Search results for: fuel rod
546 Development of Blower for Air Management System of Fuel Cell Modules
Authors: Joo-Han Kim, Jung-Moo Seo, Ha Gyeong Sung, Se Hyun Rhyu
Abstract:
This study presents a blower for air management system of fuel cell modules. A blower is composed of BLDC motor and impeller. Magnetic equivalent circuit model and finite element analysis are used to design the motor, and an improved structure is considered to reduce a mechanical loss induced from bearing units. Finally, air blower system combined with the motor and an impeller is manufactured and output properties, such as an air pressure and an amount of flowing air, are measured. Through the experimental results, a validity of the simulated one is confirmed.Keywords: Fuel cell modules, BLDC motor, Impeller, Air management
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1587545 Mathematical Correlation for Brake Thermal Efficiency and NOx Emission of CI Engine using Ester of Vegetable Oils
Authors: Samir J. Deshmukh, Lalit B. Bhuyar, Shashank B. Thakre, Sachin S. Ingole
Abstract:
The aim of this study is to develop mathematical relationships for the performance parameter brake thermal efficiency (BTE) and emission parameter nitrogen oxides (NOx) for the various esters of vegetable oils used as CI engine fuel. The BTE is an important performance parameter defining the ability of engine to utilize the energy supplied and power developed similarly it is indication of efficiency of fuels used. The esters of cottonseed oil, soybean oil, jatropha oil and hingan oil are prepared using transesterification process and characterized for their physical and main fuel properties including viscosity, density, flash point and higher heating value using standard test methods. These esters are tried as CI engine fuel to analyze the performance and emission parameters in comparison to diesel. The results of the study indicate that esters as a fuel does not differ greatly with that of diesel in properties. The CI engine performance with esters as fuel is in line with the diesel where as the emission parameters are reduced with the use of esters. The correlation developed between BTE and brake power(BP), gross calorific value(CV), air-fuel ratio(A/F), heat carried away by cooling water(HCW). Another equation is developed between the NOx emission and CO, HC, smoke density (SD), exhaust gas temperature (EGT). The equations are verified by comparing the observed and calculated values which gives the coefficient of correlation of 0.99 and 0.96 for the BTE and NOx equations respectively.Keywords: Esters, emission, performance, and vegetable oil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2218544 Degradation of Irradiated UO2 Fuel Thermal Conductivity Calculated by FRAPCON Model Due to Porosity Evolution at High Burn-Up
Authors: B. Roostaii, H. Kazeminejad, S. Khakshournia
Abstract:
The evolution of volume porosity previously obtained by using the existing low temperature high burn-up gaseous swelling model with progressive recrystallization for UO2 fuel is utilized to study the degradation of irradiated UO2 thermal conductivity calculated by the FRAPCON model of thermal conductivity. A porosity correction factor is developed based on the assumption that the fuel morphology is a three-phase type, consisting of the as-fabricated pores and pores due to intergranular bubbles whitin UO2 matrix and solid fission products. The predicted thermal conductivity demonstrates an additional degradation of 27% due to porosity formation at burn-up levels around 120 MWd/kgU which would cause an increase in the fuel temperature accordingly. Results of the calculations are compared with available data.
