.7, which corresponds to a tilt angle of 24°. The GCR for tracking system was found to be 0.12. The estimated ground area needed to build a 50MW PV plant amounts to approx. 0.55km2 for a stationary PV field constituted by HIT PV arrays and approx. 91MW/ km2. In case of a tracker PV field, the required ground area amounts approx.2.4km2 and approx. 20.5MW/ km2.
Keywords: Large PV power plant, solar energy, environmental impact, Dual-axis tracking system, stationary system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3102509 Effect of Carbon-Free Fly Ash and Ground Granulated Blast-Furnace Slag on Compressive Strength of Mortar under Different Curing Conditions
Authors: Abdul Khaliq Amiri, Shigeyuki Date
Abstract:
This study investigates the effect of using carbon-free fly ash (CfFA) and ground granulated blast-furnace slag (GGBFS) on the compressive strength of mortar. The CfFA used in this investigation is high-quality fly ash and the carbon content is 1.0% or less. In this study, three types of blends with a 30% water-binder ratio (w/b) were prepared: control, binary and ternary blends. The Control blend contained only Ordinary Portland Cement (OPC), in binary and ternary blends OPC was partially replaced with CfFA and GGBFS at different substitution rates. Mortar specimens were cured for 1 day, 7 days and 28 days under two curing conditions: steam curing and water curing. The steam cured specimens were exposed to two different pre-curing times (1.5 h and 2.5 h) and one steam curing duration (6 h) at 45 °C. The test results showed that water cured specimens revealed higher compressive strength than steam cured specimens at later ages. An increase in CfFA and GGBFS contents caused a decrease in the compressive strength of mortar. Ternary mixes exhibited better compressive strength than binary mixes containing CfFA with the same replacement ratio of mineral admixtures.Keywords: Carbon-free fly ash, compressive strength, ground granulated blast-furnace slag, steam curing, water curing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 449508 Stress Variation of Underground Building Structure during Top-Down Construction
Authors: Soo-yeon Seo, Seol-ki Kim, Su-jin Jung
Abstract:
In the construction of a building, it is necessary to minimize construction period and secure enough work space for stacking of materials during the construction especially in city area. In this manner, various top-down construction methods have been developed and widely used in Korea. This paper investigates the stress variation of underground structure of a building constructed by using SPS (Strut as Permanent System) known as a top-down method in Korea through an analytical approach. Various types of earth pressure distribution related to ground condition were considered in the structural analysis of an example structure at each step of the excavation. From the analysis, the most high member force acting on beams was found when the ground type was medium sandy soil and a stress concentration was found in corner area.Keywords: Construction of building, top-down construction method, earth pressure distribution, member force, stress concentration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1720507 Design, Analysis and Modeling of Dual Band Microstrip Loop Antenna Using Defective Ground Plane
Authors: R. Bansal, A. Jain, M. Kumar, R. S. Meena
Abstract:
Present wireless communication demands compact and intelligent devices with multitasking capabilities at affordable cost. The focus in the presented paper is on a dual band antenna for wireless communication with the capability of operating at two frequency bands with same structure. Two resonance frequencies are observed with the second operation band at 4.2GHz approximately three times the first resonance frequency at 1.5GHz. Structure is simple loop of microstrip line with characteristic impedance 50 ohms. The proposed antenna is designed using defective ground structure (DGS) and shows the nearly one third reductions in size as compared to without DGS. This antenna was simulated on electromagnetic (EM) simulation software and fabricated using microwave integrated circuit technique on RT-Duroid dielectric substrate (εr= 2.22) of thickness (H=15 mils). The designed antenna was tested on automatic network analyzer and shows the good agreement with simulated results. The proposed structure is modeled into an equivalent electrical circuit and simulated on circuit simulator. Subsequently, theoretical analysis was carried out and simulated. The simulated, measured, equivalent circuit response, and theoretical results shows good resemblance. The bands of operation draw many potential applications in today’s wireless communication.