Keywords: Irradiation-induced recrystallization, matrix swelling, porosity evolution, UO2 thermal conductivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1248543 Design and Control of DC-DC Converter for the Military Application Fuel Cell
Authors: Tae-Yeong Lee, Eun-Ju Yoo, Won-Yeong Choi, Young-Woo Park
Abstract:
This paper presents a 24 watts SEPIC converter design and control using microprocessor. SEPIC converter has advantages of a wide input range and miniaturization caused by the low stress at elements. There is also an advantage that the input and output are isolated in MOSFET-off state. This paper presents the PID control through the SEPIC converter transfer function using a DSP and the protective circuit for fuel cell from the over-current and inverse-voltage by using the characteristic of SEPIC converter. Then it derives them through the experiments.Keywords: DC-DC Converter, Fuel-Cell, Microprocessor Control, Military Converter, SEPIC Converter
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2332542 Assessment of Exhaust Emissions and Fuel Consumption from Means of Transport in Agriculture
Authors: Merkisz Jerzy, Lijewski Piotr, Fuć Paweł, Siedlecki Maciej, Ziółkowski Andrzej, Weymann Sylwester
Abstract:
The paper discusses the problem of load transport using farm tractors and road tractor units. This type of carriage of goods is often done with farm vehicles. The tests were performed with the PEMS equipment (Portable Emission Measurement System) under actual traffic conditions. The vehicles carried a load of 20000 kg. This research method is one of the most desired because it provides reliable information on the actual vehicle emissions and fuel consumption (carbon balance method). For the tests, a route was selected that simulated a trip from a small town to a food-processing facility located in a city. The analysis of the obtained results gave a clear answer as to what vehicles need to be used for carriage of this type of cargo in terms of exhaust emissions and fuel consumption.Keywords: Emission, transport, fuel consumption, PEMS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1529541 Self-Adaptive Differential Evolution Based Power Economic Dispatch of Generators with Valve-Point Effects and Multiple Fuel Options
Authors: R.Balamurugan, S.Subramanian
Abstract:
This paper presents the solution of power economic dispatch (PED) problem of generating units with valve point effects and multiple fuel options using Self-Adaptive Differential Evolution (SDE) algorithm. The global optimal solution by mathematical approaches becomes difficult for the realistic PED problem in power systems. The Differential Evolution (DE) algorithm is found to be a powerful evolutionary algorithm for global optimization in many real problems. In this paper the key parameters of control in DE algorithm such as the crossover constant CR and weight applied to random differential F are self-adapted. The PED problem formulation takes into consideration of nonsmooth fuel cost function due to valve point effects and multi fuel options of generator. The proposed approach has been examined and tested with the numerical results of PED problems with thirteen-generation units including valve-point effects, ten-generation units with multiple fuel options neglecting valve-point effects and ten-generation units including valve-point effects and multiple fuel options. The test results are promising and show the effectiveness of proposed approach for solving PED problems.Keywords: Multiple fuels, power economic dispatch, selfadaptivedifferential evolution and valve-point effects.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1895540 An Experimental Study on the Effect of Premixed and Equivalence Ratios on CO and HC Emissions of Dual Fuel HCCI Engine
Authors: M. Ghazikhani, M. R. Kalateh, Y. K. Toroghi, M. Dehnavi
Abstract:
In this study, effects of premixed and equivalence ratios on CO and HC emissions of a dual fuel HCCI engine are investigated. Tests were conducted on a single-cylinder engine with compression ratio of 17.5. Premixed gasoline is provided by a carburetor connected to intake manifold and equipped with a screw to adjust premixed air-fuel ratio, and diesel fuel is injected directly into the cylinder through an injector at pressure of 250 bars. A heater placed at inlet manifold is used to control the intake charge temperature. Optimal intake charge temperature results in better HCCI combustion due to formation of a homogeneous mixture, therefore, all tests were carried out over the optimum intake temperature of 110-115 ºC. Timing of diesel fuel injection has a great effect on stratification of in-cylinder charge and plays an important role in HCCI combustion phasing. Experiments indicated 35 BTDC as the optimum injection timing. Varying the coolant temperature in a range of 40 to 70 ºC, better HCCI combustion was achieved at 50 ºC. Therefore, coolant temperature was maintained 50 ºC during all tests. Simultaneous investigation of effective parameters on HCCI combustion was conducted to determine optimum parameters resulting in fast transition to HCCI combustion. One of the advantages of the method studied in this study is feasibility of easy and fast transition of typical diesel engine to a dual fuel HCCI engine. Results show that increasing premixed ratio, while keeping EGR rate constant, increases unburned hydrocarbon (UHC) emissions due to quenching phenomena and trapping of premixed fuel in crevices, but CO emission decreases due to increase in CO to CO2 reactions.Keywords: Dual fuel HCCI engine, premixed ratio, equivalenceratio, CO and UHC emissions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1905539 ORR Activity and Stability of Pt-Based Electrocatalysts in PEM Fuel Cell
Authors: S. Limpattayanate, M. Hunsom
Abstract:
A comparison of activity and stability of the as-formed Pt/C, Pt-Co and Pt-Pd/C electrocatalysts, prepared by a combined approach of impregnation and seeding, was performed. According to the activity test in a single Proton Exchange Membrane (PEM) fuel cell, the Oxygen Reduction Reaction (ORR) activity of the Pt-M/C electrocatalyst was slightly lower than that of Pt/C. The j0.9 V and E10 mA/cm2 of the as-prepared electrocatalysts increased in the order of Pt/C > Pt-Co/C > Pt-Pd/C. However, in the medium-to-high current density region, Pt-Pd/C exhibited the best performance. With regard to their stability in a 0.5 M H2SO4 electrolyte solution, the electrochemical surface area decreased as the number of rounds of repetitive potential cycling increased due to the dissolution of the metals within the catalyst structure. For long-term measurement, Pt- Pd/C was the most stable than the other three electrocatalysts.Keywords: ORR activity, Stability, Pt-based electrocatalysts, PEM fuel cell.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2419538 Study of Some Innovant Reactors without on- Site Refueling with Triso and Cermet Fuel
Authors: A.Chetaine, A. Benchrif, H. Amsil, V. Kuznetsov, Y. Shimazu
Abstract:
The evaluation of unit cell neutronic parameters and lifetime for some innovant reactors without on sit-refuling will be held in this work. the behavior of some small and medium reactors without on site refueling with triso and cermet fuel. For the FBNR long life except we propose to change the enrichment of the Cermet MFE to 9%. For the AFPR reactor we can see that the use of the Cermet MFE can extend the life of this reactor but to maintain the same life period for AFPR-SC we most use burnup poison to have the same slope for Kinf (Burnup). PFPWR50 cell behaves almost in same way using both fuels Cermet and TRISO. So we can conclude that PFPWR50 reactor, with CERMET Fuel, is kept among the long cycle reactors and with the new configuration we avoid subcriticality at the beginning of cycle. The evaluation of unit cell neutronic parameters reveals a good agreement with the goal of BWR-PB concept. It is found out that the Triso fuel assembly lifetime can be extended for a reasonably long period without being refueled, approximately up to 48GWd/t burnup. Using coated particles fuels with the Cermet composition can be more extended the fuel assembly life time, approximately 52 GWd/t.Keywords: Cermet., Trisot, without on site refueling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1374537 Nuclear Fuel Safety Threshold Determined by Logistic Regression Plus Uncertainty
Authors: D. S. Gomes, A. T. Silva
Abstract:
Analysis of the uncertainty quantification related to nuclear safety margins applied to the nuclear reactor is an important concept to prevent future radioactive accidents. The nuclear fuel performance code may involve the tolerance level determined by traditional deterministic models producing acceptable results at burn cycles under 62 GWd/MTU. The behavior of nuclear fuel can simulate applying a series of material properties under irradiation and physics models to calculate the safety limits. In this study, theoretical predictions of nuclear fuel failure under transient conditions investigate extended radiation cycles at 75 GWd/MTU, considering the behavior of fuel rods in light-water reactors under reactivity accident conditions. The fuel pellet can melt due to the quick increase of reactivity during a transient. Large power excursions in the reactor are the subject of interest bringing to a treatment that is known as the Fuchs-Hansen model. The point kinetic neutron equations show similar characteristics of non-linear differential equations. In this investigation, the multivariate logistic regression is employed to a probabilistic forecast of fuel failure. A comparison of computational simulation and experimental results was acceptable. The experiments carried out use the pre-irradiated fuels rods subjected to a rapid energy pulse which exhibits the same behavior during a nuclear accident. The propagation of uncertainty utilizes the Wilk's formulation. The variables chosen as essential to failure prediction were the fuel burnup, the applied peak power, the pulse width, the oxidation layer thickness, and the cladding type.Keywords: Logistic regression, reactivity-initiated accident, safety margins, uncertainty propagation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1018536 A Review on Electrical Behavior of Different Substrates, Electrodes and Membranes in Microbial Fuel Cell
Authors: Bharat Mishra, Sanjay Kumar Awasthi, Raj Kumar Rajak
Abstract:
The devices, which convert the energy in the form of electricity from organic matters, are called microbial fuel cell (MFC). Recently, MFCs have been given a lot of attention due to their mild operating conditions, and various types of biodegradable substrates have been used in the form of fuel. Traditional MFCs were included in anode and cathode chambers, but there are single chamber MFCs. Microorganisms actively catabolize substrate, and bioelectricities are produced. In the field of power generation from non-conventional sources, apart from the benefits of this technique, it is still facing practical constraints such as low potential and power. In this study, most suitable, natural, low cost MFCs components are electrodes (anode and cathode), organic substrates, membranes and its design is selected on the basis of maximum potential (voltage) as an electrical parameter, which indicates a vital role of affecting factor in MFC for sustainable power production.