Keywords: Defective Ground plane, Dual band, Loop Antenna, Microstrip antenna, Resonance frequency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3770506 Further Development in Predicting Post-Earthquake Fire Ignition Hazard
Authors: Pegah Farshadmanesh, Jamshid Mohammadi, Mehdi Modares
Abstract:
In nearly all earthquakes of the past century that resulted in moderate to significant damage, the occurrence of postearthquake fire ignition (PEFI) has imposed a serious hazard and caused severe damage, especially in urban areas. In order to reduce the loss of life and property caused by post-earthquake fires, there is a crucial need for predictive models to estimate the PEFI risk. The parameters affecting PEFI risk can be categorized as: 1) factors influencing fire ignition in normal (non-earthquake) condition, including floor area, building category, ignitability, type of appliance, and prevention devices, and 2) earthquake related factors contributing to the PEFI risk, including building vulnerability and earthquake characteristics such as intensity, peak ground acceleration, and peak ground velocity. State-of-the-art statistical PEFI risk models are solely based on limited available earthquake data, and therefore they cannot predict the PEFI risk for areas with insufficient earthquake records since such records are needed in estimating the PEFI model parameters. In this paper, the correlation between normal condition ignition risk, peak ground acceleration, and PEFI risk is examined in an effort to offer a means for predicting post-earthquake ignition events. An illustrative example is presented to demonstrate how such correlation can be employed in a seismic area to predict PEFI hazard.Keywords: Fire risk, post-earthquake fire ignition (PEFI), risk management, seismicity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1362505 Full Potential Study of Electronic and Optical Properties of NdF3
Authors: Sapan Mohan Saini
Abstract:
We report the electronic structure and optical properties of NdF3 compound. Our calculations are based on density functional theory (DFT) using the full potential linearized augmented plane wave (FPLAPW) method with the inclusion of spin orbit coupling. We employed the local spin density approximation (LSDA) and Coulomb-corrected local spin density approximation, known for treating the highly correlated 4f electrons properly, is able to reproduce the correct insulating ground state. We find that the standard LSDA approach is incapable of correctly describing the electronic properties of such materials since it positions the f-bands incorrectly resulting in an incorrect metallic ground state. On the other hand, LSDA + U approximation, known for treating the highly correlated 4f electrons properly, is able to reproduce the correct insulating ground state. Interestingly, however, we do not find any significant differences in the optical properties calculated using LSDA, and LSDA + U suggesting that the 4f electrons do not play a decisive role in the optical properties of these compounds. The reflectivity for NdF3 compound stays low till 7 eV which is consistent with their large energy gaps. The calculated energy gaps are in good agreement with experiments. Our calculated reflectivity compares well with the experimental data and the results are analyzed in the light of band to band transitions.Keywords: FPLAPW Method, optical properties, rare earthtrifluorides LSDA+U
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1676504 Early-Age Structural and Thermal Performance of GGBS Concrete
Authors: Kangkang Tang
Abstract:
A large amount of blast furnace slag is generated in China. Most ground granulated blast furnace slag (GGBS) however ends up in low-grade applications. Blast furnace slag, ground to an appropriate fineness, can be used as a partial replacement of cementitious material in concrete. The potential for using GGBS in structural concrete, e.g. concrete beams and columns is investigated at Xi’an Jiaotong-Liverpool University (XJTLU). With 50% of CEM I cement replaced with GGBS, peak hydration temperatures determined in a suspended concrete slab reduced by 20%. This beneficiary effect has not been further improved with 70% of CEM I replaced with GGBS. Partial replacement of CEM I with GGBS has a retardation effect on the early-age strength of concrete. More GGBS concrete mixes will be conducted to identify an ‘optimum’ replacement level which will lead to a reduced thermal loading, without significantly compromising the early-age strength of concrete.Keywords: GGBS, thermal effect, sustainable construction, CEM I.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3167