Keywords: Substrates, electrodes, membranes, microbial fuel cells, voltage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1439535 Parametric Analysis on Hydrogen Production using Mixtures of Pure Cellulosic and Calcium Oxide
Authors: N.A. Rashidi, S. Yusup, M.M. Ahmad
Abstract:
As the fossil fuels kept on depleting, intense research in developing hydrogen (H2) as the alternative fuel has been done to cater our tremendous demand for fuel. The potential of H2 as the ultimate clean fuel differs with the fossil fuel that releases significant amounts of carbon dioxide (CO2) into the surrounding and leads to the global warming. The experimental work was carried out to study the production of H2 from palm kernel shell steam gasification at different variables such as heating rate, steam to biomass ratio and adsorbent to biomass ratio. Maximum H2 composition which is 61% (volume basis) was obtained at heating rate of 100oCmin-1, steam/biomass of 2:1 ratio, and adsorbent/biomass of 1:1 ratio. The commercial adsorbent had been modified by utilizing the alcoholwater mixture. Characteristics of both adsorbents were investigated and it is concluded that flowability and floodability of modified CaO is significantly improved.
Keywords: Biomass gasification, Calcium oxide, Carbon dioxide capture, Sorbent flowability
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1845534 Optimal Peer-to-Peer On-Orbit Refueling Mission Planning with Complex Constraints
Authors: Jing Yu, Hongyang Liu, Dong Hao
Abstract:
On-Orbit Refueling is of great significance in extending space crafts' lifetime. The problem of minimum-fuel, time-fixed, Peer-to-Peer On-Orbit Refueling mission planning is addressed here with the particular aim of assigning fuel-insufficient satellites to the fuel-sufficient satellites and optimizing each rendezvous trajectory. Constraints including perturbation, communication link, sun illumination, hold points for different rendezvous phases, and sensor switching are considered. A planning model has established as well as a two-level solution method. The upper level deals with target assignment based on fuel equilibrium criterion, while the lower level solves constrained trajectory optimization using special maneuver strategies. Simulations show that the developed method could effectively resolve the Peer-to-Peer On-Orbit Refueling mission planning problem and deal with complex constraints.
Keywords: Mission planning, orbital rendezvous, on-orbit refueling, space mission.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 622533 Performance and Emission Characteristics of a DI Diesel Engine Fuelled with Cashew Nut Shell Liquid (CNSL)-Diesel Blends
Authors: Velmurugan. A, Loganathan. M
Abstract:
The increased number of automobiles in recent years has resulted in great demand for fossil fuel. This has led to the development of automobile by using alternative fuels which include gaseous fuels, biofuels and vegetables oils as fuel. Energy from biomass and more specific bio-diesel is one of the opportunities that could cover the future demand of fossil fuel shortage. Biomass in the form of cashew nut shell represents a new energy source and abundant source of energy in India. The bio-fuel is derived from cashew nut shell oil and its blend with diesel are promising alternative fuel for diesel engine. In this work the pyrolysis Cashew Nut Shell Liquid (CNSL)-Diesel Blends (CDB) was used to run the Direct Injection (DI) diesel engine. The experiments were conducted with various blends of CNSL and Diesel namely B20, B40, B60, B80 and B100. The results are compared with neat diesel operation. The brake thermal efficiency was decreased for blends of CNSL and Diesel except the lower blends of B20. The brake thermal efficiency of B20 is nearly closer to that of diesel fuel. Also the emission level of the all CNSL and Diesel blends was increased compared to neat diesel. The higher viscosity and lower volatility of CNSL leads to poor mixture formation and hence lower brake thermal efficiency and higher emission levels. The higher emission level can be reduced by adding suitable additives and oxygenates with CNSL and Diesel blends.Keywords: Bio-oil, Biodiesel, Cardanol, Cashew nut shell liquid (CNSL)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3940532 Current Distribution and Cathode Flooding Prediction in a PEM Fuel Cell
Authors: A. Jamekhorshid, G. Karimi, I. Noshadi, A. Jahangiri
Abstract:
Non-uniform current distribution in polymer electrolyte membrane fuel cells results in local over-heating, accelerated ageing, and lower power output than expected. This issue is very critical when fuel cell experiences water flooding. In this work, the performance of a PEM fuel cell is investigated under cathode flooding conditions. Two-dimensional partially flooded GDL models based on the conservation laws and electrochemical relations are proposed to study local current density distributions along flow fields over a wide range of cell operating conditions. The model results show a direct association between cathode inlet humidity increases and that of average current density but the system becomes more sensitive to flooding. The anode inlet relative humidity shows a similar effect. Operating the cell at higher temperatures would lead to higher average current densities and the chance of system being flooded is reduced. In addition, higher cathode stoichiometries prevent system flooding but the average current density remains almost constant. The higher anode stoichiometry leads to higher average current density and higher sensitivity to cathode flooding.Keywords: Current distribution, Flooding, Hydrogen energysystem, PEM fuel cell.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2410531 The Evaluation of Costs and Greenhouse Gas Reduction Using Technologies for Energy from Sewage Sludge
Authors: Futoshi Kakuta, Takashi Ishida
Abstract:
Sewage sludge is a biomass resource that can create a solid fuel and electricity. Utilizing sewage sludge as a renewable energy can contribute to the reduction of greenhouse gases. In Japan, the "National Plan for the Promotion of Biomass Utilization" and the “Priority Plan for Social Infrastructure Development" were approved at cabinet meetings in December 2010 and August 2012, respectively, to promote the energy utilization of sewage sludge. This study investigated costs and greenhouse gas emission in different sewage sludge treatments with technologies for energy from sewage sludge. Expenses were estimated based on capital costs and O&M costs including energy consumption of solid fuel plants and biogas power generation plants for sewage sludge. Results showed that the cost of sludge digestion treatment with solid fuel technologies was 8% lower than landfill disposal. The greenhouse gas emission of sludge digestion treatment with solid fuel technologies was also 6,390t as CO2 smaller than landfill disposal. Biogas power generation reduced the electricity of a wastewater treatment plant by 30% and the cost by 5%.Keywords: Global warming counter measure, energy technology, solid fuel production, biogas.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1734530 Design of a Hybrid Fuel Cell with Battery Energy Storage for Stand-Alone Distributed Generation Applications
Authors: N. A. Zambri, A. Mohamed, H. Shareef, M. Z. C. Wanik
Abstract:
This paper presents the modeling and simulation of a hybrid proton exchange membrane fuel cell (PEMFC) with an energy storage system for use in a stand-alone distributed generation (DG) system. The simulation model consists of fuel cell DG, lead-acid battery, maximum power point tracking and power conditioning unit which is modeled in the MATLAB/Simulink platform. Poor loadfollowing characteristics and slow response to rapid load changes are some of the weaknesses of PEMFC because of the gas processing reaction and the fuel cell dynamics. To address the load-tracking issues in PEMFC, a hybrid PEMFC and battery storage system is considered and modelled. The model utilizes PEMFC as the main energy source whereas the battery functions as energy storage to compensate for the limitations of PEMFC.Simulation results are given to show the overall system performance under light and heavyloading conditions.
Keywords: Hybrid, Lead–Acid Battery, Maximum Power Point Tracking, Proton Exchange Membrane Fuel Cell.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3123529 A Predictive control based on Neural Network for Proton Exchange Membrane Fuel Cell
Authors: M. Sedighizadeh, M. Rezaei, V. Najmi
Abstract:
The Proton Exchange Membrane Fuel Cell (PEMFC) control system has an important effect on operation of cell. Traditional controllers couldn-t lead to acceptable responses because of time- change, long- hysteresis, uncertainty, strong- coupling and nonlinear characteristics of PEMFCs, so an intelligent or adaptive controller is needed. In this paper a neural network predictive controller have been designed to control the voltage of at the presence of fluctuations of temperature. The results of implementation of this designed NN Predictive controller on a dynamic electrochemical model of a small size 5 KW, PEM fuel cell have been simulated by MATLAB/SIMULINK.Keywords: PEMFC, Neural Network, Predictive Control..
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2620528 An Experimental Study on the Effect of EGR and Engine Speed on CO and HC Emissions of Dual Fuel HCCI Engine
Authors: M. Ghazikhani, M. R. Kalateh, Y. K. Toroghi, M. Dehnavi
Abstract:
In this study, effects of EGR on CO and HC emissions of a dual fuel HCCI-DI engine are investigated. Tests were conducted on a single-cylinder variable compression ratio (VCR) diesel engine with compression ratio of 17.5. Premixed gasoline is provided by a carburetor connected to intake manifold and equipped with a screw to adjust premixed air-fuel ratio, and diesel fuel is injected directly into the cylinder through an injector at pressure of 250 bars. A heater placed at inlet manifold is used to control the intake charge temperature. Optimal intake charge temperature was 110-115ºC due to better formation of a homogeneous mixture causing HCCI combustion. Timing of diesel fuel injection has a great effect on stratification of in-cylinder charge in HCCI combustion. Experiments indicated 35 BTDC as the optimum injection timing. Coolant temperature was maintained 50ºC during the tests. Results show that increasing engine speed at a constant EGR rate leads to increase in CO and UHC emissions due to the incomplete combustion caused by shorter combustion duration and less homogeneous mixture. Results also show that increasing EGR reduces the amount of oxygen and leads to incomplete combustion and therefore increases CO emission due to lower combustion temperature. HC emission also increases as a result of lower combustion temperatures.Keywords: Dual fuel HCCI engine, EGR, engine speed, CO andUHC emissions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2365527 Effect of Swirl on Gas-Fired Combustion Behavior in a 3-D Rectangular Combustion Chamber
Authors: Man Young Kim
Abstract:
The objective of this work is to investigate the turbulent reacting flow in a three dimensional combustor with emphasis on the effect of inlet swirl flow through a numerical simulation. Flow field is analyzed using the SIMPLE method which is known as stable as well as accurate in the combustion modeling, and the finite volume method is adopted in solving the radiative transfer equation. In this work, the thermal and flow characteristics in a three dimensional combustor by changing parameters such as equivalence ratio and inlet swirl angle have investigated. As the equivalence ratio increases, which means that more fuel is supplied due to a larger inlet fuel velocity, the flame temperature increases and the location of maximum temperature has moved towards downstream. In the mean while, the existence of inlet swirl velocity makes the fuel and combustion air more completely mixed and burnt in short distance. Therefore, the locations of the maximum reaction rate and temperature were shifted to forward direction compared with the case of no swirl.Keywords: Gaseous Fuel, Inlet Swirl, Thermal Radiation, Turbulent Combustion
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634526 Microbial Fuel Cells and Their Applications in Electricity Generating and Wastewater Treatment
Authors: Shima Fasahat
Abstract:
This research is an experimental research which was done about microbial fuel cells in order to study them for electricity generating and wastewater treatment. These days, it is very important to find new, clean and sustainable ways for energy supplying. Because of this reason there are many researchers around the world who are studying about new and sustainable energies. There are different ways to produce these kind of energies like: solar cells, wind turbines, geothermal energy, fuel cells and many other ways. Fuel cells have different types one of these types is microbial fuel cell. In this research, an MFC was built in order to study how it can be used for electricity generating and wastewater treatment. The microbial fuel cell which was used in this research is a reactor that has two tanks with a catalyst solution. The chemical reaction in microbial fuel cells is a redox reaction. The microbial fuel cell in this research is a two chamber MFC. Anode chamber is an anaerobic one (ABR reactor) and the other chamber is a cathode chamber. Anode chamber consists of stabilized sludge which is the source of microorganisms that do redox reaction. The main microorganisms here are: Propionibacterium and Clostridium. The electrodes of anode chamber are graphite pages. Cathode chamber consists of graphite page electrodes and catalysts like: O2, KMnO4 and C6N6FeK4. The membrane which separates the chambers is Nafion117. The reason of choosing this membrane is explained in the complete paper. The main goal of this research is to generate electricity and treating wastewater. It was found that when you use electron receptor compounds like: O2, MnO4, C6N6FeK4 the velocity of electron receiving speeds up and in a less time more current will be achieved. It was found that the best compounds for this purpose are compounds which have iron in their chemical formula. It is also important to pay attention to the amount of nutrients which enters to bacteria chamber. By adding extra nutrients in some cases the result will be reverse. By using ABR the amount of chemical oxidation demand reduces per day till it arrives to a stable amount.
Keywords: Anaerobic baffled reactor, bioenergy, electrode, energy efficient, microbial fuel cell, renewable chemicals, sustainable.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1389525 GRNN Application in Power Systems Simulation for Integrated SOFC Plant Dynamic Model
Authors: N. Nim-on, A. Oonsivilai
Abstract:
In this paper, the application of GRNN in modeling of SOFC fuel cells were studied. The parameters are of interested as voltage and power value and the current changes are investigated. In addition, the comparison between GRNN neural network application and conventional method was made. The error value showed the superlative results.Keywords: SOFC, GRNN, Fuel cells.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2099524 Construction of Water Electrolyzer for Single Slice O2/H2 Polymer Electrolyte Membrane Fuel Cell
Authors: May Zin Lwin., Mya Mya Oo
Abstract:
In the first part of the research work, an electrolyzer (10.16 cm dia and 24.13 cm height) to produce hydrogen and oxygen was constructed for single slice O2/H2 fuel cell using cation exchange membrane. The electrolyzer performance was tested with 23% NaOH, 30% NaOH, 30% KOH and 35% KOH electrolyte solution with current input 4 amp and 2.84 V from the rectifier. Rates of volume of hydrogen produced were 0.159 cm3/sec, 0.155 cm3/sec, 0.169 cm3/sec and 0.163 cm3/sec respectively from 23% NaOH, 30% NaOH, 30% KOH and 35% KOH solution. Rates of volume of oxygen produced were 0.212 cm3/sec, 0.201 cm3/sec, 0.227 cm3/sec and 0.219 cm3/sec respectively from 23% NaOH, 30% NaOH, 30% KOH and 35% KOH solution (1.5 L). In spite of being tested the increased concentration of electrolyte solution, the gas rate does not change significantly. Therefore, inexpensive 23% NaOH electrolyte solution was chosen to use as the electrolyte in the electrolyzer. In the second part of the research work, graphite serpentine flow plates, fiberglass end plates, stainless steel screen electrodes, silicone rubbers were made to assemble the single slice O2/H2 polymer electrolyte membrane fuel cell (PEMFC).
Keywords: electrolyzer, electrolyte solution, fuel cell, rectifier
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2085523 Synchrotron X-ray Based Investigation of Fe Environment in Porous Anode of Shewanella oneidensis Microbial Fuel Cell
Authors: Sunil Dehipawala, Gayathrie Amarasuriya, N. Gadura, G. Tremberger Jr, D. Lieberman, Harry Gafney, Todd Holden, T. Cheung
Abstract:
The iron environment in Fe-doped Vycor Anode was investigated with EXAFS using Brookhaven Synchrotron Light Source. The iron-reducing Shewanella oneidensis culture was grown in a microbial fuel cell under anaerobic respiration. The Fe bond length was found to decrease and correlate with the amount of biofilm growth on the Fe-doped Vycor Anode. The data suggests that Fe-doped Vycor Anode would be a good substrate to study the Shewanella oneidensis nanowire structure using EXAFS.Keywords: EXAFS, Fourier Transform, Microbial Fuel Cell, Shewanella oneidensis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1959522 The Model Establishment and Analysis of TRACE/MELCOR for Kuosheng Nuclear Power Plant Spent Fuel Pool
Authors: W. S. Hsu, Y. Chiang, Y. S. Tseng, J. R. Wang, C. Shih, S. W. Chen
Abstract:
Kuosheng nuclear power plant (NPP) is a BWR/6 plant in Taiwan. There is more concern for the safety of NPPs in Taiwan after Japan Fukushima NPP disaster occurred. Hence, in order to estimate the safety of Kuosheng NPP spent fuel pool (SFP), by using TRACE, MELCOR, and SNAP codes, the safety analysis of Kuosheng NPP SFP was performed. There were two main steps in this research. First, the Kuosheng NPP SFP models were established. Second, the transient analysis of Kuosheng SFP was done by TRACE and MELCOR under the cooling system failure condition (Fukushima-like condition). The results showed that the calculations of MELCOR and TRACE were very similar in this case, and the fuel uncover happened roughly at 4th day after the failure of cooling system. The above results indicated that Kuosheng NPP SFP may be unsafe in the case of long-term SBO situation. In addition, future calculations were needed to be done by the other codes like FRAPTRAN for the cladding calculations.
Keywords: TRACE, MELCOR, SNAP, spent fuel pool.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1584521 The Effect of Alternative Fuel Combustion in the Cement Kiln Main Burner on Production Capacity and Improvement with Oxygen Enrichment
Authors: W. K. Hiromi Ariyaratne, Morten C. Melaaen, Lars-André Tokheim
Abstract:
A mathematical model based on a mass and energy balance for the combustion in a cement rotary kiln was developed. The model was used to investigate the impact of replacing about 45 % of the primary coal energy by different alternative fuels. Refuse derived fuel, waste wood, solid hazardous waste and liquid hazardous waste were used in the modeling. The results showed that in order to keep the kiln temperature unchanged, and thereby maintain the required clinker quality, the production capacity had to be reduced by 1-15 %, depending on the fuel type. The reason for the reduction is increased exhaust gas flow rates caused by the fuel characteristics. The model, which has been successfully validated in a full-scale experiment, was also used to show that the negative impact on the production capacity can be avoided if a relatively small part of the combustion air is replaced by pure oxygen.Keywords: Alternative fuels, Cement kiln main burner, Oxygen enrichment, Production capacity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5531520 Steady State Natural Convection in Vertical Heated Rectangular Channel between Two Vertical Parallel MTR-Type Fuel Plates
Authors: Djalal Hamed
Abstract:
The aim of this paper is to perform an analytic solution of steady state natural convection in a narrow rectangular channel between two vertical parallel MTR-type fuel plates, imposed under a cosine shape heat flux to determine the margin of the nuclear core power at which the natural convection cooling mode can ensure a safe core cooling, where the cladding temperature should not be reach the specific safety limits (90 °C). For this purpose, a simple computer program is developed to determine the principal parameter related to the nuclear core safety such as the temperature distribution in the fuel plate and in the coolant (light water) as a function of the reactor power. Our results are validated throughout a comparison against the results of another published work, which is considered like a reference of this study.Keywords: Buoyancy force, friction force, friction factor, MTR-type fuel, natural convection, vertical heated rectangular channel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 773519 An Experimental Comparative Study of SI Engine Performance and Emission Characteristics Fuelled with Various Gasoline-Alcohol Blends
Authors: M. Mourad, K. Abdelgawwad
Abstract:
This experimental investigation aimed to determine the influence of using different types of alcohol and gasoline blends such as ethanol - butanol - propanol on the performance of spark ignition engine. The experimental work studied the effect of various fuel blends such as ethanol – butanol/gasoline and propanol/gasoline with two rates of 15% and 20%, at different operating conditions (engine speed and loads), on engine performance emission characteristics. Laboratory experiments are carried out on a four-cylinder spark ignition (SI) engine. In this practical study, all considerations and precautions are taken into account to ensure the quality and accuracy of practical experiments and different measurements. The results show that the performance of the engine improved significantly in the case of ethanol/butanol-gasoline blends. The results also indicated that the engine emitted pollutants such as CO, hydrocarbon (HC) for alcohol fuel blends compared to base gasoline NOx emission increased for different fuel blends either ethanol/butanol-gasoline or propanol-gasoline fuel blend.
Keywords: Gasoline engine performance, emissions, alcohol blends.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 831518 Short Term Tests on Performance Evaluation of Water-washed and Dry-washed Biodiesel from Used Cooking Oil
Authors: Shumani Ramuhaheli, Christopher C. Enweremadu, Hilary L. Rutto
Abstract:
In this study, biodiesel from used cooking oil was produced as purified by washing with water (water wash) and amberlite (dry wash). The work presents the results of short term tests on performance characteristics of diesel engine using both biodiesel-fuel samples. In this investigation, the water wash biodiesel and dry wash biodiesel and diesel were compared for performance using a four-cylinder diesel engine. The torque, brake power, specific fuel consumption and brake thermal efficiency were analyzed. The tests showed that in all cases, dry wash biodiesel performed marginally poorer compared to water wash biodiesel. Except for brake thermal efficiency, diesel fuel had better engine performance characteristics compared to the biodiesel-fuel samples. According to these results, dry washing of biodiesel has a marginal effect on engine performance.
Keywords: Biodiesel, engine performance, used cooking oil, water wash, dry wash.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2091517 A Numerical Study of the Effect of Side-Dump Angle on Fuel Droplets Sizing in a Three- Dimensional Side-Dump Combustor
Authors: M. Mojtahedpoor, M. M. Doustdar
Abstract:
A numerical study on the effect of side-dump angle on fuel droplets sizing and effective mass fraction have been investigated in present paper. The mass of fuel vapor inside the flammability limit is named as the effective mass fraction. In the first step we have considered a side-dump combustor with dump angle of 0o (acrossthe cylinder) and by increasing the entrance airflow velocity from 20 to 30, 40 and 50 (m/s) respectively, the mean diameter of fuel droplets sizing and effective mass fraction have been studied. After this step, we have changed the dump angle from 0o to 30o,45o and finally 60o in direction of cylinderand also we have increased the entrance airflow velocity from 20 up to 50 (m/s) with the amount of growth of 10(m/s) in each step, to examine its effects on fuel droplets sizing as well as effective mass fraction. With rise of entrance airflow velocity, these calculations are repeated in each step too. The results show, with growth of dump-angle the effective mass fraction has been decreased and the mean diameter of droplets sizing has been increased. To fulfill the calculations a modified version of KIVA-3V code which is a transient, three-dimensional, multiphase, multicomponent code for the analysis of chemically reacting flows with sprays, is used.Keywords: Side-Dump combustor, Droplets sizing, Side-Dump angle, KIVA-3V
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1652